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Abstract. We study the existence of periodic orbits of the predator–prey systems
ẋ = rx − f(x)y, ẏ =

�
g(x) − µ

�
y, for different types of Holling functional responses

f(x) of the predator. For the first type we have centers, for the second type there is
neither periodic orbits nor limit cycles, and for the third and fourth types there are
limit cycles.

1 Introduction Since the seminal work of Kolmogorov [8], extensive work has been
done on the study of the dynamic of a predator-prey system modeled by two autonomous
differential equations. One very popular version of such a system, the so–called Gause–type
model, has the following general form

ẋ = xh(x) − f(x)y,
ẏ = (cf(x) − d(y))y,

(1)

As usual the dot denotes derivative with respect to the time variable t.

The global stability of the system is typically determined by the existence of a positive
attractor, either an equilibrium or a limit cycle. For this reason, the existence and unique-
ness of positive attractors and limit cycles of system (1) has attracted much interest in
recent years. For a sample of these studies, see Cheng [3], Xiao and Zhang [15], Haźik [6],
Kuang [10], Moghadas [12]. Most of the recent work has employed technical methods, such
as transforming the system to an equivalent generalized Lienard system or trying directly
to exploit the special structure of the limit cycle and the prey isocline. The models also in-
corporated non monotonic functional response to simulate defence mechanisms of the prey,
see for example González et al [11], Ruan and Xiao [13], Wolkovicz [14], Xiao and Zhang
[16], Zhu et al [17].

Roughly speaking all the models which one finds in the literature consider a function
h(x) such that (x − K)h(x) < 0 for all x ≥ 0, as in the logistic growth model. The case of
exponential growth of the prey has not been considered. Levin in [9] investigated the effect
of the density–dependent predator death rate upon the stability of equilibria for the model

ẋ = ax − f(x)y,
ẏ = (cf(x) − d(y))y,

(2)

where d is an increasing function and d(0) > 0. However the existence of limit cycles was
not investigated.

In this work we will study the predator–prey model

ẋ = rx − f(x)y,
ẏ =

(

g(x) − µ
)

y,
(3)
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satisfying

(i) the domain of definition of the system is the closed first quadrant (i.e. x ≥ 0, y ≥ 0);

(ii) the parameters r and µ are positive;

(iii) g : R
+ → R is a C1 increasing function in an interval [0, L2] and g(0) = 0.

(iv) f : R
+ → R is a positive function in x > 0 with f(0) = 0 and corresponds to the

functional response of the predator.

According with Holling we shall analyze system (3) for the following classes of func-
tional responses:

(iv.1) f(x) is linear;

(iv.2) f ′(x) is a C1 positive monotonic function;

(iv.3) f : R
+ → R is a Cm sigmoid function in an interval [0, L1), (m ≥ 4). Namely, f ′

is an increasing function and there exists x0 ∈ (0, L1) such that (x0−x)f ′′(x) > 0
for all x 6= x0 in (0, L1).

(iv.4) fn(x) = xn/(x2 + bx + 1) where −2 < b, n = 1, 2, and g(x) = afn(x) with a > 0
for x ≥ 0.

We also assume that L1 ≤ L2.

The equilibrium points of system (3) in the region 0 ≤ x ≤ L1, are (0, 0) and (x∗, y∗),
where g(x∗) = µ and y∗ = rx∗/f (x∗). The Jacobian of system (3) is

J(x, y) =

(

r − f ′(x)y −f (x)
g′(x)y g(x) − µ

)

,

where the prime denotes derivative with respect to the variable x. Therefore

J(0, 0) =

(

r 0
0 −µ

)

and J(x∗, y∗) =

(

A −B
D 0

)

,

where
A = r − f ′(x∗)y∗, B = f(x∗) > 0 and D = g′(x∗)y∗.

So the (0, 0) is a saddle point, and since the eigenvalues of the linear approximation of
system (3) at (x∗, y∗) are

λi(µ, r) =
A ±

√
A2 − 4BD

2
, i = 1, 2;(4)

we have that (x∗, y∗) is

• a stable node if A < 0 ≤ A2 − 4BD,

• an unstable node if A > 0 and A2 − 4BD ≥ 0,

• a stable focus if A < 0 and A2 − 4BD < 0,

• an unstable focus if A > 0 and A2 − 4BD < 0,

• a center or a weak focus if A = 0.

