STRONG CONVERGENCE THEOREMS FOR THREE-STEP ITERATIONS WITH ERRORS UNDER A MODIFIED SENTER AND DOTSON'S CONDITION

HIROBUMI KIUCHI

Received June 30, 2007; revised August 17, 2007

ABSTRACT. Let *C* be a closed convex subset of a Banach space. In this paper, we construct a three-step iteration process $\{x_n\}$ with errors for three nonlinear mappings $S, T, U: C \to C$ given by: $x_1 \in C$, $z_n = \alpha''_n x_n + \beta''_n U^n x_n + \gamma''_n w_n$, $y_n = \alpha'_n x_n + \beta'_n T^n z_n + \gamma'_n v_n$, $x_{n+1} = \alpha_n x_n + \beta_n S^n y_n + \gamma_n u_n$, for all $n \ge 1$ and prove a strong convergence theorem under a modified Senter and Dotson's condition (A). This improves Xu and Noor's result in 2002. Further, we generalize a Khan and Fukhar-ud-dim's result in 2005.

1. INTRODUCTION

Let C be a closed convex subset of a Banach space and let T be a mapping of C into itself. Then T is said to be asymptotically nonexpansive [3] if there exists a sequence $\{k_n\}$ of positive numbers with $\lim_{n \to \infty} k_n = 1$ such that

$$\|T^n x - T^n y\| \le k_n \|x - y\|$$

for all $x, y \in C$ and $n \in \mathbf{N}$, where \mathbf{N} denotes the set of all positive integers. In particular, if $k_n = 1$ for all $n \in \mathbf{N}$, T is said to be *nonexpansive*. The weaker definition (cf. Kirk [8]) requires that

$$\overline{\lim}_{n \to \infty} \sup_{y \in C} (\|T^n x - T^n y\| - \|x - y\|) \le 0$$

for each $x \in C$, and that T^N is continuous for some $N \in \mathbf{N}$. T is said to be asymptotically nonexpansive in the intermediate sense [1] provided T is uniformly continuous and

$$\overline{\lim}_{n \to \infty} \sup_{x, y \in C} (\|T^n x - T^n y\| - \|x - y\|) \le 0.$$

On the other hand, a mapping $T: C \to C$ with a fixed point is said to satisfy *condition* (A) [11] if there is a nondecreasing function $f: [0, \infty) \to [0, \infty)$ with f(0) = 0 and f(r) > 0 for r > 0 such that

$$||x - Tx|| \ge f(d(x, F))$$

for all $x \in C$, where F is the set of all fixed points of T and $d(x, F) = \inf_{z \in F} ||x - z||$. We modify this condition for three mappings $S, T, U: C \to C$ as follows. Three mappings $S, T, U: C \to C$ with a common fixed point is said to satisfy *condition* (A') if there is a nondecreasing function $f: [0, \infty) \to [0, \infty)$ with f(0) = 0 and f(r) > 0 for r > 0 such that

 $||x - Sx|| + ||x - Tx|| + ||x - Ux|| \ge f(d(x, F))$

²⁰⁰⁰ Mathematics Subject Classification. 40A05, 47H09, 47H10.

Key words and phrases. strong convergences, Mann, Ishikawa and Noor iterations with errors, asymptotically nonexpansive in the intermediate sense, condition (A).

for all $x \in C$, where F is the set of all common fixed points of S, T, U.

Recently, for a mapping $T: C \to C$, Xu and Noor [15] constructed a three-step iteration process in C and motivated by their work, we [2] construct a three-step iteration process $\{x_n\}$ with errors for two nonlinear mappings $S, T: C \to C$ given by:

