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Abstract. We continue the study of a mathematical model for the forest ecosystem
which has been presented by Kuzunetsov et al. [5] and which is equipped with the
Dirichlet boundary conditions. In the preceding two papers [7, 8], we constructed a
dynamical system and investigated asymptotic behavior of trajectories of the dynam-
ical system. This paper is then devoted to studying the stationary problem. Stability
and instability of the zero stationary solution is investigated. When the mortality of
trees is suitably small, it is shown by the numerical methods that the system possesses
a unique inhomogeneous solution which has a clear gap which indicates discontinuity
of the density of trees.

1 Introduction This paper is devoted to studying the stationary problem for a forest
kinematic model presented by Kuzunetsov et al. [5]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
= βδw − γ(v)u − fu in Ω × (0,∞),

∂v

∂t
= fu − hv in Ω × (0,∞),

∂w

∂t
= d∆w − βw + αv in Ω × (0,∞),

w = 0 on ∂Ω × (0,∞),

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x) in Ω.

(1.1)

Here, Ω is a two-dimensional bounded domain. The unknown functions u = u(x, t) and
v = v(x, t) denote the tree densities of young and old age classes, respectively, at a position
x ∈ Ω and time t ∈ [0,∞). The third unknown function w = w(x, t) denotes the density of
seeds in the air at x ∈ Ω and t ∈ [0,∞). The third equation describes the kinetics of seeds;
d > 0 is a diffusion constant of seeds, and α > 0 and β > 0 are seed production and seed
deposition rates, respectively. On the w, the Dirichlet boundary conditions are imposed.
While the first and second equations describe the growth of young and old trees, respectively.
The constant 0 < δ � 1 is an establishment rate of seeds, γ(v) > 0 is a mortality of young
trees which is allowed to depend on the old-tree density v and is expected to hit a minimum
at a certain optimal value of v, say b > 0, f > 0 is an aging rate, and h > 0 is a mortality
of old trees.

1This work is supported by Cooperative Research Program in the form of Core University Program
between JSPS and VAST (Vietnamese Academy of Science and Technology) by Japan Society for the
Promotion of Science.

2This work is supported by Grant-in-Aid for Scientific Research (No. 16340046) by Japan Society for
the Promotion of Science.

2000 Mathematics Subject Classification. 35J60, 37L15, 37N25.
Key words and phrases. Forest model, Dirichlet conditions, Stationary problem.



542 T. SHIRAI, L. H. CHUAN AND A. YAGI

In the preceding two papers [7, 8], we studied the evolutionary problem of (1.1). In
[7], we constructed global solutions and a dynamical system (S(t),K, X) determined from
(1.1). As the underlying space X , we set a space of the form

X =

⎧⎨⎩
⎛⎝u

v
w

⎞⎠ ; u ∈ L∞(Ω), v ∈ L∞(Ω), w ∈ L2(Ω)

⎫⎬⎭ .(1.2)

The phase space K consists of triplets of nonnegative functions of X , i.e.,

K =

⎧⎨⎩
⎛⎝u

v
w

⎞⎠ ; 0 ≤ u ∈ L∞(Ω), 0 ≤ v ∈ L∞(Ω), 0 ≤ w ∈ L2(Ω)

⎫⎬⎭ .(1.3)

The nonlinear semigroup S(t) acts on K for 0 ≤ t < ∞. In [8], we found a Lyapunov function
and investigated asymptotic behavior of trajectories S(t)U0, U0 ∈ K. Since some S(t)U0

possibly converges to discontinuous stationary solution even if the initial value U0 ∈ K
consists of smooth functions (see the numerical results presented in Section 5) and since
if so the trajectory S(t)U0 must have an empty ω-limit set in X , the dynamical system
(S(t),K, X) never enjoys a compact attractor in general. By this reason we have introduced
three kinds of ω-limit sets for U0 ∈ K, i.e., ω(U0) ⊂ L2-ω(U0) ⊂ w∗-ω(U0) �= ∅, here ω(U0)
denotes the usual one (see [10, 13]), L2-ω(U0) is an ω-limit set with respect to the L2

topology and w∗-ω(U0) is that with respect to the weak∗ topology of L∞(Ω). And we
proved by utilizing the Lyapunov function that L2-ω(U0) consists of stationary solutions
only. So, roughly speaking, every trajectory S(t)U0, U0 ∈ K, converges asymptotically to
some stationary solution of (1.1).