Our main result is the following.
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Theorem 1. We consider system (3) satisfying the assumptions (i), (ii), (iii) and (iv.k)
for some k ∈ {1, 2, 3}. Then the following statements hold.

(a) The singular point (x∗, y∗) of system (3) under the assumption (iv.1) is a center.

(b) There are no periodic orbits for system (3) if the assumption (iv.2) hold and L2 = ∞.

(c) For convenient values of r and µ there exist periodic orbits surrounding the singular
point (x∗, y∗) of system (3) under the assumption (iv.3), due to a Hopf bifurcation.

(d) If f(x) = x2/(x2 + 1) and g(x) = x, then the global phase portraits of system (3) in
the Poincaré disc and in a sufficiently small neighborhood of µ = 1 are given in Figure
1 assuming that the unique limit cycle of these systems is the one coming from the
Hopf bifurcation of statement (c).

µ>1µ<1

Figure 1: The global phase portrait of the system of statement (d) of Theorem 1 for values
of µ near 1.

Statement (a) in the particular case that g(x) = f(x) was proved by Volterra in [19].
The proof of statement (a) is given in Section 2.

Statement (b) can be obtained from the results of Harrison [5] who proved that under the
assumptions of statement (b) the singular point (x∗, y∗) of system (3) is a global attractor
or repellor in the first quadrant. For proving this he used a Liapunov function. Here we
provide a new and shorter proof of statement (b) using the Bendixson–Dulac criterion, see
Section 3.

Statement (c) is proved showing the existence of a Hopf bifurcation, see Section 4.

Statement (d) is proved in Section 5. There we also recall the basic results of the
Poincaré compactification for planar polynomial differential systems that we shall need for
doing the global phase portrait of system (3) in the whole compactified plane.

Finally in Section 6 we study system (3) when the function f satisfies (iv.4).

2 Proof of statement (a) of Theorem 1 We assume that we are under the assumptions
of statement (a) of Theorem 1. Then we have that f(x) = ax with a > 0. Then the function

H(x, y) = yr exp

(

−ay +

∫ x

0

µ − g(s)

s
ds

)
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is a first integral of system (3), because

∂H

∂x
ẋ +

∂H

∂y
ẏ =

∂H

∂x
x(r − ay) +

∂H

∂y

(

g(x) − µ
)

y = 0.

The eigenvalues (4) at the singular point (x∗, y∗) are ±
√

rx∗g′(x∗) i. So from [1] or [4]
it follows that this singular point is either a weak focus or a center. But since the first
integral H(x, y) is well defined at (x∗, y∗), this singular point is a center. Hence statement
(a) of Theorem 1 is proved.

3 Proof of statement (b) of Theorem 1 First we recall the Bendixson–Dulac criterion,
for a proof see [4].

Proposition 2. We consider the differential system ẋ = F (x, y) and ẏ = G(x, y), where
F,G : U → R are C1 functions defined in the simple connected open subset U ⊂ R

2. If
there exists a nonzero C1 function B : U → R

2 such that ∂(BF )/∂x + ∂(BG)/∂y does not
change sign in U , then this differential system has no periodic orbits in U .

We shall apply Proposition 2 to system (3) under the assumptions of statement (b). Let
F (x, y) = rx − f(x)y and G(x, y) =

(

g(x) − µ
)

y. Take B(x, y) = 1/(yf (x)), then

∂(BF )

∂x
+

∂(BG)

∂y
=

r(f(x) − xf ′(x))

yf2(x)

{

> 0 if f is concave down,

< 0 if f is concave up,
(5)

for all x > 0 and y > 0. Otherwise there exists an x0 > 0 such that f(x0) − x0f
′(x0) = 0.

This implies that the tangent line to the graphic Γ = {(x, f(x)) : x > 0} at the point
(x0, f(x0)) pass through the origin of coordinates. This contradicts the fact that this tangent
line cannot intersect Γ, because the curve Γ is concave down, or concave up, and f(x) > 0
for all x > 0.

From (5) and Proposition 2 it follows that system (3) has no periodic orbits in x > 0
and y > 0. Hence statement (b) of Theorem 1 is proved.

