ON DOUBLING ALGEBRAS

K. Iséki, H. S. Kim and J. Neggers

Received March 8, 2007

ABSTRACT. If (X; *) and $(X; \circ)$ are binary systems then $(X; *) \Longrightarrow (X; \circ)$ if $(x*y) \circ z = (x*z)*(y*z)$ where $(X; \circ)$ is the doubling algebra of the source algebra (X; *). Obviously there are many mutual influences on the types of (X; *) and $(X; \circ)$. In this paper we investigate several of these mutual influences, including when (X; *) is a group, *B*-algebra, a cancellative semigroup with identity.

Given a set X, let V(X) denote the collection of all binary algebras (or equivalently, groupoids) on X, i.e., $V(X) = \{(X;*) | * : \text{binary operation on } X\}$. An algebra (X;*) is said to be a *source algebra* of an algebra $(X;\circ)$ if $(x*y) \circ z = (x*z)*(y*z)$, for any $x, y, z \in X$, and denoted by $(X;*) \Longrightarrow (X;\circ)$. In this case, we say $(X;\circ)$ the *doubling algebra* of (X;*).

Example 1. Every quandle $(X; \triangleright, \triangleright^{-1})$ (see [2]) is a doubling algebra as well as a source algebra, i.e., $(x \triangleright y) \triangleright z = (x \triangleright z) \triangleright (y \triangleright z)$, for any $x, y, z \in X$.

Example 2. Every positive implicative *BCK*-algebra is a doubling algebra of itself.

Example 3. Every right distributive semigroup (see [1]) is a doubling algebra of itself.

We illustrate a construction of many doubling algebras from any abelian group.

Theorem 4. Let (X; +) be an abelian group and let $\{a_n\}$ be a sequence defined by $a_1 = 1, a_{n+1} = a_n(a_n + 1), n \in \mathbb{N}$. Define binary operation " $*_n$ " on X by $x *_n y := x + a_n y$, for any $x, y \in X$, $n \in \mathbb{N}$. Then the algebra $(X; *_{n+1})$ is a doubling algebra of the algebra $(X; *_n)$.

Proof. Straightforward.

Let I(X; *) be the set of all idempotent elements of an algebra (X; *).

Proposition 5. If $(X; *) \Longrightarrow (X; \circ)$, then $I(X; *) \subseteq I(X; \circ)$.

Proof. Straightforward.

²⁰⁰⁰ Mathematics Subject Classification. 06F35.

Key words and phrases. doubling algebra, source algebra, of type (a, b)([a, b]), B-algebra.

An algebra (X; *) is said to be of type (a, b) if a * x = b for any $x \in X$.

Example 6. Let $X := \{0, 1, 2, 3\}$ be a set with the following table:

	0		2	3
0	0	0	0	0
1	0	0	0	1
$ \begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \end{array} $	0	0 0 0	0	0
3	0 0 0 0	0	2	3

Then the semigroup (X; *) is both of type (0, 0) and of type (2, 0).

Proposition 7. If $(X; *) \Longrightarrow (X; \circ)$ and (X; *) is of type (a, b), then $b \circ x = b * b$ for all $x \in X$.

Proof. We have $b \circ x = (a * y) \circ x = (a * x) * (y * x) = b * (y * x)$, and y = a yields $b \circ x = b * (a * x) = b * b$ for all $x \in X$.

Corollary 8. If $(X;*) \Longrightarrow (X;\circ)$ and (X;*) is of type (a,b), then $(X;\circ)$ is of type (b,c) where c = b * b.

An algebra (X; *) is said to be of type [a, b] if x * a = b for any $x \in X$. In Example 6, (X; *) is both of type [0, 0] and of type [1, 0].

Proposition 9. Let $(X; *) \Longrightarrow (X; \circ)$ and X * X = X. If (X; *) is of type [a, b] then $x \circ a = b * b$ for all $x \in X$.

Proof. Let x = u * v. Then $x \circ a = (u * v) \circ a = (u * a) * (v * a) = b * b$ for all $x \in X$.

Corollary 10. Let $(X;*) \Longrightarrow (X;\circ)$ and X * X = X. If (X;*) is of type [a,b] then $(X;\circ)$ is of type [a,c] where c = b * b.

Proposition 11. If $(X; *) \Longrightarrow (X; \circ)$ and x * x = x for all $x \in X$, then $x \circ y = x * y$ for all $x, y \in X$, i.e., (X; *) and $(X; \circ)$ are identical.

Proof. Since $(X; *) \Longrightarrow (X; \circ)$, we have $x \circ y = (x * x) \circ y = (x * y) * (x * y) = x * y$ as well.

Theorem 12. If a cancellative semigroup (X; *) with identity e is a source algebra of any algebra $(X; \circ)$, then it is commutative.

