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Abstract. A simple boundary value problem for a n-th order linear ordinary differ-
ential equation which appears typically in the theory of Heaviside cable and Thomson
cable is treated. Output-input voltage relation is investigated. We found the best con-
stant of Sobolev-type inequality, which estimates the square of supremum of absolute
value of output voltage from above by the power of input voltage. The best constant
is a rational function of the characteristic roots and also a rational function of the
characteristic coefficients. The second formula for the best constant is very important
because even for small number of n it is difficult to obtain the exact value of char-
acteristic roots but in some cases it is easy to know the coefficients of characteristic
polynomial. Giambelli’s formula which appears in the theory of representation of finite
groups plays an important role.

1 Introduction
We consider the following boundary value problem for a n-th order linear ordinary

differential operator P (d/dt).
BVP P (d/dt)u = f(t) (−∞ < t < ∞) (1.1)

u(i)(t) ∈ L2(−∞,∞) (0 ≤ i ≤ n) (1.2)

The characteristic polynomial with real coefficients

P (z) =
n−1∏
j=0

(z + aj) =
n∑

j=0

pj zn−j (p0 = 1) (1.3)

is assumed to be a Hurwitz polynomial [1] with distinct characteristic roots a0, · · · , an−1.
That is to say, we impose one of the following three equivalent assumptions.

Assumption 1.1

ai ̸= aj (0 ≤ i < j ≤ n − 1), Re aj > 0 (0 ≤ j ≤ n − 1)

Assumption 1.2 Suppose that l,m = 0, 1, 2, · · · , n = l + 2m ≥ 1

ai ̸= aj (0 ≤ i < j ≤ n − 1), aj > 0 (0 ≤ j ≤ l − 1)
al+m+j = al+j , Re al+j > 0, Im al+j > 0 (0 ≤ j ≤ m − 1)
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Assumption 1.3

G.C.D.(P (z), P ′(z)) = 1, Dk =

∣∣∣∣∣ p−i+2j+1

∣∣∣∣∣
0≤i,j≤k−1

> 0 (k = 1, 2, · · · , n)

where pk = 0 (k < 0 or k > n).

Through the Fourier transform

f(t) −̂→ f̂(ω) =
∫ ∞

−∞
e−

√
−1 ωtf(t) dt (1.4)

BVP is converted to the following problem.
BVP̂ P (z) û(ω) = f̂(ω) (−∞ < ω < ∞) (1.5)

( 1 + |ω| )n û(ω) ∈ L2(−∞,∞) (1.6)

Hereafter we use the following abbreviation.

z =
√
−1ω (1.7)

The solution û(ω) to BVP̂ is given as follows.

û(ω) = Ĝ(ω) f̂(ω), Ĝ(ω) = 1 / P (z) (−∞ < ω < ∞) (1.8)

The one and only one solution of BVP is given by

u(t) =
∫ ∞

−∞
G(t, s) f(s) ds =

∫ ∞

−∞
G(t − s) f(s) ds (−∞ < t < ∞) (1.9)

where G(t, s) = G(t−s) is a Green function. G(t) is defined by the inverse Fourier transform
of Ĝ(ω).

G(t) =
1
2π

∫ ∞

−∞
e
√
−1 tωĜ(ω) dω (1.10)

Since we have

|P (z) |2 =
l−1∏
j=0

(
ω2 + a2

j

) m−1∏
j=0

(
(ω + Im al+j)

2 + (Re al+j)
2

)(
(ω − Im al+j)

2 + (Re al+j)
2

)
there exist positive constants δ1 and δ2 such that the following inequalities hold.

δ1 ( 1 + |ω| )n ≤ |P (z) | ≤ δ2 ( 1 + |ω| )n

We define Green operator G by the following formula.

(Gf)(t) =
∫ ∞

−∞
G(t − s) f(s) ds (−∞ < t < ∞) (1.11)

G is a bounded and linear operator from a Hilbert space L2(−∞,∞) to a Hilbert space
W 2,n(−∞,∞). G is also bounded and linear from L2(−∞,∞) to a Banach space L∞(−∞,∞).
The conclusion of this paper is as follows.
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Theorem 1.1 The operator norm of Green operator

G : L2(−∞,∞) −→ L∞(−∞,∞) (1.12)

is given as follows.

∥ G ∥ = ∥G ∥ =

√∫ ∞

−∞
|G(t) |2dt (1.13)

From the viewpoint of the Sobolev inequality [4] [5] [7], the above theorem is equivalently
rewritten as follows.