4 Proof of statement (c) of Theorem 1 We assume that system (3) satisfies the
assumption of statement (c) of Theorem 1.

From the definition of sigmoid curve there exists a unique value x1 ∈ (0, L1) such that
f ′(x1) = f(x1)/x1. Since g(x) is increasing in (0, L2), there is a unique value µ1 of µ such
that g(x1) = µ1.

First we claim that there is an interval I for which if µ ∈ I then ∆ = A2 − 4BD < 0.
Now we shall prove the claim.

Note that ∆ < 0 if and only if

r2

(

1 − x∗f ′(x∗)

f(x∗)

)2

− 4rx∗g′(x∗) < 0.

We know that g′(x) > 0 for all x ∈ (0, L2), therefore there is an interval I ′ containing µ1

and a number K > 0 such that x∗g′(x∗) > K for all x∗ ∈ J ′, where J ′ is the inverse image
of I ′ by g. Then we have −4rx∗g(x∗) < −4rK , which implies

∆ < r2

(

1 − x∗f ′(x∗)

f(x∗)

)

− 4rK.
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When µ = µ1 we have x∗ = x1 and ∆ < −4rK , by continuity we have that ∆ < 0 in one
interval J ⊂ J ′ containing x1. This implies that there exists an interval I ⊂ I ′ containing
µ1 on which, if µ ∈ I then ∆ < 0. Hence the claim is proved.

For µ ∈ I the matrix J(x∗, y∗) has two distinct conjugate complex eigenvalues with
negative real part if µ < µ1, zero real part if µ = µ1 and positive real part if µ > µ1, see
(4) for more details.

We now check that the derivative of the real part with respect to µ at µ1 is different
from zero. Let

d

dµ
Re(λi(µ)) =

d

dµ

[

r

2

(

1 − x∗f ′(x∗)

f(x∗)

)]

= − r

2

d

dµ

[

x∗f ′(x∗)

f(x∗)

]

= − r

2

[

(

f(x∗) − x∗f ′(x∗)
)

f ′(x∗) + x∗f(x∗)f ′′(x∗)

f2(x∗)

]

dx∗

dµ
.

Since g(x∗) = µ and g−1 exists, then x∗ = g−1(µ). So, from x∗ = (g−1 ◦ g)(x∗) we have
that

1 =
d

dx∗

(

g−1 ◦ g
)

(x∗) =
(

g−1
)

′

(µ) · g′(x∗).

Then

dx∗

dµ
=

(

g−1
)

′

(µ) =
1

g′(x∗)
,

so
d

dµ
Re(λi(µ)) = − r

2

[

(

f(x∗) − x∗f ′(x∗)
)

f ′(x∗) + x∗f(x∗)f ′′(x∗)

g′(x∗)f2(x∗)

]

.

We remember that if µ = µ1 then x∗ = x1 and that f ′(x1) = f(x1)/x1. Therefore

d

dµ
Re(λi(µ))

∣

∣

∣

∣

µ=µ1

= − r

2

[

(

f(x1) − x1f
′(x1)

)

f ′(x1) + x1f(x1)f
′′(x1)

g′(x1)f2(x1)

]

= − rx1f
′′(x1)

2f (x1)g′(x1)
6= 0.

So by the Hopf’s bifurcation theorem (see [18]) system (3) contains a periodic orbit for some
values of µ ∈ I. Indeed, there exists an ε̄ > 0 and a Cm−1 function µ(ε),

µ(ε) =

[ m−2

2
]

∑

i=1

α2iε
2i + O(εm−1), (0 < ε < ε̄),(6)

such that for each ε ∈ (0, ε̄) there exist a periodic solution of system (3) for µ = µ(ε), see
[7] pages 16-17.

Remark 3. From the proof of item (c) it follows that the bifurcation value µ1 is given by
µ1 = g(x1), where x1 is the positive root of the equation f ′(x) = f(x)/x. It is no hard to see

that condition (iv.3) implies that
d

dµ
Re(λi(µ))

∣

∣

∣

∣

µ=µ1

> 0. This derivative will be denoted in

what follows by d.
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5 Proof of statement (d) of Theorem 1 We suppose that we are in the hypotheses of
statement (d) of Theorem 1. Then doing the change of time dt = (x2 + 1)ds and denoting
again the derivative with respect to the new time s by a dot, system (3) becomes

ẋ = x(r + rx2 − xy),
ẏ = (x − µ)(x2 + 1)y.