In this paper, we intend to study the stationary problem of (1.1). We shall first study
homogeneous stationary solutions. It is easy to see that the Dirichlet boundary condi-
tions imply a fact that the zero solution is a unique homogeneous solution of (1.1), cf.
the Neumann condition case [4]. The zero solution will then be shown to be unstable if
0 < h < fαβδ

(ab2+c+f)(dµ0+β) and to be stable if fαβδ
(ab2+c+f)(dµ0+β) < h < ∞, where a, b and c are

positive constants contained in γ(v) (see (1.4) below) and where µ0 > 0 denotes the mini-
mal eigenvalue of the Laplace operator −∆ in L2(Ω) equipped with the Dirichlet boundary
conditions. Furthermore, it will be shown that the zero solution is globally stable, namely,
every solution tends to zero as t → ∞, if

(
fαβδ

(ab2+c+f)(dµ0+β) <
)

fαδ
c+f < h < ∞. Secondly,

we shall seek inhomogeneous stationary solutions by the numerical methods. In fact, when
0 < h < fαβδ

(ab2+c+f)(dµ0+β) , some numerical computations show that (1.1) possesses a unique

inhomogeneous solution. On the contrary, when fαβδ
(ab2+c+f)(dµ0+β) < h < fαδ

c+f , some numer-
ical computations suggest that (1.1) possesses a large number of inhomogeneous solutions.
As mentioned, when fαδ

c+f < h < ∞, it is rigorously shown that the zero solution is a glob-
ally stable stationary solution, and hence no other (inhomogeneous) stationary solution can
exist.

Throughout the paper, Ω is a convex or C2, bounded domain in R2. We assume as in
the paper [5] that the function γ(v) is given by a quadratic function

γ(v) = a(v − b)2 + c,(1.4)

where a, b, c > 0 are all positive constants.
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2 Homogeneous stationary solution Consider a homogeneous stationary solution
(u, v, w) to (1.1). Obviously, (u, v, w) is a solution to the algebraic equations⎧⎪⎨⎪⎩

βδw − γ(v)u − fu = 0,

fu − hv = 0,

−βw + αv = 0
(2.1)

for U = (u, v, w) ∈ R3 with u ≥ 0, v ≥ 0, w ≥ 0. In the meantime, we have w = 0
because of the Dirichlet boundary conditions on the unknown w. Therefore, it follows that
u = v = 0. Hence, the zero solution O = (0, 0, 0) is a unique homogeneous stationary
solution of (1.1).

3 Stability and instability of O We are then interested in investigating stability and
instability of O. We will localize the problem (1.1) in a neighborhood of O and will ex-
tend the dynamical system (S(t),X, X) determines from (1.1) in [7] to the complex-valued
functions in the neighborhood of O in order to apply the linearized principle for nonlinear
evolution equations, see [10, 13] (cf. also [1]).

Let χ(λ) be a cutoff function defined on the complex plane C such that χ(λ) = λ for
λ : |λ| < 1, χ(λ) vanishes for λ : |λ| > 2, and χ(λ) is a smooth function in the real variables
λ′ and λ′′ such that λ = λ′ + iλ′′.

The localized problem is then written in the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
= βδχ(w) − γ(χ(v))χ(u) − fu in Ω × (0,∞),

∂v

∂t
= fχ(u) − hv in Ω × (0,∞),

∂w

∂t
= d∆w − βw + αχ(v) in Ω × (0,∞),

w = 0 on ∂Ω × (0,∞),

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x) in Ω.