Theorem 1.2 For any function u(t) which satisfies u(i)(t) ∈ L2(−∞,∞) (0 ≤ i ≤ n),
there exists a positive constant C which is independent of u(t) such that the following
Sobolev-type inequality holds.(

sup
−∞<s<∞

|u(s) |
)2

≤ C

∫ ∞

−∞
|P (d/dt)u(t) |2 dt (1.14)

Among such C the best constant C(n) is given as follows.

C(n) = ∥G ∥2 (1.15)

Let us choose a special solution u(t) = U(t) of BVP for a special function f(t) = G(−t) (−∞ <
t < ∞). If we replace C by C(n) in (1.14), the equality holds for

u(t) = cU(t − t0) (−∞ < t < ∞) (1.16)

where t0 is an arbitrary real number and c is an arbitrary complex number.

The best constant C(n) can be expressed as a rational function of the characteristic
roots a0, · · · , an−1.

Theorem 1.3

(1) C(n) = (−1)n+1 1
2

n−1∑
j=0

1

aj

n−1∏
k=0, k ̸=j

(
a2

j − a2
k

) (1.17)

(2) C(n) =
(−1)n+1

2a0 · · · an−1

∣∣∣∣∣∣ a2i+1
j

· · · 1 · · ·

∣∣∣∣∣∣
/ ∣∣∣∣∣∣ a2i

j

∣∣∣∣∣∣ (1.18)

In the numerator we have 0 ≤ i ≤ n − 2, 0 ≤ j ≤ n − 1 and in the denominator 0 ≤ i, j ≤
n − 1.

C(n) is a symmetric rational function of a0, · · · , an−1. It can also be expressed as a
rational function of the characteristic coefficients pj (0 ≤ j ≤ n).

Theorem 1.4

C(n) =
1

2pn

∣∣∣∣∣ pn−2−2i+j

∣∣∣∣∣
0≤i,j≤n−3

/∣∣∣∣∣ pn−1−2i+j

∣∣∣∣∣
0≤i,j≤n−2

(1.19)

Here we assume that pj = 0 (j < 0 or n < j) .
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For small number of n, we list concrete forms of C(n).

C(1) =
1

2a0
=

1
2p1

C(2) = − 1
2a0a1

∣∣∣∣ a0 a1

1 1

∣∣∣∣ / ∣∣∣∣ 1 1
a2
0 a2

1

∣∣∣∣ =
1

2a0a1(a0 + a1)
=

1
2p1p2

C(3) =
1

2a0a1a2

∣∣∣∣∣∣
a0 a1 a2

a3
0 a3

1 a3
2

1 1 1

∣∣∣∣∣∣
/ ∣∣∣∣∣∣

1 1 1
a2
0 a2

1 a2
2

a4
0 a4

1 a4
2

∣∣∣∣∣∣
=

a0 + a1 + a2

2a0a1a2(a0 + a1)(a0 + a2)(a1 + a2)
=

1
2p3

p1

/ ∣∣∣∣ p2 p3

p0 p1

∣∣∣∣ =
p1

2p3(p1p2 − p3)

C(4) = − 1
2a0a1a2a3

∣∣∣∣∣∣∣∣
a0 a1 a2 a3

a3
0 a3

1 a3
2 a3

3

a5
0 a5

1 a5
2 a5

3

1 1 1 1

∣∣∣∣∣∣∣∣
/ ∣∣∣∣∣∣∣∣

1 1 1 1
a2
0 a2

1 a2
2 a2

3

a4
0 a4

1 a4
2 a4

3

a6
0 a6

1 a6
2 a6

3

∣∣∣∣∣∣∣∣
=

1
2p4

∣∣∣∣ p2 p3

p0 p1

∣∣∣∣ / ∣∣∣∣∣∣
p3 p4 0
p1 p2 p3

0 p0 p1

∣∣∣∣∣∣ =
p1p2 − p3

2p4(p1p2p3 − p2
3 − p2

1p4)

C(5) =
1

2a0a1a2a3a4

∣∣∣∣∣∣∣∣∣∣
a0 a1 a2 a3 a4

a3
0 a3

1 a3
2 a3

3 a3
4

a5
0 a5

1 a5
2 a5

3 a5
4

a7
0 a7

1 a7
2 a7

3 a7
4

1 1 1 1 1

∣∣∣∣∣∣∣∣∣∣

/ ∣∣∣∣∣∣∣∣∣∣
1 1 1 1 1
a2
0 a2

1 a2
2 a2

3 a2
4

a4
0 a4

1 a4
2 a4

3 a4
4

a6
0 a6

1 a6
2 a6

3 a6
4

a8
0 a8

1 a8
2 a8

3 a8
4

∣∣∣∣∣∣∣∣∣∣
=

1
2p5

∣∣∣∣∣∣
p3 p4 p5

p1 p2 p3

0 p0 p1

∣∣∣∣∣∣
/ ∣∣∣∣∣∣∣∣

p4 p5 0 0
p2 p3 p4 p5

p0 p1 p2 p3

0 0 p0 p1

∣∣∣∣∣∣∣∣ =

p1p2p3 − p2
3 − p2

1p4 + p1p5

2p5(p1p2p3p4 − p2
3p4 − p2

1p
2
4 − p1p2

2p5 + p2p3p5 + 2p1p4p5 − p2
5)