Proof. Since $(X; *) \Longrightarrow (X; \circ)$, we have

(1)
$$(x * y) \circ z = (x * z) * (y * z)$$

for any $x, y, z \in X$. If we put x := e and y := e in (1) respectively, then

(2)
$$y \circ z = z * (y * z),$$

and

$$x \circ z = (x * z) * z$$

Hence, by applying (3) and (2),

(x * z) * z	=	$x \circ z$	[by (3)]
	=	z * (x * z)	[by (2)]
	=	(z * x) * z.	[associativity]

Since (X; *) is cancellative, we obtain x * z = z * x, for any $x, z \in X$, proving the theorem. \Box

Remark. If $(X; \circ)$ is a group in Theorem 12, then it is a trivial group, i.e., $X = \{e\}$.

J. Neggers and H. S. Kim ([4]) defined the notion of *B*-algebra. An algebra (X; *, 0) is said to be a *B*-algebra if (I) x * x = 0; (II) x * 0 = x; (III) (x * y) * z = x * (z * (0 * y)), for any $x, y, z \in X$. (see [3, 4, 5, 6, 7] for details)

Proposition 13. The doubling algebra $(X; \circ)$ of a *B*-algebra (X; *, 0) is a left zero semigroup.

Proof. If $(X; *) \Longrightarrow (X; \circ)$, then

(4)
$$(x * y) \circ z = (x * z) * (y * z)$$

for any $x, y, z \in X$. If we let y := 0 in (4), then

$$\begin{array}{rcl} x \circ z &=& (x * 0) \circ z \\ &=& (x * z) * (0 * z) \\ &=& x * ((0 * z) * (0 * z)) \\ &=& x * 0 \\ &=& x, \end{array}$$

for any $x, z \in X$. This means that $(X; \circ)$ is a left zero semigroup.

Proposition 14. If a group (X; *) is a source algebra of an algebra $(X; \circ)$, then

(i) (X;*) is abelian;

(ii) the doubling algebra $(X; \circ)$ should be defined by $x \circ y := x * y^2$, for any $x, y \in X$.

Proof. Since $(X; *) \Longrightarrow (X; \circ)$, we have

(5)
$$(x * y) \circ z = (x * z) * (y * z)$$

for any $x, y, z \in X$. If we let y := e in (5), where e is the identity of the group (X; *), then we have

Moreover, if x := e in (5), then

$$y \circ z = (e * y) \circ z = (e * z) * (y * z) = z * (y * z)$$
(7)

If we let y := x in (7), then

$$(8) x \circ z = z * (x * z)$$

Combining (6) with (8) we obtain (x * z) * z = z * (x * z). Since (X; *) is a group, we conclude that x * z = z * x, for any $x, z \in X$. Also, $x \circ y = y * (x * y) = x * y^2$ in that case.

In view of Proposition 14 the operation $x \circ y = x * y^2$ defines the doubled operation. Given this situation, if we write additively x * y = x + y, then $x \circ y = x + 2y = x + a_2y$, $a_2 = 2$, whence "redoubling" provides for $(x*y) \circ z = (x*z)*(y*z) = (x+a_2z)+a_2(y+a_2z) = (x+a_2y)+a_3z$, where $a_3 = a_2(a_2 + 1)$, whence y = 0 implies $x \circ z = x + a_3 z$. Accordingly, we may redouble to obtain a "factorial-like-sequence", $a_1 = 1, a_2 = 2$, and $a_{n+1} = a_n(a_n + 1)$. For example, in Z/(23), the successive doublings yield $x + y \Longrightarrow x + 2y \Longrightarrow x + 6y \Longrightarrow$ $x + 42y = x + 19y \Longrightarrow x + 380y = x + 12y \Longrightarrow x + 18y \Longrightarrow x + 20y \Longrightarrow x + 6y \Longrightarrow \cdots$ Thus, x + 6y is of period 5 with respect to redoubling in this setting, while x + y cannot be returned to by redoubling.

References

- [1] J. Ježek and T. Kepka, Self-distributive groupoids of small orders, Czech. Math. J. 47 (1997), 463 - 468.
- [2] D. Joice, Simple Quandles, J. Algebra 79 (1982), 307-318.
- [3] J. R. Cho and H. S. Kim, On B-algebras and quasigroups, Quasigroups and related systems 7 (2001), 1-6.
- [4] J. Neggers and H. S. Kim, On B-algebras Mate. Vesnik 54 (2002), 21–29.
- , A fundemental theorem of B-homomorphism for B-algebras, Intern. [5]Math. J. 2 (2002), 517–530.
- [6] A. Walendziak, A note on normal subalgebras in B-algebras, Sci. Math. Japo. 62 (2005), 1-6.
- [7] _____, Some axiomatizations of B-algebras, Math. Slovaca 56(2) (2006), 301–306.

K. Iséki, 14-6, Kitamachi, Sakuragaoka, Takatuki, Osaka 569-0817, Japan

Hee Sik Kim, Department of Mathematics, Hanyang University, Seoul 133-791, Korea heekim@hanyang.ac.kr

J. Neggers, Department of Mathematics, University of Alabama, Tuscaloosa, AL 35487-0350, U. S. A. jneggersgp.as.ua.edu

690