(1.1)
$$\begin{cases} x_{1} \in C, \\ z_{n} = \alpha_{n}'' x_{n} + \beta_{n}'' T^{n} x_{n} + \gamma_{n}'' w_{n}, \\ y_{n} = \alpha_{n}' x_{n} + \beta_{n}' S^{n} z_{n} + \gamma_{n}' v_{n}, \\ x_{n+1} = \alpha_{n} x_{n} + \beta_{n} T^{n} y_{n} + \gamma_{n} u_{n}, \text{ for all } n \geq 1, \end{cases}$$

where $\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}, \{\alpha'_n\}, \{\beta'_n\}, \{\gamma'_n\}, \{\alpha''_n\}, \{\beta''_n\}, \{\gamma''_n\}$ are sequences in [0, 1] such that

(1.2)
$$\alpha_n + \beta_n + \gamma_n = \alpha'_n + \beta'_n + \gamma'_n = \alpha''_n + \beta''_n + \gamma''_n = 1 \text{ for all } n \in \mathbb{N},$$

(1.3)
$$\sum_{n=1}^{\infty} \gamma_n < \infty, \ \sum_{n=1}^{\infty} \gamma'_n < \infty \text{ and } \sum_{n=1}^{\infty} \gamma''_n < \infty$$

and $\{u_n\}, \{v_n\}, \{w_n\}$ are bounded sequences in C. This scheme is named as Noor's iteration with errors. We proved weak and strong theorems in [7] when $\alpha''_n = 1$ in (1.1). The following result was proved in [2].

Theorem 1.1 ([2]). Let C be a bounded closed convex subset of a uniformly convex Banach space satisfying Opial's condition. Let $S, T: C \to C$ be asymptotically nonexpansive mappings in the intermediate sense such that S and T have a common fixed point. Put

$$r_n = \sup_{x,y \in C} \left(\|S^n x - S^n y\| - \|x - y\| \right) \lor \sup_{x,y \in C} \left(\|T^n x - T^n y\| - \|x - y\| \right) \lor 0$$

and suppose that $\sum_{n=1}^{\infty} r_n < \infty$. Let $\{x_n\}, \{y_n\}, \{z_n\}$ be generated by (1.1), where the sequences $\{\beta_n\}$ and $\{\beta'_n\}$ satisfy the additional restrictions: $0 < \liminf_{n \to \infty} \beta_n \leq \limsup_{n \to \infty} \beta_n < 1$ and $0 < \liminf_{n \to \infty} \beta'_n \leq \limsup_{n \to \infty} \beta'_n < 1$. Then $\{x_n\}, \{y_n\}, \{z_n\}$ converge weakly to the same common fixed point of S and T.

On the other hand, for convergence theorems under the condition (A), see [11] and [14] for example. Khan and Fukhar-ud-din [5] modified the condition (A) and they proved a convergence theorem (see Corollary 3.4) for two mappings $S, T: C \to C$ under such condition.

In this paper, we construct a three-step iteration process $\{x_n\}$ with errors for three nonlinear mappings $S, T, U: C \to C$ given by:

(1.4)
$$\begin{cases} x_1 \in C, \\ z_n = \alpha''_n x_n + \beta''_n U^n x_n + \gamma''_n w_n, \\ y_n = \alpha'_n x_n + \beta'_n T^n z_n + \gamma'_n v_n, \\ x_{n+1} = \alpha_n x_n + \beta_n S^n y_n + \gamma_n u_n, \text{ for all } n \ge 1, \end{cases}$$

where $\{\alpha_n\}$, $\{\beta_n\}$, $\{\gamma_n\}$, $\{\alpha'_n\}$, $\{\beta'_n\}$, $\{\gamma'_n\}$, $\{\alpha''_n\}$, $\{\beta''_n\}$, $\{\gamma''_n\}$ are sequences in [0, 1] satisfying (1.2) and $\{u_n\}$, $\{v_n\}$, $\{w_n\}$ are bounded sequences in *C*. We prove a stong convergence theorem for this iteration under the modified condition (A') in the section 2. Further, we study a three-step iteration process $\{x_n\}$ with errors for three nonlinear mappings

578

 $S, T, U: C \to C$ given by:

(1.5)
$$\begin{cases} x_1 \in C, \\ z_n = \alpha''_n x_n + \beta''_n U x_n + \gamma''_n w_n, \\ y_n = \alpha'_n x_n + \beta'_n T z_n + \gamma'_n v_n, \\ x_{n+1} = \alpha_n x_n + \beta_n S y_n + \gamma_n u_n, \text{ for all } n \ge 1 \end{cases}$$

where $\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}, \{\alpha'_n\}, \{\beta'_n\}, \{\gamma'_n\}, \{\alpha''_n\}, \{\beta''_n\}, \{\gamma''_n\}$ are sequences in [0, 1] satisfying (1.2) and $\{u_n\}, \{v_n\}, \{w_n\}$ are bounded sequences in *C* in the section 3. We proved weak and strong theorems in [6] when $\alpha''_n = 1$ and S = T in (1.5) and weak and strong theorems in [9] when $\alpha''_n = 1$ in (1.5). We prove a strong convergence theorem for the iteration (1.5) under the modified condition (A') which improves Khan and Fukhar-ud-din's result.

2. Main Results

Recall that a Banach space X is said to be *uniformly convex* if the modulus of convexity $\delta_X = \delta_X(\varepsilon)$ ($0 < \varepsilon \leq 2$) of X defined by

$$\delta_X(\varepsilon) = \inf \left\{ 1 - \frac{\|x+y\|}{2} \mid x, y \in X, \ \|x\| \le 1, \ \|y\| \le 1, \ \|x-y\| \ge \varepsilon \right\}$$

satisfies the inequality $\delta_X(\varepsilon) > 0$ for every $\varepsilon \in (0, 2]$. Now, we state some lemmas used in the following.

Lemma 2.1 ([14]). Let $\{a_n\}$ and $\{b_n\}$ be two sequences of nonnegative real numbers such that $\sum_{n=1}^{\infty} b_n < \infty$ and

$$a_{n+1} \le a_n + b_n$$

for all $n \in \mathbf{N}$. Then $\lim_{n \to \infty} a_n$ exists.

Lemma 2.2 ([12]). Let X be a uniformly convex Banach space, let $0 < b \le t_n \le c < 1$ for all $n \in \mathbb{N}$, and let $\{x_n\}$ and $\{y_n\}$ be sequences of X such that $\overline{\lim}_{n\to\infty} ||x_n|| \le a$, $\overline{\lim}_{n\to\infty} ||y_n|| \le a$ and $\overline{\lim}_{n\to\infty} ||t_n x_n + (1-t_n)y_n|| = a$ for some $a \ge 0$. Then, it holds that $\lim_{n\to\infty} ||x_n - y_n|| = 0$.

In this paper, the iterations defined by (1.4) and (1.5) are always assumed that $\{\alpha_n\}$, $\{\beta_n\}$, $\{\gamma_n\}$, $\{\alpha'_n\}$, $\{\beta'_n\}$, $\{\gamma'_n\}$ are real sequences in [0, 1] satisfying (1.2) and (1.3) and $\{u_n\}$, $\{v_n\}$, $\{w_n\}$ are bounded sequences in C. Denote by F(T), the set of fixed points of a mapping T.

Lemma 2.3. Let C be a convex subset of a Banach space and let $S, T, U: C \to C$ be mappings satisfying $F(S) \cap F(T) \cap F(U) \neq \emptyset$. Put

$$r_{n} = \sup_{x,y \in C} \left(\|S^{n}x - S^{n}y\| - \|x - y\| \right) \lor \sup_{x,y \in C} \left(\|T^{n}x - T^{n}y\| - \|x - y\| \right) \\ \lor \sup_{x,y \in C} \left(\|U^{n}x - U^{n}y\| - \|x - y\| \right) \lor 0$$

and suppose that $\sum_{n=1}^{\infty} r_n < \infty$. Let $\{x_n\}$ generated by the (1.4). Then $\lim_{n \to \infty} ||x_n - p||$ exists for all $p \in F(S) \cap F(T) \cap F(U)$.