This paper consists mainly of two parts. Section 2,3,4,5 is devoted to the proof of the
above main theorems. In particular, Giambelli’s formula plays an important role in the
expression of the best constant. Section 6,7,8 presents one interesting application of the
obtained results to the theory of electric circuit. We also calculate the best constants in
some special cases.

2 Green function
In this section, we first obtain the concrete expression of Green function G(t). In the

second place, we calculate its L2 norm ∥G ∥.
We first introduce Heaviside step function.

Y (t) =
{

1 (0 ≤ t < ∞)
0 (−∞ < t < 0) (2.1)
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For any complex number a with Re a > 0, we have the following relation.

Y (t) e−at −̂→ (z + a)−1 (2.2)

We also use the abbreviation z =
√
−1ω. From the expansion of 1/P (z) into partial

fractions

1
P (z)

=
n−1∑
j=0

1
P ′(−aj)

1
z + aj

=
∣∣∣∣∣∣ (−aj)i

· · · (z + aj)−1 · · ·

∣∣∣∣∣∣
/ ∣∣∣∣∣∣ (−aj)i

∣∣∣∣∣∣ (2.3)

we can easily conclude the following theorem.

Theorem 2.1 By using functions

Gj(t) = Y (t) e−ajt (−∞ < t < ∞, 0 ≤ j ≤ n − 1) (2.4)

Green function G(t) can be expressed as

(1) G(t) =
n−1∑
j=0

1
P ′(−aj)

Gj(t) (2.5)

(2) G(t) = (−1)n+1
∣∣∣∣∣∣ ai

j

· · · Gj(t) · · ·

∣∣∣∣∣∣
/ ∣∣∣∣∣∣ ai

j

∣∣∣∣∣∣ (2.6)

(3) G(t) = ( G0 ∗ · · · ∗ Gn−1 )(t) (2.7)

where

(f ∗ g)(t) =
∫ ∞

−∞
f(t − s) g(s) ds (−∞ < t < ∞) (2.8)

is a convolution of f(t) and g(t).

From (3), in the case of aj > 0 (0 ≤ j ≤ n − 1), we can conclude that the inequality

G(t)
{

> 0 (0 ≤ t < ∞)
= 0 (−∞ < t < 0) (2.9)

holds.

3 Sobolev-type inequality
In this section, we give a proof of Theorem 1.2, from which Theorem 1.1 is derived

simultaneously.
Proof of Theorem 1.2 For any function u(t) satisfying u(i)(t) ∈ L2(−∞,∞) (0 ≤ i ≤
n), we define f(t) ∈ L2(−∞,∞) by the following relation.

f(t) = P (d/dt) u(t) (−∞ < t < ∞) (3.1)

The inequality

|u(s) |2 ≤
∫ ∞

−∞
|G(s − t) |2 dt

∫ ∞

−∞
| f(t) |2 dt (3.2)
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is obtained by applying Schwarz inequality to (1.9). Considering that the relation∫ ∞

−∞
|G(s − t) |2 dt =

∫ ∞

−∞
|G(t) |2 dt = ∥G ∥2 (3.3)

holds and that the right hand side of (3.2) does not depend on s, we have the following
Sobolev-type inequality.(

sup
−∞<s<∞

|u(s) |
)2

≤ ∥G ∥2

∫ ∞

−∞
| f(t) |2 dt (3.4)

Taking a special solution u(t) = U(t) of BVP with a special function f(t) = G(−t) (−∞ <
t < ∞), we have the following relation.

U(s) =
∫ ∞

−∞
G(s − t)G(−t) dt (−∞ < s < ∞) (3.5)

In particular, we have

U(0) =
∫ ∞

−∞
|G(−t) |2 dt = ∥G ∥2 (3.6)

by putting s = 0 in (3.5). We also have

∥G ∥4 =
(

U(0)
)2

≤
(

sup
−∞<s<∞

|U(s) |
)2

≤

∥G ∥2

∫ ∞

−∞
|P (d/dt)U(t) |2 dt = ∥G ∥2

∫ ∞

−∞
|G(−t) |2 dt = ∥G ∥4 (3.7)

from (3.4) and (3.6). This means that(
sup

−∞<s<∞
|U(s) |

)2

= ∥G ∥2

∫ ∞

−∞
|P (d/dt) U(t) |2 dt (3.8)

which completes the proof of Theorem 1.2. ¥
The concrete form of the best function U(t) is shown later in section 5.