(7)

The singular point (x∗(µ), y∗(µ)) is (µ, (1 + µ2)r/µ) and its eigenvalues are ±2
√

r i for
µ = 1, and

1

2

(

(µ2 − 1)r ±
√

(−4µ5 + rµ4 − 8µ3 − 2rµ2 − 4µ + r)r
)

,

for any µ > 0. Then by statement (c) of Theorem 1 it follows that system (7) exhibits a
Hopf bifurcation at µ = 1. Moreover the point (x∗(µ), y∗(µ)) is a stable focus if µ < 1 and
1−µ is sufficiently small, and an unstable focus if µ > 1 and µ−1 is sufficiently small. Since
system (7) is a polynomial differential system we can compute the first nonzero Liapunov
constant at the singular point (x∗(1), y∗(1)). This Liapunov constant is negative, so the
singular point (x∗(1), y∗(1)) is a stable weak focus. For more details about the Liapunov
constants and their computations see Chapter 6 of [4].

Of course system (7) has a saddle at the origin of coordinates, its two unstable separa-
trices are the x half–axes and its two stable separatrices are the y half–axes.

System (7) has no other finite singular points. Now we shall study his infinite singular
points using the Poincaré compactification, see the appendix.

In the local chart U1 system (7) goes over to

ż1 = z1

(

1 − (r + µ)z2 + z1z2 + z2
2 − (r + µ)z3

2

)

,
ż2 = −z2

2(r − z1 + rz2
2).

So the unique infinite singular point in the local chart U1 is its origin, and consequently in
the local chart U2 the unique possible infinite singular point would be also its origin, which
is a singular point because is the endpoint of the positive y half–axis, one of the stable
separatrices of the saddle located at the origin of R

2.

The (0, 0) of the local chart U1 is a semi–hyperbolic singular point because it has eigen-
values 1 and 0, applying the characterization of the local phase portraits for these kind of
singular points (see [1] or [4]), we get that it is a saddle–node located as it is described in
Figure 1.

Now in order to characterize all the local behaviors at the finite and infinite singular
points only remains to study the origin of the local chart U2. System (7) in this local chart
becomes

ż1 = −z1

(

z1z2 + z3
1 − (r + µ)z2

1z2 + z1z
2
2 − (r + µ)z3

2

)

,
ż2 = −z2(z1 − µz2)(z

2
1 + z2

2).
(8)

The linear part at the origin of this system is identically zero, so in order to study its local
phase portrait we must do blow ups, see [2] or [4].

We start doing the blow up given by the change of variables (z1, z2) 7→ (z1, w = z2/z1).
In these new variables system (8) can be written as

ż1 = z3
1

(

− z1 − w + (r + µ)z1w
2 + (r + µ)z1w

3
)

,
ẇ = z2

1w2(1 − rz1 − rz1w
2).

(9)
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Now we rescale the time variable and eliminate the common factor z2
1 between the two

equations of system (9). Thus we get

ż1 = z1

(

− z1 − w + (r + µ)z1w
2 + (r + µ)z1w

3
)

,
ẇ = w2(1 − rz1 − rz1w

2).
(10)

Note that we continue denoting by w the rescaled variable. But the origin of system (10)
has again the linear part identically zero, so we do a second blow up.

We do the change of variables (z1, w) 7→ (z1, v = w/z1). In these new variables system
(10) can be written as

ż1 = z2
1

(

− 1 − v + (r + µ)z1v − z2
1v2 + (r + µ)z3

1v3
)

,
v̇ = z1v

(

1 + 2v − (2r + µ)z1v + z2
1v

2 − (2r + µ)z3
1v3

)

.
(11)

Again we rescale the time variable and eliminate the common factor z1 between the two
equations of system (11). Thus we get

ż1 = z1

(

− 1 − v + (r + µ)z1v − z2
1v2 + (r + µ)z3

1v3
)

,
v̇ = v

(

1 + 2v − (2r + µ)z1v + z2
1v

2 − (2r + µ)z3
1v3

)

.
(12)

Note that we continue denoting by v the rescaled variable. System (12) has only one singular
point on the v–axis, the origin which is a saddle, see Figure 2(a).

z1

v

(a) (b)

z1

w

(d)

v

z1 z1

w

(c)

z1

(e)

z2

Figure 2: The sequence of the blow ups for studying the origin of the local chart U2.