Proof. Take p in $F(S) \cap F(T) \cap F(U)$ and set

$$M = \sup_{n \in \mathbf{N}} \|u_n - p\| \lor \sup_{n \in \mathbf{N}} \|v_n - p\| \lor \sup_{n \in \mathbf{N}} \|w_n - p\|.$$

H. Kiuchi

Since

(2.1)
$$||z_n - p|| \le \alpha''_n ||x_n - p|| + \beta''_n ||U^n x_n - p|| + \gamma''_n ||w_n - p|| \le \alpha''_n ||x_n - p|| + \beta''_n (||x_n - p|| + r_n) + \gamma''_n M \le ||x_n - p|| + r_n + \gamma''_n M,$$

we have

(2.2)
$$||y_n - p|| \le \alpha'_n ||x_n - p|| + \beta'_n ||T^n z_n - p|| + \gamma'_n ||v_n - p|| \\\le \alpha'_n ||x_n - p|| + \beta'_n (||z_n - p|| + r_n) + \gamma'_n M \\\le ||x_n - p|| + 2r_n + (\gamma''_n + \gamma'_n) M$$

and so

(2.3)
$$\|x_{n+1} - p\| \leq \alpha_n \|x_n - p\| + \beta_n \|S^n y_n - p\| + \gamma_n \|u_n - p\|$$
$$\leq \alpha_n \|x_n - p\| + \beta_n (\|y_n - p\| + r_n) + \gamma_n M$$
$$\leq \|x_n - p\| + 3r_n + (\gamma''_n + \gamma'_n + \gamma_n) M.$$

The conclusion follows from Lemma 2.1.

Lemma 2.4. Let C be a closed convex subset of a uniformly convex Banach space and $S, T, U: C \to C$ be asymptotically nonexpansive mappings in the intermediate sense such that $F(S) \cap F(T) \cap F(U) \neq \emptyset$. Let r_n be as in Lemma 2.3 and suppose that $\sum_{n=1}^{\infty} r_n < \infty$. Let $\{x_n\}$ be generated by (1.4).

(1) If there exists δ such that $0 < \delta \leq \beta_n, \beta'_n, \beta''_n \leq 1 - \delta < 1$ for all $n \in \mathbf{N}$, then

(2.4)
$$\lim_{n \to \infty} \|x_n - Sx_n\| = \lim_{n \to \infty} \|x_n - Tx_n\| = \lim_{n \to \infty} \|x_n - Ux_n\| = 0$$

(2) If U = S and there exists δ such that $0 < \delta \leq \beta_n, \beta'_n \leq 1 - \delta < 1$ for all $n \in \mathbb{N}$, then (2.4) holds.

Proof. We prove the only case (1). Take p in $F(S) \cap F(T) \cap F(U)$ and set $r = \lim_{n \to \infty} ||x_n - p||$ which exists by Lemma 2.3. By (2.2), we have $\overline{\lim}_{n \to \infty} ||y_n - p|| \le r$. By

$$||S^{n}y_{n} - p + \gamma_{n}(u_{n} - x_{n})|| \le ||y_{n} - p|| + r_{n} + \gamma_{n} ||u_{n} - x_{n}||$$

and the boundedness of $\{u_n - x_n\}$, we have

$$\overline{\lim}_{n \to \infty} \|S^n y_n - p + \gamma_n (u_n - x_n)\| \le r.$$

Similarly, we have $\overline{\lim}_{n\to\infty} ||x_n - p + \gamma_n(u_n - x_n)|| \le r$. Further, since

$$x_{n+1} - p = \alpha_n (x_n - p) + \beta_n (S^n y_n - p) + \gamma_n (u_n - p)$$

= $\beta_n (S^n y_n - p + \gamma_n (u_n - p - x_n + p))$
+ $(1 - \beta_n) (x_n - p + \gamma_n (u_n - p - x_n + p))$
= $\beta_n (S^n y_n - p + \gamma_n (u_n - x_n)) + (1 - \beta_n) (x_n - p + \gamma_n (u_n - x_n))$

and $\lim_{n \to \infty} ||x_{n+1} - p|| = r$, we have

$$\lim_{n \to \infty} \|\beta_n (S^n y_n - p + \gamma_n (u_n - x_n)) + (1 - \beta_n) (x_n - p + \gamma_n (u_n - x_n))\| = r.$$