4 The best constant
We here prove the Theorem 1.3 and 1.4 concerning the best constant C(n) = ||G||2.

Proof of Theorem 1.3 We start with the following Parseval’s identity.

∥G ∥2 =
1
2π

∫ ∞

−∞

∣∣∣ Ĝ(ω)
∣∣∣2 dω =

1
2π

∫ ∞

−∞

1∣∣ P
(√

−1ω
) ∣∣2 dω =

1
2π

√
−1

∫ √
−1∞

−
√
−1∞

dz

P (z) P (−z)
(4.1)

Since the integrand 1
/

(P (z)P (−z) ) has n simple poles z = −aj (0 ≤ j ≤ n − 1) in the
left half plane Re z < 0, we have

∥G ∥2 =
n−1∑
j=0

Res
z=aj

(
1

P (z)P (−z)

)
=

n−1∑
j=0

1
P ′(−aj)P (aj)

=

(−1)n+1
n−1∑
j=0

1

2aj

n−1∏
k=0, k ̸=j

(
a2

j − a2
k

) (4.2)
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from the residue theorem. Now we introduce a new polynomial

R(z) =
n−1∏
k=0

(z − αk) (4.3)

where αk = a2
k (0 ≤ k ≤ n − 1). From the relation

R′(αj) =
n−1∏

k=0, k ̸=j

(αj − αk) =
n−1∏

k=0, k ̸=j

(
a2

j − a2
k

)
(4.4)

and (2.5), we have

∥G ∥2 = (−1)n+1 1
2

n−1∑
j=0

1
R′(αj)

1
aj

=

(−1)n+1 1
2

∣∣∣∣∣∣ αi
j

· · · a−1
j · · ·

∣∣∣∣∣∣
/ ∣∣∣∣∣∣ αi

j

∣∣∣∣∣∣
=

(−1)n+1 1
2

∣∣∣∣∣∣ a2i
j

· · · a−1
j · · ·

∣∣∣∣∣∣
/ ∣∣∣∣∣∣ a2i

j

∣∣∣∣∣∣
=

(−1)n+1 1
2a0 · · · an−1

∣∣∣∣∣∣ a2i+1
j

· · · 1 · · ·

∣∣∣∣∣∣
/ ∣∣∣∣∣∣ a2i

j

∣∣∣∣∣∣ (4.5)

which completes the proof of Theorem 1.3. ¥
Before going into the proof of Theorem 1.4, we show that the best constant is rewritten

equivalently as a ratio of Schur polynomials. From Theorem 1.3 (2), it is easy to see that
the relation

C(n) = ∥G ∥2 =
1

2pn

∣∣∣∣∣∣ a
2(n−1−i)−1
j

· · · 1 · · ·

∣∣∣∣∣∣
/ ∣∣∣∣∣∣ a

2(n−1−i)
j

∣∣∣∣∣∣ (4.6)

holds. Here we introduce two partitions of natural numbers

λ = (λ0, λ1, · · · , λn−1) and µ = (µ0, µ1, · · · , µn−1) (4.7)

where λi and µi are given as follows.

λi = n − 1 − i (0 ≤ i ≤ n − 1) (4.8)

µi =
{

λi − 1 (0 ≤ i ≤ n − 2)
0 (i = n − 1) (4.9)

Using these notations λ and µ, C(n) is rewritten as follows.

C(n) =
1

2pn

∣∣∣∣∣ an−1−i+µi

j

∣∣∣∣∣
/∣∣∣∣∣ an−1−i+λi

j

∣∣∣∣∣ (4.10)
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For a given partition Y = (Y0, Y1, · · · , Yn−1), Y0 ≥ Y1 ≥ · · · ≥ Yn−1 ≥ 0, we define Schur
polynomials by the following relation.

SY (a) = SY (a0, · · · , an−1) =

∣∣∣∣∣ an−1−i+Yi
j

∣∣∣∣∣
/ ∣∣∣∣∣ an−1−i

j

∣∣∣∣∣ (4.11)

Then the best constant is rewritten in the Schur polynomial representation.

C(n) =
1

2pn
Sµ(a)

/
Sλ(a) (4.12)

Proof of Theorem 1.4 We start with the following Giambelli’s formula.