Going back through the changes of variables the phase portrait in the neighborhood of
the v–axis for system (11) is given in Figure 2(b). The phase portrait in the neighborhood
of the w–axis for system (10) is described in Figure 2(c). The phase portrait in the neigh-
borhood of the w–axis for system (9) is given in Figure 2(d). Finally the phase portrait in
the neighborhood of the origin of the local chart U2 is shown in Figure 2(e).

Putting together all the information about the finite and infinite singular points and
taking into account the Hopf bifurcation we obtain the global phase portraits of Figure 1
near µ = 1, assuming that the unique limit cycle that system (3) has under the assumptions
of statement (d) of Theorem 1 is the one coming from the Hopf bifurcation. Hence statement
(d) of Theorem 1 is proved.
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6 Examples As an application of Theorem 1 we analyze the system

ẋ = rx − f(x)y,
rẏ = (g(x) − µ)y,

(13)

with

f(x) =
xn

x2 + bx + 1
,

for n = 1, 2 , g(x) = af(x) and b 6= 0 is a real number greater than −2. The parameters r
and µ are positive. The case n = 2 and b = 0 was analyzed in Theorem 1(d).

From now on we say that an equilibrium point (x, y) is a coexistence equilibrium point
(ce point) if xy 6= 0.

Theorem 4. We consider the predator–prey model defined by (13).

(a) Let n = 1 and −2 < b < 0. If 0 < µ < a/(b + 2) there exist two ce equilibrium
points Pi(µ) = (xi(µ), yi(µ)) for i = 1, 2, with x1(µ) < x2(µ) and for µ ≤ µ1 but close
enough to µ1 = 2ab/(b2 − 4) an unstable limit cycle appears around to P1(µ) due to a
Hopf bifurcation. The point P2(µ) is a saddle.

(b) Let µ1 = a/(b + 2). For n = 2 we have

(b.1) If b > 0 and 0 < µ < a then there exists a unique ce equilibrium point and for
µ > µ1 a stable periodic orbit appears due to a Hopf bifurcation.

(b.2) If −2 < b < 0, the system has a Hopf bifurcation with an unstable periodic orbit
around P1(µ) for µ < µ1. If −2 < b < −1 and a < µ < µ1, then the system has
also a saddle equilibrium point P2(µ).

Proof. We give a sketch of the proof. It is easy to verify that f(x) is a sigmoid function in
[0, L1] where L1 is given by

(i) L1 = ∞ if n = 2 and b ≥ 0,

(ii) L1 = −2/b if n = 2 and −2 < b < 0,

(iii) L1 = 1 if n = 1 and −2 < b < 0.

We also have that bifurcation parameter values are given by (see Remark (3))

(iv) µ1 = 2ab/(b2 − 4) for n = 1 and x1 = −b/2,

(v) µ1 = a/(b + 2) for n = 2 and x1 = 1.

In case (i) the function f increases monotonically to 1, when x tends to infinity, then
system (13) posses a unique coexistence equilibrium point P1(µ) = (x1(µ), y1(µ) if µ < a.

In cases (ii) and (iii) where −2 < b < 0, f is a decreasing function in [L1,∞). Therefore
there exists two ce points Pi(µ) = (xi(µ), yi(µ)), i = 1, 2 with x1(µ) < x2(µ), for l0 < µ <
g(L1) where l0 = limx→∞ g(x). Indeed

l0 =

{

0 if n = 1,
a if n = 2,

and

g(L1) =















a

2 + b
if n = 1,

4a

4 − b2
if n = 2.
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We stand y1 for y1(µ1). At the bifurcation value µ = µ1 through some linear change of
variables system (13) becomes

ẋ = −aδf (x1) y − F (x, y) + O(4),

ẏ = aδf(x1)x + G(x, y) + O(4),

where

F (x, y) =
f ′′(x1)y1

2aδ
x2 + f ′(x1)xy +

f ′′(x1)

2aδ
x2y +

f ′′′(x1)y1

6a2δ2
x3,

and

G(x, y) =
1

δ
F (x, y),

with δ =
√

r/µ1. Moreover the equilibrium point (x1, y1) becomes (0, 0).