Therefore, by Lemma 2.2, we obtain

(2.5)
$$\lim_{n \to \infty} \|S^n y_n - x_n\| = 0.$$

580

Since

$$||x_n - p|| \le ||x_n - S^n y_n|| + ||S^n y_n - p||$$

$$\le ||x_n - S^n y_n|| + ||y_n - p|| + r_n,$$

we have $r \leq \underline{\lim}_{n \to \infty} \|y_n - p\| \leq \overline{\lim}_{n \to \infty} \|y_n - p\| \leq r$ and so

$$\lim_{n \to \infty} \|y_n - p\| = r.$$

Using this and

$$y_n - p = \alpha'_n(x_n - p) + \beta'_n(T^n z_n - p) + \gamma'_n(v_n - p)$$

= $\beta'_n(T^n z_n - p + \gamma'_n(v_n - p - x_n + p))$
+ $(1 - \beta'_n)(x_n - p + \gamma'_n(v_n - p - x_n + p))$
= $\beta'_n(T^n z_n - p + \gamma'_n(v_n - x_n)) + (1 - \beta'_n)(x_n - p + \gamma'_n(v_n - x_n)),$

we have

$$\lim_{n \to \infty} \|\beta'_n(T^n z_n - p + \gamma'_n(v_n - x_n)) + (1 - \beta'_n)(x_n - p + \gamma'_n(v_n - x_n))\| = r.$$

On the other hand, by similar way with the argument above, we have

$$\overline{\lim}_{n \to \infty} \|T^n z_n - p + \gamma'_n (v_n - x_n)\| \le r$$

and

$$\overline{\lim}_{n \to \infty} \|x_n - p + \gamma'_n (v_n - x_n)\| \le r$$

Therefore, by Lemma 2.2, we obtain

(2.6)
$$\lim_{n \to \infty} \|T^n z_n - x_n\| = 0$$

Since

$$\begin{aligned} \|x_n - S^n x_n\| &\leq \|S^n x_n - S^n y_n\| + \|S^n y_n - x_n\| \\ &\leq \|x_n - y_n\| + r_n + \|S^n y_n - x_n\| \\ &\leq \beta'_n \|x_n - T^n z_n\| + \gamma'_n \|v_n - x_n\| + r_n + \|S^n y_n - x_n\|, \end{aligned}$$

using (2.5) and (2.6), we have

(2.7)
$$\lim_{n \to \infty} \|x_n - S^n x_n\| = 0.$$

Since

$$||x_n - p|| \le ||x_n - T^n z_n|| + ||T^n z_n - p||$$

$$\le ||x_n - T^n z_n|| + ||z_n - p|| + r_n,$$

we have $r \leq \underline{\lim}_{n \to \infty} ||z_n - p|| \leq \overline{\lim}_{n \to \infty} ||z_n - p|| \leq r$ by (2.1) and so $\lim_{n \to \infty} ||z_n - p|| = r.$

Thus, by the similar calculation above, we have

$$\lim_{n \to \infty} \|\beta_n''(U^n x_n - p + \gamma_n''(w_n - x_n)) + (1 - \beta_n'')(x_n - p + \gamma_n''(w_n - x_n))\| = r.$$