Lemma 4.1 (Giambelli [6]) For a partition

Y = (Y0, Y1, · · · , Yn−1) (Y0 ≥ Y1 ≥ · · · ≥ Yn−1 ≥ 0) (4.13)

of a natural number, let Ŷ be a conjugate of Y defined by Ŷ = (Ŷ0, Ŷ1, · · · , Ŷn−1), Ŷi =
#

{
j

∣∣ Yj ≥ i + 1
}
. Then we have

SY (a) =

∣∣∣∣∣ pj−i+bYi

∣∣∣∣∣
0≤i,j≤n−1

(4.14)

where pj (1 ≤ j ≤ n) is the j-th fundamental symmetric polynomial of a = (a0, · · · , an−1).
We also assume that p0 = 1 and pj = 0 for j < 0 or j > n.

Applying the Giambelli’s formula to (4.12) and considering that λ̂i = λi and µ̂i = µi holds,
we have the following equality.

C(n) =
1

2pn

∣∣∣∣∣ pj−i+bµi

∣∣∣∣∣
0≤i,j≤n−1

/∣∣∣∣∣ pj−i+bλi

∣∣∣∣∣
0≤i,j≤n−1

=

1
2pn

∣∣∣∣∣∣∣∣∣∣∣

pn−2 pn−1 · · · p2n−4 p2n−3

pn−4 pn−3 · · · p2n−6 p2n−5

...
...

...
...

p−n+2 p−n+3 · · · p0 p1

p−n+1 p−n+2 · · · p−1 p0

∣∣∣∣∣∣∣∣∣∣∣
/

∣∣∣∣∣∣∣∣∣∣∣

pn−1 pn · · · p2n−3 p2n−2

pn−3 pn−2 · · · p2n−5 p2n−4

...
...

...
...

p−n+3 p−n+4 · · · p1 p2

p−n+1 p−n+2 · · · p−1 p0

∣∣∣∣∣∣∣∣∣∣∣
By using the fact p0 = 1 and pj = 0 (j < 0), C(n) is reduced to

C(n) =
1

2pn

∣∣∣∣∣∣∣∣∣
pn−2 pn−1 · · · p2n−5

pn−4 pn−3 · · · p2n−7

...
...

...
p−n+4 p−n+5 · · · p1

∣∣∣∣∣∣∣∣∣
/∣∣∣∣∣∣∣∣∣

pn−1 pn · · · p2n−3

pn−3 pn−2 · · · p2n−5

...
...

...
p−n+3 p−n+4 · · · p1

∣∣∣∣∣∣∣∣∣
(4.15)

where the numerator and denominator are determinants of size n−2 and n−1, respectively.
Thus we proved Theorem 1.4. ¥
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5 The best function
The concrete form of the best function U(t) which appeared in Theorem 1.2, is given by

the following lemma.

Lemma 5.1 The best function

U(t) =
∫ ∞

−∞
G(t − s)G(−s) ds (−∞ < t < ∞) (5.1)

is expressed in the following three ways.

(1) U(t) = (−1)n+1
n−1∑
j=0

1
n−1∏

k=0, k ̸=j

(
a2

j − a2
k

) Hj(t) (−∞ < t < ∞) (5.2)

(2) U(t) = (−1)n+1
∣∣∣∣∣∣ a2i

j

· · · Hj(t) · · ·

∣∣∣∣∣∣
/ ∣∣∣∣∣∣ a2i

j

∣∣∣∣∣∣ (−∞ < t < ∞) (5.3)

(3) U(t) = ( H0 ∗ · · · ∗ Hn−1 )(t) (−∞ < t < ∞) (5.4)

Hj(t) is defined as follows.

Hj(t) =
1

2aj
e−aj |t| (−∞ < t < ∞, 0 ≤ j ≤ n − 1) (5.5)

Proof of Lemma 5.1 We first have

Û(ω) = Ĝ(ω) Ĝ(−ω) =
1

P (z) P (−z)
=

(−1)n

n−1∏
k=0

(z2 − a2
k)

=
(−1)n

R(z2)
= (−1)n

n−1∑
j=0

1
R′(a2

j )
1

z2 − a2
j

=

(−1)n
∣∣∣∣∣∣ a2i

j

· · · (z2 − a2
j)

−1 · · ·

∣∣∣∣∣∣
/ ∣∣∣∣∣∣ a2i

j

∣∣∣∣∣∣ (5.6)

owing to the relation G(−t) −̂→ Ĝ(−ω). From the fact

Hj(t) =
1

2aj
e−aj |t| =

1
2aj

(
Y (t) e−ajt + Y (−t) eajt

)
−̂→

1
2aj

(
(z + aj)−1 + (−z + aj)−1

)
=

(
−z2 + a2

j

)−1
= Ĥj(ω) (5.7)

we can show (1) and (2). (3) is derived from Û(ω) =
n−1∏
k=0

Ĥk(ω). This completes the proof

of Lemma 5.1. ¥
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6 Heaviside cable and Thomson cable
This section presents an interesting application of the results obtained in the previous

sections to engineering field. We consider the following n-cascaded LRCG units.