(3.1)

We can handle this localized problem in a quite analogous way as for the original one (see
[7]) by applying the general method presented in [6]. In fact, the problem (3.1) is formulated
as the initial value problem for an abstract evolution equation⎧⎨⎩

dU

dt
+ AU = F̃ (U), 0 < t ≤ ∞,

U(0) = U0

(3.2)

in function space X . Here, the linear operator A is defined by

A =

⎛⎝f 0 0
0 h 0
0 0 Λ

⎞⎠ with D(A) =

⎧⎨⎩
⎛⎝u

v
w

⎞⎠ ; u, v ∈ L∞(Ω) and w ∈ H2
D(Ω)

⎫⎬⎭ ,

where Λ is a realization of the Laplace operator −d∆ + β in L2(Ω) under the Dirichlet
boundary conditions on the boundary ∂Ω (see [11, Chap. VI]). According to [9] (in partic-
ular, in the case when Ω is merely convex), it is known that Λ is a nonnegative self-adjoint
operator of L2(Ω) with

D(Λθ) =

{
H2θ(Ω) if 0 ≤ θ < 1

4 ,

H2θ
D (Ω) = {w ∈ H2θ(Ω); w = 0 on ∂Ω} if 1

4 < θ ≤ 1, θ �= 3
4 .
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It is clear that A is a sectorial operator with angle less than π
2 . Moreover, for 0 ≤ θ ≤ 1,

we have

Aθ =

⎛⎝fθ 0 0
0 hθ 0
0 0 Λθ

⎞⎠ with D(Aθ) =

⎧⎨⎩
⎛⎝u

v
w

⎞⎠ ; u, v ∈ L∞(Ω) and w ∈ D(Λθ)

⎫⎬⎭ .

The nonlinear operator F̃ is given by

F̃ (U) =

⎛⎝βδχ(w) − γ
(
χ(v)

)
χ(u)

fχ(u)
αχ(v)

⎞⎠ , U =

⎛⎝u
v
w

⎞⎠ ∈ D(Aη),

where η is an arbitrarily fixed exponent in such a way that 1
2 < η < 1. Initial value U0 is

taken from D(Aθ) with 0 ≤ θ < η.
Since χ(u), χ(v) and χ(w) are uniformly bounded, we can use the same arguments as

in [7] to construct local solutions and global solutions for all initial values from D(Aθ) in
the function space

U ∈ C([0,∞);D(Aθ)) ∩ C1((0,∞);X) ∩ C((0,∞);D(A)).

Therefore, the localized problem (3.1) defines a semigroup S̃(t) acting on Dθ = D(Aθ), 0 ≤
θ < 1. By the similar argument as for verifying the Lipschitz continuity of solutions of (1.1)
([7, Proposition 5.3]), S̃(t) is also shown to enjoy the same Lipschitz conditions. In this
way, Problem (3.1) defines a dynamical system (S̃(t),Dθ, Dθ).

From now we fix θ in such a way that 1
2 < θ < 1 in order to have Dθ ⊂ L∞(Ω) ≡

L∞(Ω)×L∞(Ω)×L∞(Ω). Then, in a suitable neighborhood of O in Dθ, any solution of the
original problem (i.e., (1.1)) is a solution of (3.1), too. Therefore, in such a neighborhood,
any trajectory of (S(t),Kθ, Dθ) is that of (S̃(t),Dθ, Dθ), where Kθ = K ⊂ Dθ. Clearly, O is
an equilibrium of (S̃(t),Dθ, Dθ), too. Furthermore, we notice that, if O is stable as an equi-
librium of (S̃(t),Dθ, Dθ), then it is the same as that of (S(t),Kθ , Dθ). However, we cannot
say that, if O is unstable in (S̃(t),Dθ, Dθ), then it is the same as that of (S(t),Kθ , Dθ).
Nevertheless, instability of O in (S̃(t),Dθ, Dθ) provides crucial information concerning the
behavior of trajectories of the original system (S(t),Kθ , Dθ) in the neighborhood of O.

