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Abstract. We are interested in some biological phenomena which are evolutional ran-
dom complex systems. Simplest cases are expressed in the form of stochastic processes
X(t) that are functionals of white noise. In more general cases those phenomena in
question are viewed as random fields X(C) depending on a manifold C running through
a space-time Euclidean space R

n. We may assume that C is an (n − 1)-dimensional
smooth ovaloid so that variational calculus can be applied smoothly.

Our approach starts with the step of reduction of the complex random systems.
This means that we try to find a system of idealized elemental random variables (abb.
i.e.r.v.’s) that has the same information as the given random system, in addition, in
a causal manner. Once the system is expressed as functionals of the i.e.r.v.’s, we
are ready to analyze them by appealing to the white noise analysis which has been
extensively developed in recent years. That is the step of the analysis. Having
established the analysis, namely after the systems are well investigated, we can finally
come to the step of applications.

The system of i.e.r.v.’s. is the so-called the innovation of the random evolutional
system, for either stochastic processes or random fields.

The innovation, if it exists, appears in the stochastic differential equations for
stochastic processes X(t) and in the variational equations for random fields X(C).
We now assume that i.e.r.v. is a (Gaussian) white noise. The variational equation is
a generalization, in a sense, of a stochastic differential equation. In addition to the
usual technique for ordinary stochastic differential equations, we need new method of
calculus for which white noise analysis can be a powerful tool. Generalized white noise
functionals and creation and annihilation operators are efficiently used. Applications
to image processing give us interesting questions, in particular, in medical images.
More examples illustrate our idea.

1 Introduction We are interested in random complex systems which are developing as
space-time parameter goes by. Many biological phenomena that we are interested in are
viewed as such systems.

In order to investigate random complex shystems, it is proposed to start with the step
of Reduction. It means that we should form a system of independent and atomic random
variables (they may be infinitesimal) that has the same information as the given system.
In addition, causality should hold in the sense that will be explained later. We call such a
system idealized elemental random variables abb. i.e.r.v.’s.

For instance, if the given system is a stochastic process X(t) or random field X(C) pa-
rameterized by a manifold C, then the i.e.r.v. is the innovation. For many important cases,

2000 Mathematics Subject Classification. 60H40.

Key words and phrases. Functionals of white noise, evolutionary random systems, random fields, bio-

logical phenomena, reduction, innovation.



124 T. HIDA

the innovation is taken to be a white noise, the time derivative Ḃ(t) of a Brownian motion
B(t) or Poisson noise Ṗ (t), that of a Poisson process P (t), or their linear combination.

Having been obtained the innovation, the given random system should be expressed
as a function of those independent random varaibles, also in a causal manner. In reality,
we shall introduce a class of generalized functionals of white noise and those of Poisson
noise. Significance is that to each Ḃ(t) and to Ṗ (t) the definite identity can be given,
although they are infinitesimal random vaiables. Then, they are taken to be the variables
of functions, indeed functionals, which are mathematical description of the given random
complex shystem. These can be done rigorously in line with white noise analysis.

We should note that in order to carry on the analysis of white noise functionals, in
fact generalized functionals, the infinite dimensional rotation group plays dominant roles.
Also, if we come to the Poisson noise functionals, the infinite symmetric group will do
similar roles. In additon, two groups, putting together, can describe a duality between two
noises; Gaussian and Poissonian. The Lie algebra associated with the group involves partial
differential operators, which are basic tools of the analysis. These topis are important,
however we have to skip them in this report, to our regret.

Although further results cannot be included in this report, the main direction of those
approaches can be seen in what follows.

2 Generalized random variables {Ḃ(t)} We are in a position of Reduction, so that
we now consider a system of idealized elemental random variables as the innovation of a
stochastic process or a random field. Important and natural cases where we often meet is,
intuitively speaking, a time derivative of an additive process with stationary increments.
Thus we may think of the derivative of a Lévy process which is an independent sum of
Brownian motion and a compound Poisson process.

We shall mainly be concerned with Gaussian part, i.e. Brownian motion up to constant
factor. The time derivative of a Brownian notion B(t) is called a white noise and is denoted
by Ḃ(t). If necessary, we may say Gaussian white noise to discriminate from other noises.
Usefulness of Ḃ(t) has been recognized in many ways, although it has had only a formal
significance for many years. In fact, such an understanding was efficient in a sense to have
ideas. Then, it became to be viewed as a stationary generalized Gaussian process with
mean 0 and covariance function is a delta function. The generalized stochastic process Ḃ(t)
has a correct meaning being evaluated at a test function ξ in such a way that

Ḃ(ξ) = −
∫

ξ′(t)B(t)dt,

which is Gaussian in distribution N(0, ‖ξ‖2). The process has the characteristic functional
C(ξ) given by

C(ξ) = exp[−1

2
‖ξ‖2], ξ ∈ E,

where E is the test function space involving very smooth functions. The C(ξ) determines
the probability distribution µ of Ḃ on the space E∗ of generalized functions over R1.