u0 u1

b

b

b

br

r

r

rC1 G1

L1 R1

v1 u2

b

b

b

br

r

r

rC2 G2

L2 R2

v2

un−1 un

b

b

b

br

r

r

rCn Gn

Ln Rn

vn

Li, Ri, Ci, Gi are inductance, resistance, capacitance and conductance respectively. They
are nonnegative constants and not all of them are zero. ui−1 = ui−1(t) and ui = ui(t)
are input and output voltage, respectively. vi = vi(t) is current. Output end is open,
vn+1(t) = 0. Input voltage u0(t) is a given function of t. We investigate the relation
between output voltage u(t) = un(t) and input voltage u0(t).

We treat two cases,

HC (Heaviside cable ) : Li, Ri, Ci, Gi > 0 (1 ≤ i ≤ n)

and

TC (Thomson cable ) : Li = Gi = 0, Ri, Ci > 0 (1 ≤ i ≤ n)

Heaviside cable is a discrete model of transmission line treated by Oliver Heaviside (See
references [2], [3], for example).

In this section, we adopt the following abbreviation.

D = d/dt (6.1)

From the Kirchhoff law, we have the following set of differential equations. (LiD + Ri)vi = ui−1 − ui (6.2)

(CiD + Gi)ui = vi − vi+1 (1 ≤ i ≤ n, −∞ < t < ∞) (6.3)

We introduce vectors

u = t( u1, · · · , un ), v = t( v1, · · · , vn )
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and n × n matrices

L =

(
Li δij

)
, R =

(
Ri δij

)
, C =

(
Ci δij

)
, G =

(
Gi δij

)
,

N =


0 1

0
. . .
. . . 1

0

 .

These set of differential equations can be expressed in vector form. We treat the following
boundary value problems.

BVP
( LD + R ) v + ( I − tN )u = u0(t) t( 1, 0, · · · , 0 ) (6.4)

( CD + G )u − ( I − N ) v = 0 (−∞ < t < ∞) (6.5)

v, D v, u, D u ∈ L2(−∞,∞) (6.6)

In the case of Thomson cable, we do not require D v ∈ L2(−∞,∞). The above equation
is rewritten as

(LD + R ) ( I − N )−1( CD + G )u + ( I − tN )u = u0(t) t(1, 0, · · · , 0)
(−∞ < t < ∞) (6.7)

by eliminating v. From now on, we put

u0(t) =



(
n∏

i=1

(LiCi)

)
f(t) (HC)(

n∏
i=1

(RiCi)

)
f(t) (TC)

(6.8)

By Fourier transform, we have the following matrix equation.
BVP̂ ( Lz + R ) v̂ + ( I − tN ) û = û0(ω) t( 1, 0, · · · , 0 ) (6.9)

( Cz + G ) û − ( I − N ) v̂ = 0 (−∞ < ω < ∞) (6.10)

The above equation is rewritten as follows.

BVP̂

L1z + R1 1
−1 1

. . . . . . . . .
Lnz + Rn −1 1

−1 1 C1z + G1

−1
. . .
. . . 1

. . .
−1 Cnz + Gn





v̂1

...
v̂n

û1

...
ûn



= û0(ω)


1
0
...
0

0
...
0


(6.11)
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We still use the abbreviation z =
√
−1ω. It is easy to see that∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

L1z + R1 1 1

−1
. . . 0

. . . . . . 1
...

Lnz + Rn −1 0
−1 1 C1z + G1 0

−1
. . . . . . 0
. . . 1 Cn−1z + Gn−1

...
−1 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 1

holds. The characteristic polynomial is given by

P (z) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

L1z + R1 1
−1 1

. . . . . . . . .
Lnz + Rn −1 1

−1 1 C1z + G1

−1
. . .
. . . 1

. . .
−1 Cnz + Gn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

/ n∏
i=1

(LiCi)

(HC)∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

R1 1
−1 1

. . . . . . . . .
Rn −1 1

−1 1 C1z

−1
. . .
. . . 1

. . .
−1 Cnz

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

/ n∏
i=1

(RiCi)

(TC)

Solving a linear equation (6.11) with respect to ûn(ω), we have

ûn(ω) = P (z)−1 f̂(ω) (−∞ < ω < ∞) (6.12)

This means that

P (d/dt)un = f(t) (−∞ < t < ∞) (6.13)

Now we obtained a concrete example of higher order ordinary differential equation with
Hurwitz characteristic polynomial. In fact, we have the following lemma.