According to Wiggins (see [20], pp. 270–278 ), the kind of bifurcation is determined by
the sign of d (d is defined in Remark 3) and α is defined by

α =
1

16
(Fxxx + Fxyy + Gxxy + Gyyy) +

1

16ω
(Fxy(Fxx + Fyy)

−Gxy(Gxx + Gyy) − FxxGxx + FyyGyy),

where the derivatives are evaluated at (0, 0) and ω =
√

µ1r = aδf(x1).

In the proof of Theorem 1 we have shown that d is positive. The computations to obtain
α are straightforward and we omit details. If n = 2 we get

α = − b

8a(b + 2)3
,

for all a, r > 0 and −2 < b < ∞. Hence if b < 0 the system has a subcritical bifurcation
with an unstable periodic orbit surrounding the stable equilibrium point P1(µ) for µ < µ1.
For µ ≥ µ1 only remains the equilibrium point P1(µ) which becomes unstable. If b > 0
a supercritical bifurcation arises with a stable equilibrium point for µ ≤ µ1 and a stable
periodic orbit for µ > µ1. If n = 2 in order to have simultaneously a Hopf bifurcation and
a saddle point it is necessary that µ1 = a/(2 + b) be greater than a, then the condition
−1 > b must be satisfied.

In the case n = 1 we have that α is given by

α =
8b

a (b2 − 4)
3 .

In this case α > 0 for all −2 < b < 0. Hence a subcritical bifurcation occurs at µ1, with a
unstable periodic orbit for µ < µ1 and a unstable equilibrium point for µ ≥ µ1.

The matrix of the linear approximation of system (13) around the point P2(µ) is

J =

(

r − f ′(x2(µ))y2(µ) −f (x2(µ))
af(x2(µ))y2(µ) 0

)

.

Since Tr(J) > 0 and detJ < 0, P2(µ) is a saddle point. So the theorem is proved.

Although we do not pretend here to give a complete description of the phase portrait of
system (13), we notice that the coexistence of a limit cycle and a saddle point implies that
the positive quadrant is separated in two invariant regions. In one of them (the coexistence
region) the trajectories are bounded and in the other one, all the trajectories tend to infinity.
Indeed there are three types of coexistence.
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(i) A stable limit cycle. This occurs for n = 2, µ > µ1 and b > 0.

(ii) A stable ce equilibrium point. The conditions are n = 2, µ ≤ µ1 and b > 0.

(iii) An unstable limit cycle. This happens for n = 1, 2 when µ < µ1.

If n = 2 then b must be negative. The corresponding phase portraits are showed in
Figure 3. Notice that in the presence of the prey defense mechanism (case (3) above), only
a some sort of weak coexistence is possible, because the limit cycle is unstable and small
perturbations can lead to the predator extinction. In fact the coexistence is only feasible
inside the region bounded by the limit cycle. So it can be conjectured that global coexistence
is no possible for a predator–prey model as (3) when the prey grows exponentially and
presents a defense mechanism.

Appendix: The Poincaré compactification Let X = (P,Q) be a quadratic vector field.
The Poincaré compactified vector field p(X) corresponding to X is a vector field induced
in S

2 as follows (see for instance [4] and [1]).

Let S
2 = {y = (y1, y2, y3) ∈ R

3 : y2
1 +y2

2 +y2
3 = 1} (called the Poincaré sphere) and TyS

2

be the tangent space to S
2 at point y. Consider the central projections f+ : T(0,0,1)S

2 −→
S

2
+ = {y ∈ S

2 : y3 > 0} and f− : T(0,0,1)S
2 −→ S

2
−

= {y ∈ S
2 : y3 < 0}. These maps

define two copies of X , one in the northern hemisphere and the other in the southern
hemisphere. Denote by X ′ the vector fields Df+ ◦ X and Df− ◦ X in S

2 except on its
equator S

1 = {y ∈ S
2 : y3 = 0}. Obviously S

1 is identified to the infinity of R
2. In order

to extend X ′ to an analytic vector field in S
2 (including S

1) it is necessary that X satisfies
suitable hypotheses. For the quadratic vector fields the Poincaré compactification p(X) is
the only analytic extension of y3X

′ to S
2.