Let us verify the Fréchet differentiability of S̃(t) in the neighborhood of O. We know
that S̃(t) is determined by the Cauchy problem for a semilinear equation of the form (3.2).
In a neighborhood of O in D(Aη) ⊂ D(Aθ) ⊂ L∞(Ω), F̃ is Fréchet differentiable with the
derivative

F̃ ′(U) =

⎛⎝−γ(v) −γ′(v)u βδ
f 0 0
0 α 0

⎞⎠ , U ∈ BD(Aη)(O; r).

We can then repeat the same arguments as in [1] to conclude that S̃(t) : Dθ → Dθ is of
class C1,1 in a neighborhood of O in Dθ for 0 ≤ t ≤ T , where T > 0. In particular, S̃(t) is
Fréchet differentiable at O for any 0 ≤ t < ∞ with the derivative [S̃(t)]′O = e−tA, where
e−tA is an analytic semigroup on X generated by

A = A − F̃ ′(O) =

⎛⎝ m 0 −βδ
−f h 0
0 −α Λ

⎞⎠ ,(3.3)
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where m = γ(0) + f = ab2 + c + f .
We shall next verify the hyperbolicity of O, i.e., σ([S̃(t)]′0) ∩ {λ ∈ C; |λ| = 1} = ∅, as

an equilibrium of the dynamical system (S̃(t),Dθ, Dθ). But for this end we know that it
suffices to verify that

σ(A) ∩ {λ ∈ C; Re λ = 0} = ∅.
Let us find λ ∈ C such that, for any H ∈ X , the vector equation

(λ − A)U = H, H =

⎛⎝p
q
r

⎞⎠ ∈ X, U =

⎛⎝u
v
w

⎞⎠ ∈ D(A),

or the system ⎧⎪⎨⎪⎩
(λ − m)u + βδw = p,

fu + (λ − h)v = q,

αv + (λ − Λ)w = r

has a unique solution U ∈ D(A). From these equations, it then follows that

{(λ − m)(λ − h)(λ − Λ) + fαβδ}w = fαp − α(λ − m)q + (λ − m)(λ − h)r.

Therefore, if λ is a solution to the quadratic equation (λ − m)(λ − h) = 0, i.e., λ = m or
h, then w cannot belong to H2(Ω) in general, i.e., m, h ∈ σ(A). Now, let λ �= m, h, then
λ ∈ σ(A) if and only if λ + fαβδ

(λ−m)(λ−h) ∈ σ(Λ). In other words, λ ∈ σ(A) if and only if λ is
a solution to one of the following infinite number of cubic equations

(λ − m)(λ − h)(λ − dµn − β) + fαβδ = 0,(3.4)

where 0 < µ0 < µ1 ≤ µ2 ≤ . . . are the eigenvalues of the Laplace operator −∆ in L2(Ω)
equipped with the Dirichlet boundary conditions.

Theorem 3.1. The zero solution O is a hyperbolic equilibrium if and only if (ab2 + c +
f)h(dµn + β) − fαβδ �= 0 for every n = 0, 1, 2, . . . .

Proof. Necessity is trivial because if mh(dµn + β) − fαβδ = 0 with some µn then λ = 0 is
clearly in σ(A).

Now, let mh(dµn + β) − fαβδ �= 0 for every n = 0, 1, 2, . . . . It is easy to see that (3.4)
has no imaginary solutions. Indeed, assume that λ = iy, y ∈ R is a solution of (3.4) for
some µn = µn0 . Then, by directly calculating, we observe that y �= 0 and{

y2 = (m + h)(dµn0 + β) + mh,

y2(m + h + dµn0 + β) = mh(dµn0 + β) − fαβδ.

But it is impossible that these two equalities are valid at the same time.