Lemma 6.1 The characteristic polynomial P (z) is a Hurwitz polynomial in both cases.
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Proof of Lemma 6.1 Let

P (z) =



2n−1∏
j=0

(z + aj) (HC)

n−1∏
j=0

(z + aj) (TC)

be the factorization of the characteristic polynomial.
For z = −aj we have a 2n dimensional vector t(v, u) ̸= t(0,0) such that ( Lz + R )v + ( I − tN )u = 0 (6.14)

( Cz + G )u − ( I − N )v = 0 (6.15)

holds. We have the following relation. ( v∗ Lv ) z + v∗ R v = −v∗ ( I − tN ) u = −u∗ ( I − N ) v

( u∗ C u ) z + u∗ Gu = u∗ ( I − N ) v

Considering that the relation(
v∗ Lv + u∗ C u

)(
Re z

)
= −

(
v∗ R v + u∗ G u

)
and inequalities

v∗ Lv + u∗ C u > 0, v∗ R v + u∗ Gu > 0

hold, we have Re z < 0. This completes the proof of Lemma 6.1. ¥

Remark 6.1 If Heaviside cable has no resistance and conductance

Ri = Gi = 0 (1 ≤ i ≤ n) (6.16)

then all the characteristic roots are pure imaginary, that is Re aj = 0 (1 ≤ j ≤ n).

Considering the physical background, we believe the following conjecture.

Conjecture 6.1 In the case of Heaviside cable, if we have

Li, Ci > 0, Ri, Gi ≥ 0 (1 ≤ i ≤ n) (6.17)

and

n∑
i=1

(Ri + Gi) > 0 (6.18)

that is to say at least one of the Ri or Gi is positive, then P (z) is Hurwitz polynomial.
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The above conjecture is confirmed to be valid in the case n = 1, 2. We believe that this
conjecture holds for n ≥ 3 but it requires much effort and is still an open problem. If n = 1

L1C1 P (z) = (L1z + R1) (C1z + G1) + 1

has two negative roots if R1 > 0 or G1 > 0.
We next consider the case n = 2. We can show that the above conjecture is true by

rational calculation using computer software “Mathematica”. The characteristic polynomial
is calculated as follows.

L1L2C1C2 P (z) = ∣∣∣∣∣∣∣
zL1 + R1 1

zL2 + R2 −1 1

−1 1 zC1 + G1
−1 zC2 + G2

∣∣∣∣∣∣∣
=

p0z
4 + p1z

3 + p2z
2 + p3z + p4 (6.19)

Since

p4 = R1R2G1G2 + R1G1 + (R1 + R2) G2 + 1 ≥ 1

holds, we have aj ̸= 0 (0 ≤ j ≤ 3). Next we assume that the equation P (z) = 0 has a pure
imaginary characteristic root z = aj =

√
−1 y, y ∈ R\{0}. Then the equation P (z) = 0

is rewritten equivalently as follows.

y4 − p2y
2 + p4 −

√
−1y

(
p1y

2 − p3

)
= 0

Hence Y = y2 satisfies the following equation.

p0Y
2 − p2Y + p4 = 0, p1Y − p3 = 0 (6.20)

According to the rigorous calculation of the resultant using computer software “Mathemat-
ica”, we can show that the inequality∣∣∣∣∣∣

p0 −p2 p4

p1 −p3 0
0 p1 −p3

∣∣∣∣∣∣
= p0p

2
3 + p2

1p4 − p1p2p3 ≥

(
L2

2R
2
1 + L2

1R
2
2

)
C1C

3
2 + L3

1L2

(
C2

2G2
1 + C2

1G2
2

)
> 0 (6.21)

holds. This is a contradiction.

7 Example 1
In this and next section, we apply the results concerning the best constant of the Sobolev-

type inequality to the Thomson cable, where corresponding characteristic polynomial P (z)
is proved to be a Hurwitz polynomial.

We consider the following special case of the Thomson cable.

Ri = Ci = 1 (1 ≤ i ≤ n) (7.1)



HEAVISIDE CABLE AND SOBOLEV-TYPE INEQUALITY 753

The characteristic polynomial is given by

P (n; z) =∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1
1 −1 1

. . . . . . . . .
1 −1 1

−1 1 z

−1
. . . z
. . . 1

. . .
−1 z

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= det
(

zI + (I − N) (I − tN)
)

=

∣∣∣∣∣∣∣∣
z + 2 −1

−1
. . . . . .
. . . z + 2 −1

−1 z + 1

∣∣∣∣∣∣∣∣
=

(
Un+1(x) − Un(x)

)∣∣∣∣
x=(z+2)/2 (7.2)

where Un(x) defined by Un(cos(θ)) = sin(nθ)
/

sin(θ) is a second kind Chebyshev polyno-
mial. The coefficients pnj of Taylor expansion and the characteristic roots aj of