On the other hand, by similar way with the argument above, we have

$$\overline{\lim}_{n \to \infty} \| U^n x_n - p + \gamma_n''(w_n - x_n) \| \le r$$

and

$$\overline{\lim}_{n \to \infty} \|x_n - p + \gamma_n''(w_n - x_n)\| \le r.$$

H. Kiuchi

Therefore, by Lemma 2.2, we obtain

$$\lim_{n \to \infty} \|U^n x_n - x_n\| = 0.$$

Since

(2.8)

$$\begin{aligned} \|x_n - T^n x_n\| &\leq \|T^n x_n - T^n z_n\| + \|T^n z_n - x_n\| \\ &\leq \|x_n - z_n\| + r_n + \|T^n z_n - x_n\| \\ &\leq \beta_n'' \|x_n - U^n x_n\| + \gamma_n'' \|w_n - x_n\| + r_n + \|T^n z_n - x_n\|, \end{aligned}$$

using (2.6) and (2.8), we have

$$\lim_{n \to \infty} \|x_n - T^n x_n\| = 0.$$

Since

$$\begin{aligned} \|x_n - x_{n+1}\| &\leq \|x_n - S^n x_n\| + \|S^n x_n - x_{n+1}\| \\ &\leq (1 + \alpha_n) \|x_n - S^n x_n\| + \beta_n (\|x_n - y_n\| + r_n) \\ &+ \gamma_n \|S^n x_n - u_n\| \\ &\leq 2 \|x_n - S^n x_n\| + \beta'_n \|T^n z_n - x_n\| + \gamma'_n \|v_n - x_n\| + r_n \\ &+ \gamma_n \|S^n x_n - u_n\|, \end{aligned}$$

we have

$$\lim_{n \to \infty} \|x_n - x_{n+1}\| = 0$$

by virtue of the boundedness of $\{S^n x_n\}$. Since

$$\begin{aligned} \|x_n - Sx_n\| &\leq \|x_n - x_{n+1}\| + \|x_{n+1} - S^{n+1}x_{n+1}\| + \|S^{n+1}x_{n+1} - S^{n+1}x_n\| \\ &+ \|S^{n+1}x_n - Sx_n\| \\ &\leq 2 \|x_n - x_{n+1}\| + r_{n+1} + \|x_{n+1} - S^{n+1}x_{n+1}\| \\ &+ \|S^{n+1}x_n - Sx_n\|, \end{aligned}$$

we have

$$\lim_{n \to \infty} \|x_n - Sx_n\| = 0$$

by virtue of the uniform continuity of S. Similarly, we obtain

$$\lim_{n \to \infty} \|x_n - Tx_n\| = \lim_{n \to \infty} \|x_n - Ux_n\| = 0.$$

To prove the case (2), we may use (2.7) in stead of (2.8) and so the proof is complete. \Box

The proof of Lemma 2.4 is simpler than Lemma 5 of [2]. Now, we state our main result of this section.

Theorem 2.5. Let C be a closed convex subset of a uniformly convex Banach space X. Let $S, T, U: C \to C$ be asymptotically nonexpansive mappings in the intermediate sense such that $F(S) \cap F(T) \cap F(U) \neq \emptyset$ and satisfy the condition (A'). Set $F = F(S) \cap F(T) \cap F(U)$. Put

$$r_n = \sup_{x,y \in C} \left(\|S^n x - S^n y\| - \|x - y\| \right) \lor \sup_{x,y \in C} \left(\|T^n x - T^n y\| - \|x - y\| \right) \lor 0$$

and suppose that $\sum_{n=1}^{\infty} r_n < \infty$. Let $\{x_n\}, \{y_n\}, \{z_n\}$ be generated by (1.4).

(1) If there exists δ such that $0 < \delta \leq \beta_n, \beta'_n, \beta''_n \leq 1 - \delta < 1$ for all $n \in \mathbf{N}$, then $\{x_n\}, \{y_n\}, \{z_n\}$ converge to the same point of F.

582

(2) If U = S and there exists δ such that $0 < \delta \leq \beta_n, \beta'_n \leq 1 - \delta < 1$ for all $n \in \mathbb{N}$, then $\{x_n\}, \{y_n\}, \{z_n\}$ converge to the same point of F.