Theorem 3.2. i) Let 0 < h < fαβδ
(ab2+c+f)(dµ0+β) and let the condition

µn �= β{fαδ − (ab2 + c + f)h}
(ab2 + c + f)hd

for every n = 0, 1, 2, . . .

be satisfied. Then, O is an unstable equilibrium of (S̃(t),Dθ, Dθ).
ii) Let fαβδ

(ab2+c+f)(dµ0+β) < h < ∞. Then, O is an exponentially stable equilibrium of

(S̃(t),Dθ, Dθ).
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Proof. i) By using Theorem 3.1, we obtain that O is a hyperbolic equilibrium. It is now
suffices to verify that [S̃(t)]′O has a spectral set such that σ([S̃(t)]′O)∩{λ ∈ C; |λ| > 1} �= ∅
or equivalently σ(A) ∩ {λ ∈ C; Reλ < 0} �= ∅. The equation of (3.4) is rewritten by

λ3 − {m + h + (dµn + β)}λ2 + {mh + (m + h)(dµn + β)}λ
+ fαβδ − mh(dµn + β) = 0.

By virtue of the Routh-Hurwitz theorem, we verify that, for µn’s satisfying

µn >
β{fαδ − (ab2 + c + f)h}

(ab2 + c + f)hd
,

the equations of (3.4) have all their solutions in the region {λ ∈ C; Reλ > 0}. On the other
hand, for µn’s satisfying

µ0 ≤ µn <
β{fαδ − (ab2 + c + f)h}

(ab2 + c + f)hd
,

the equations of (3.4) have a negative real solution λn. Therefore, we have λn ∈ σ−(A) =
σ(A) ∩ {λ ∈ C; Re λ < 0}. Consequently, there exists a smooth unstable manifold M+(O)
with dimX− which is tangential to the subspace X− at O, where X− denotes the subspace
of Dθ corresponding the spectral set σ−(A).

More precisely, σ−(A) consists of a finite number of eigenvalues and the space X−
corresponding to σ−(A) is a finite-dimensional subspace spanned by vectors of the form⎛⎝ βδ(h − λn)

fβδ
(ab2 + c + f − λn)(h − λn)

⎞⎠ φn, µ0 ≤ µn <
β{fαδ − (ab2 + c + f)h}

(ab2 + c + f)hd
,

where φn denote the eigenfunction of −∆ corresponding to the eigenvalue µn.

ii) In this case, we verify by the Routh-Hurwitz theorem that the equations of (3.4)
have all their solutions in the region {λ ∈ C; Reλ > 0}. Consequently, O is exponentially
stable in (S̃(t),Dθ, Dθ).

4 Global stability of O By Theorem 3.2 we know that, if h is large in such a way that
fαβδ

(ab2+c+f)(dµ0+β) < h < ∞, then the zero solution O is a stable equilibrium of (S(t),Kθ , Dθ).

Moreover, by [8, Proposition 2.3], we can see that, if fαδ
c+f < h < ∞, then O is globally stable.

Theorem 4.1. Let fαδ
c+f < h < ∞. Then, the stationary O is a globally stable equilibrium

of (S(t),Kθ , Dθ).

Proof. For U0 ∈ K, let U(t) = t(u(t), v(t), w(t)) = S(t)U0. According to [8, Proposition
2.3], it is already known that, as t → ∞, u(t) → 0 and v(t) → 0 in L∞(Ω) and w(t) → 0 in
L2(Ω). Using that

‖Λθw(t)‖L2 ≤ C‖Λw(t)‖θ
L2‖w(t)‖1−θ

L2 , 0 < t < ∞,

we then observe that ‖Λθw(t)‖L2 → 0, i.e., w(t) → 0 in D(Λθ), too. Hence, as t → ∞,
S(t)U0 → O in the topology of Dθ.
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5 Numerical examples This section is devoted to presenting numerical results. We
consider the following problem:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
= 1.0 · 1.0w − [1.0(v − 3.0)2 + 0.2]u − 1.0u in Ω × (0,∞),

∂v

∂t
= 1.0u − hv in Ω × (0,∞),

∂w

∂t
= 0.05∆w − 1.0w + 1.0v in Ω × (0,∞),

w = 0 on ∂Ω × (0,∞),

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x) in Ω

(5.1)

in a quadratic domain Ω = [0, 1] × [0.1]. All the parameters except h are fixed as in (5.1),
but the h is varied as a control parameter. In this case, the minimal eigenvalue of the
realization of −∆ under the Dirichlet conditions is given by 2.0π2.