P (n; z) =
n∑

j=0

pnj zn−j =
n−1∏
j=0

(z + aj) (7.3)

is determined by pn0 = pnn = 1 (n = 0, 1, 2, · · · )
pn1 = 2n − 1 (n = 1, 2, 3, · · · )
pn+1 j+1 − 2pnj + pn−1 j−1 = pn j+1 (n = 1, 2, 3, · · · , 1 ≤ j ≤ n − 1)

(7.4)

and

aj = 2(1 − cos(θj)) = 4 sin2(θj/2), θj =
2j + 1
2n + 1

π (0 ≤ j ≤ n − 1) (7.5)

Due to the inequalities 0 < θ0/2 < · · · < θn−1/2 < π/2, it is easy to see that 0 < a0 <
a1 < · · · < an−1 < 4 holds. In fact, all the characteristic roots are negative. We here list
the polynomial P (n; z) and the best constants C(n).

P (0; z) = 1, P (1; z) = z + 1, P (2; z) = z2 + 3z + 1,

P (3; z) = z3 + 5z2 + 6z + 1, P (4; z) = z4 + 7z3 + 15z2 + 10z + 1,

P (5; z) = z5 + 9z4 + 28z3 + 35z2 + 15z + 1

P (6; z) = z6 + 11z5 + 45z4 + 84z3 + 70z2 + 21z + 1

P (7; z) = z7 + 13z6 + 66z5 + 165z4 + 210z3 + 126z2 + 28z + 1

P (8; z) = z8 + 15z7 + 91z6 + 286z5 + 495z4 + 462z3 + 210z2 + 36z + 1, · · ·

C(1) =
1
2
, C(2) =

1
6
, C(3) =

5
58

, C(4) =
95

1802
, C(5) =

6389
179786

C(6) =
294361

11517430
, C(7) =

873689
45374850

, C(8) =
2936193722139

195451751169362
, · · ·

This example shows the usefulness of the expression of the best constants by rational func-
tion of pj .
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8 Example 2
In the second special case

R1 = 1/2, Ri = 1 (2 ≤ i ≤ n), Ci = 1 (1 ≤ i ≤ n) (8.1)

we have

P (n; z) =
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1/2 1
1 −1 1

. . . . . . . . .
1 −1 1

−1 1 z

−1
. . . z
. . . 1

. . .
−1 z

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

det
(

zI + (I − N)
 2

1
. . .

1

(I − tN)
)

=

∣∣∣∣∣∣∣∣∣∣
z + 3 −1
−1 z + 2

. . . . . .

. . . z + 2 −1
−1 z + 1

∣∣∣∣∣∣∣∣∣∣
= 2 Tn(x)

∣∣∣∣
x=(z+2)/2

(8.2)

where Tn(x) defined by Tn(cos(θ)) = cos(nθ) is a first kind Chebyshev polynomial. The
coefficients pnj of Taylor expansion and the characteristic roots aj of

P (n; z) =
n∑

j=0

pnj zn−j =
n−1∏
j=0

(z + aj) (8.3)

is determined by pnn = 2 (n = 0, 1, 2, · · · ), pn0 = 1 (n = 1, 2, 3, · · · )
pn1 = 2n (n = 1, 2, 3, · · · )
pn+1 j+1 − 2pnj + pn−1 j−1 = pn j+1 (n = 1, 2, 3, · · · , 1 ≤ j ≤ n − 1)

(8.4)

and expressed as follows.

aj = 2(1 − cos(θj)) = 4 sin2(θj/2), θj =
2j + 1

2n
π (0 ≤ j ≤ n − 1) (8.5)

We also have 0 < a0 < a1 < · · · < an−1 < 4. We here list the polynomial P (n; z) and
the best constants C(n).

P (0; z) = 2, P (1; z) = z + 2, P (2; z) = z2 + 4z + 2,

P (3; z) = z3 + 6z2 + 9z + 2, P (4; z) = z4 + 8z3 + 20z2 + 16z + 2,

P (5; z) = z5 + 10z4 + 35z3 + 50z2 + 25z + 2,

P (6; z) = z6 + 12z5 + 54z4 + 112z3 + 105z2 + 36z + 2,

P (7; z) = z7 + 14z6 + 77z5 + 210z4 + 294z3 + 196z2 + 49z + 2,

P (8; z) = z8 + 16z7 + 104z6 + 352z5 + 660z4 + 672z3 + 336z2 + 64z + 2 · · ·
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C(1) =
1
4
, C(2) =

1
16

, C(3) =
3

104
, C(4) =

9
544

, C(5) =
1565

146248

C(6) =
59001

7889840
, C(7) =

120599227
21863100232

, C(8) =
402124297

94961127488
, · · ·
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