Proof. Let $r = \lim_{n \to \infty} ||x_n - p||$ which exists for a fixed $p \in F$ by Lemma 2.3. If r = 0, the conclusion is clear. So, we assume r > 0. By the condition (A'), we have

$$||x_n - Sx_n|| + ||x_n - Tx_n|| + ||x_n - Ux_n|| \ge f(d(x_n, F)) \ge 0.$$

So, using Lemma 2.4, we obtain $\lim_{n \to \infty} d(x_n, F) = 0$. Then, there exist a subsequence $\{x_{n_j}\}$ of $\{x_n\}$ and a sequence $\{s_n\}$ in F such that $||x_{n_j} - s_n|| < 2^{-j}$. Using (2.3), we have

$$\begin{aligned} \|s_{j+1} - s_j\| &\leq \|s_{j+1} - x_{n_{j+1}}\| + \|x_{n_{j+1}} - s_j\| \\ &\leq 2^{-(j+1)} + \|x_{n_j} - s_j\| + \sum_{k=n_j}^{n_{j+1}-1} (3r_k + (\gamma_k'' + \gamma_k' + \gamma_k)M) \\ &\leq 2^{-(j+1)} + 2^{-j} + \sum_{k=n_j}^{n_{j+1}-1} (3r_k + (\gamma_k'' + \gamma_k' + \gamma_k)M), \end{aligned}$$

where $M = \sup_{n \in \mathbb{N}} ||u_n - p|| \lor \sup_{n \in \mathbb{N}} ||v_n - p|| \lor \sup_{n \in \mathbb{N}} ||w_n - p||$. So, we can easily see that $\{s_n\}$ is a Cauchy sequence in F. Therefore, there exits s in F such that $s_n \to s$ and so $x_{n_j} \to s$. Further, we obtain $x_n \to s$.

3. Further Results

In this section, we discuss about the convergence of the sequence $\{x_n\}$ generated by (1.5). By similar ways with Lemma 2.3, Lemma 2.4 and Theorem 2.5, we can prove the following Lemma 3.1, Lemma 3.2 and Theorem 3.3, respectively.

Lemma 3.1. Let C be a convex subset of a Banach space and let $S, T, U: C \to C$ be nonexpansive mappings satisfying $F(S) \cap F(T) \cap F(U) \neq \emptyset$. Then for the sequence $\{x_n\}$ generated by (1.5), $\lim_{n\to\infty} ||x_n - p||$ exists for all $p \in F(S) \cap F(T) \cap F(U)$.

Lemma 3.2. Let C be a closed convex subset of a uniformly convex Banach space and $S, T, U: C \to C$ be nonexpansive mappings such that $F(S) \cap F(T) \cap F(U) \neq \emptyset$. Let $\{x_n\}$ be generated by (1.5).

(1) If there exists δ such that $0 < \delta \leq \beta_n, \beta'_n, \beta''_n \leq 1 - \delta < 1$ for all $n \in \mathbb{N}$, then

(3.1)
$$\lim_{n \to \infty} \|x_n - Sx_n\| = \lim_{n \to \infty} \|x_n - Tx_n\| = \lim_{n \to \infty} \|x_n - Ux_n\| = 0.$$

(2) If U = S and there exists δ such that $0 < \delta \leq \beta_n, \beta'_n \leq 1 - \delta < 1$ for all $n \in \mathbb{N}$, then (3.1) holds.

Theorem 3.3. Let C be a closed convex subset of a uniformly convex Banach space. Let $S, T, U: C \to C$ be nonexpansive mappings such that $F(S) \cap F(T) \cap F(U) \neq \emptyset$ and satisfy the condition (A'). Let $\{x_n\}, \{y_n\}, \{z_n\}$ be generated by (1.5).

- (1) If there exists δ such that $0 < \delta \leq \beta_n, \beta'_n, \beta''_n \leq 1 \delta < 1$ for all $n \in \mathbf{N}$, then $\{x_n\}, \{y_n\}, \{z_n\}$ converge to the same point of $F(S) \cap F(T) \cap F(U)$.
- (2) If U = S and there exists δ such that $0 < \delta \leq \beta_n, \beta'_n \leq 1 \delta < 1$ for all $n \in \mathbb{N}$, then $\{x_n\}, \{y_n\}, \{z_n\}$ converge to the same point of $F(S) \cap F(T) \cap F(U)$.