5.1 Case when 0 < h < fαβδ
(ab2+c+f)(dµ0+β) . Let us take h = 0.0488 < fαβδ

(ab2+c+f)(dµ0+β) .
According to Theorem 3.2, this means that the zero solution O is unstable.

We also take continuous initial functions u0, v0, w0 which are of the shape of circular
truncated cone and are put on the center of Ω. In the initial stage, the graphs of the nu-
merical solution (u, v, w), especially that of u, change very rapidly. Gradually, the graphs
stabilize and tend (at least in the numerical sense) to graphs of a non-homogeneous station-
ary solution (u, v, w), see Fig. 1. The value of Lyapunov function given by [8, (3.4)] also
stabilizes as t → ∞ along this trajectory.
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(b) Graph of v
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(c) Graph of w

Fig. 1: Case when 0 < h < fαβδ
(ab2+c+f)(dµ0+β)

As we can see from Fig. 2 and Fig. 3, the graphs of u and v have a clear gapping curve
near the boundary ∂Ω on which the densities of young age class trees and of old age class
trees are discontinuous.

Fixing h as 0.0488 but taking other initial functions, we have performed several numerical
computations to find out that every trajectory tends as t → ∞ to the same stationary
solution (u, v, w) illustrated by Fig. 1. This suggests that, when 0 < h < fαβδ

(ab2+c+f)(dµ0+β) ,
Problem (1.1) possesses a unique stable stationary solution. Consequently, the gapping
curve of u and v are also determined in a unique way by the parameters given in (1.1).



548 T. SHIRAI, L. H. CHUAN AND A. YAGI

 0

 1

 2

 3

 4

 5

 6

 7

 0  0.2  0.4  0.6  0.8  1

(a) Section of v

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0  0.2  0.4  0.6  0.8  1
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Fig. 2: Sections of graphs v, w by the plane x = 1
2
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(b) Section of w

Fig. 3: Section of graphs v, w by the plane y = x

5.2 Case when fαβδ
(ab2+c+f)(dµ0+β) < h < fαδ

c+f . Let us now take fαβδ
(ab2+c+f)(dµ0+β) < h =

0.167 < fαδ
c+f . Theorem 3.2 asserts in this case that the zero solution O is stable.

We have performed several numerical computations by different initial functions. In
every case, the trajectory tends (at least in the numerical sense) to a non-homogeneous
stationary solution (u, v, w) which depends however on initial functions (u0, v0, w0). Fig. 4
shows the limit stationary solution when the trajectory starts from a continuous initial
functions of the shape of circular truncated cone put on the center of Ω.

Fig. 5 shows the the limit stationary solution when the trajectory starts from a discon-
tinuous initial functions of the shape of circular cylinder.

Fig. 6 shows the limit stationary solution when the trajectory starts from a discontinuous
initial functions of the shape of cubic put on the center of Ω.

We can know that the three stationary solutions illustrated by Fig. 4, Fig. 5 and Fig. 6
are different each other by the fact that they have different values of Lyapunov function.
Similarly, they have different gapping curves on which the values of u and v are discontin-
uous.

These numerical results then suggest, when fαβδ
(ab2+c+f)(dµ0+β) < h < fαδ

c+f , that there exist
not only the zero solution O but also many other stable stationary solutions.



FOREST KINEMATIC MODEL UNDER DIRICHLET CONDITIONS 549

 0  0.2  0.4  0.6  0.8  1 0
 0.2

 0.4
 0.6

 0.8
 1

 0

 0.2

 0.4

 0.6

 0.8

(a) Graph of u
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