For the flow of the compactified vector field p(X), the equator S
1 is invariant. On S

2\S1

there are two symmetric copies of X , and knowing the behaviour of p(X) around S
1, we

know the behaviour of X near infinity. The projection of the closed northern hemisphere
of S

2 in y3 = 0 under (y1, y2, y3) 7−→ (y1, y2) is called the Poincaré disc. Due to these two
symmetric copies of X on S

2, it follows that the infinite singular points (i.e. the singular
points on S

1) appear in pairs of diametrally opposite points.

As S
2 is a differentiable manifold, for computing the expression of p(X), we can consider

the six local charts Ui = {y ∈ S
2 : yi > 0}, and Vi = {y ∈ S

2 : yi < 0} where i = 1, 2, 3, and
the diffeomorphisms Fi : Ui −→ R

2 and Gi : Vi −→ R
2 defined as the inverses of the central

projections from the tangent planes at the points (1, 0, 0), (−1, 0, 0), (0, 1, 0), (0,−1, 0),
(0, 0, 1) and (0, 0,−1), respectively. If we denote by z = (z1, z2) the value of Fi(y) or Gi(y)
for any i = 1, 2, 3, then z represents different things according to the local charts under
consideration. Some straightforward calculations give for p(X) the following expressions:

z2
2∆(z)

[

Q

(

1

z2
,
z1

z2

)

− z1P

(

1

z2
,
z1

z2

)

, −z2P

(

1

z2
,
z1

z2

)]

in U1,

z2
2∆(z)

[

P

(

z1

z2
,

1

z2

)

− z1Q

(

z1

z2
,

1

z2

)

, −z2Q

(

z1

z2
,

1

z2

)]

in U2,

∆(z)[P (z1, z2), Q(z1, z2)] in U3,

where ∆(z) = (z2
1 + z2

2 + 1)−
1

2 . The expression for Vi is the same as that for Ui except for
the multiplicative factor −1. In these coordinates for i = 1, 2, z2 = 0 always denotes the
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Figure 3: The phase portrait of system (13), for (a) n = 1, µ < µ1, or n = 2, −2 < b <
−1, µ < µ1; (b) n = 2, µ < µ1, −1 ≤ b < 0; (c) n = 2, µ > µ1, b > 0.
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points of S
1. In what follows we omit the factor ∆(z) by rescaling the vector field p(X).

Thus we obtain a polynomial vector field of degree at most 3 in each local chart.

Since the unique singular point at infinity which cannot be contained into the charts
U1 ∪ V1 are the origins (0, 0) of U2 and V2, when we study the infinity singular points on
the charts U2 ∪ V2, we only consider if the (0, 0) of these charts are or not singular points.

A singular point q of p(X) is called an infinite (respectively finite) singular point if
q ∈ S

1 (respectively q ∈ S
2 \ S

1).

We want to study the local phase portrait at infinite singular points. For this we choose
an infinite singular point (z1, 0) and start by looking at the expression of the linear part
of the field p(X). For i = 0, 1, 2 we denote by Pi and Qi the homogeneous polynomials of
degree i of P and Q, respectively. Then, (z1, 0) ∈ S

1 ∩ (U1 ∪V1) is an infinite singular point
of p(X) if and only if

F (1, z1) = Q2(1, z1) − z1P2(1, z1) = 0.

Similarly (z1, 0) ∈ S
1 ∩ (U2 ∪ V2) is an infinite singular point of p(X) if and only if

G(z1, 1) = P2(z1, 1) − z1Q2(z1, 1) = 0.

Note that these two polynomials F (1, z1) and G(z1, 1) in one variable can be unified to a
unique homogeneous polynomial in two variables, namely F (x, y) = xQ2(x, y)−yP2(x, y) =
−G(x, y).

The Jacobian matrix of the vector field p(X) at an infinite singular point (z1, 0) is

(

F ′(1, z1) Q1(1, z1) − z1P1(1, z1)
0 −P2(1, z1)

)

,

or
(

G′(z1, 1) P1(z1, 1) − z1Q1(z1, 1)
0 −Q2(z1, 1)

)

,

if (z1, 0) belongs to U1 or U2, respectively.
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