As a direct consequence, taking U = S and $\alpha''_n = 1$ for all $n \in \mathbb{N}$ in Theorem 3.3, we have the following result which is obtained in [5].

H. Kiuchi

Corollary 3.4. Let C be a closed convex subset of a uniformly convex Banach space. Let $S, T: C \to C$ be nonexpansive mappings such that $F(S) \cap F(T) \neq \emptyset$. Assume that there exists a nondecreasing function $f: [0, \infty) \to [0, \infty)$ with f(0) = 0 and f(r) > 0 for all r > 0 such that

$$\frac{1}{2}(\|x - Sx\| + \|x - Tx\|) \ge f(d(x, F))$$

for all $x \in C$, where $F = F(S) \cap F(T)$. Let $\{x_n\}$ be generated by

$$\begin{cases} x_1 \in C, \\ y_n = \alpha'_n x_n + \beta'_n T z_n + \gamma'_n v_n, \\ x_{n+1} = \alpha_n x_n + \beta_n S y_n + \gamma_n u_n, & \text{for all } n \ge 1, \end{cases}$$

If there exists δ such that $0 < \delta \leq \beta_n, \beta'_n \leq 1-\delta < 1$ for all $n \in \mathbb{N}$, we have $\{x_n\}$ converges to the same point of F.

References

- R. E. Bruck, T. Kuczumow, and S. Reich, Convergence of iterates of asymptotically nonexpansive mappings in Banach spaces with the uniform Opial property, Colloq. Math. 65 (1993), 169 – 179.
- H. Fukhar-ud-din, Y. Kimura, and H. Kiuchi, Noor iterations with errors for two asymptotically nonexpansive mappings in the intermediate sense in a Banach space, Sci. Math. Japonicae 63 (2006), 51 - 60.
- K. Goebel and W. A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 35 (1972), 171 – 174.
- [4] S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc. 44 (1974), 147 150.
- [5] S. H. Khan and H. Fukhar-ud-din, Weak and strong convergence of a scheme with errors for two nonexpansive mappings, Nonlinear Anal. 61 (2005), 1295 – 1301.
- [6] G. E. Kim, H. Kiuchi, and W. Takahashi, Weak and strong convergence theorems for nonexpansive mappings, Sci. Math. Japonicae 56 (2002), 133 – 141.
- [7] _____, Weak and strong convergences of Ishikawa iterations for asymptotically nonexpansive mappings in the intermediate sense, Sci. Math. Japonicae 60 (2004), 95 – 106.
- [8] W. A. Kirk, Fixed point theorems for non-Lipschitzian mappings of asymptotically nonexpansive type, Israel J. Math. 17 (1974), 339 – 346.
- H. Kiuchi, Convergence theorems of Ishikawa iterations with errors for nonexpansive mappings, PanAmer. Math. J. 15 (2005), 1 - 11.
- [10] W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953), 506 510.
- H. F. Senter and W. G. Dotson, Jr., Approximating fixed points of asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 44 (1974), 45 - 58.
- [12] J. Schu, Weak and strong convergence to fixed points of asymptotically nonexpansive mappings, Bull Austral. Math. Soc. 43 (1991), 153 – 159.
- [13] W. Takahashi, Nonlinear Functional Analysis Fixed Point Theory and its Applications, Yokohama Publ., 2000.
- [14] K. K. Tan and H. K. Xu., Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process, J. Math. Anal. Appl. 178 (1993), 301 – 308.
- [15] B. Xu and N. A. Noor, Fixed-point iterations for asymptotically nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 267 (2002), 444 – 453.

FACULTY OF ENGINEERING, TAKUSHOKU UNIVERSITY, 815-1, TATEMACHI, HACHIOJI-SHI, TOKYO 193-0985, JAPAN

E-mail address: hkiuchi@la.takushoku-u.ac.jp