Thus, a rigorous definition of white noise was given some time ago. Unfortunately, we
are given only a random variable after the smearing of Ḃ(t): we miss the time variable t.
On the other hand, the idealized random variable Ḃ(t) is used as an input signal at instant t
when an input-output model is considered in applications like the cases where identification
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of some biological organs or communication channels are discussed. Actually, there has
been required a sharp time expression.

We are, therefore, requested to give each Ḃ(t) a definite position in a certain collection
of random variables, more precisely in a set of generalized random variables. This has been

done by introducing a reasonably larger space H
(−1)
1 which is an extension of the ordinary

space H1 spanned by linear functions of a Brownian motion. An identification, as it were,

has been given to each Ḃ(t) as a member of H
(−1)
1 . Once the collection of {Ḃ(t), t ∈ R1}

is given, we may proceed to form (nonlinear) functions of those variables. The class of
those functions, indeed functionals of the Ḃ(t), t ∈ R1, can not be constructed in a simple
manner, because the variables are random and even idealized generalized variables. Precise
discussion on these facts can be seen in [?] in particular, in Chapt. 2., however we can
explain the main idea by taking an example below. Such an observation may be helpful
when applications like in biology or in communication theory will be discussed.

3 Generalized functionals. The theory From theoretical side we provide mathemat-
ical tools.

1) The collection {Ḃ(t), t ∈ R}, is a system of idealized elemental random variables

(i.e.r.v.).

2) Linear functionals.

As has been briefly mentioned above, we start with the Hilbert space H1 involving linear
functions of B(t) with finite variance. It is well-known that H1 is a collection of stochastic
integrals of the form

Ḃ(f) =

∫
f(u)dB(u),

which is Gaussian in distribtion: N(0, ‖f‖2), where ‖ · ‖ is the L2(R1)-norm. Further, we
konw that the mapping, in the above notations,

f → Ḃ(f)

defines an isomorphism:

H1
∼= L2(R1).

Both spaces should have extensions keeping the isomorphism. It is noted that Ḃ(t) may
be viewed as Ḃ(δt), where δt is the delta function supported by {t}. Hence, we are led to
introduce a space K(−1)(R1), the Sobolev space of order -1 over the space R1 in which the

delta function is involved. With this idea we can define a space H
(−1)
1 such that

H
(−1)
1

∼= K(−1)(R1),

and that Ḃ(t) ∈ H
(−1)
1 .

The space H
(−1)
1 is not only the space of linear functionals of white noise, but it is the

space where all the variables of nonlinear white noise functionals are involved. Namely, it
is the basic space of our analysis. Now we can state

Theorem 1. The collection {Ḃ(t), t ∈ R1} is not a base, but it is total in the sense that

all finite linear combinations of the memebers span the entire space H
(−1)
1 .
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Proof. The system { eitλ√
1+|λ|2

} is total in L2(R1). This implies the assertion.

So far as the space H
(−1)
1 is concerned, it is not suitable to consider the dimension, but

the notion of a total set is more suitable.

Then, nonlinear functionals of white noise are going to be introduced. Let us begin with
the most simplest case.

3) Quadratic polinomials in Ḃ(t) and quadratic functionals of Ḃ(t) are introduced. In
the classical stochastic calculus (e.g. for stochastic differential equations) it is permitted to
have the equality

(dB(t))2 = dt.

If we come to microscopic world, the differece must be taken into account, since it is still
random although it is infinitesimal. We therefore apply renormalization. Namely, first we

apply orthogonalization to the trivial space of constants and to the space H
(−1)
1 . In fact,

we note the approximating equality E[(dB(t))2] = dt, then we have

(dB(t))2 − dt,

Renormalization (actually magnification in this case) as much as 1
(dt)2 to have

: Ḃ(t)2 :=
(dB(t))2

(dt)2
− 1

dt
.

Note that each term in the right-hand side is neither ordinary nor generalized functions
of white noise. What we claim is that we first approximate both terms by ordinary functions,
namely (∆B

∆ )2 and by 1
∆ then let them go to their limits. The limit should be taken not

in the ordinary topology, but in the topology that is to be introduced to the new space

H
(−2)
2 . In this case, only the difference of two terms can approach to the limit, but not

independently, of course. Again, let us note that the difference is not in the ordinary sense,
but it does have meanings only in the approximation stage.

Having been suggested by the case 2) and by the naive interpretations on generalized
Brownian (indeed, white noise) functionals in [3], we start from the isomorphism

H2
∼= L̂2(R2),

where the space H2 is spanned by quadratic functionals of white nopise which are orthogonal
to the spaces H1 and to H0 that is involving only constants. As in the case 2), both sides
are extended to wider spaces with weaker topology such that

H
(−2)
2

∼= K̂(−3/2)(R2),

where K̂(−3/2)(R2) is the symmetric Sobolev space of degree -3/2 over R2 and where the
constant

√
2 is ignored in the above isomorphism.

Remark. For an information, a definition of Sobolev spaces is reviewed. A Sobolev space
Km(Rn) of degree m over Rn is defined as

Km(Rn) = {f ; f̂(1 + |λ|2)m/2 ∈ L2(Rn)},
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where m can be any number, but in our case m is taken to be positive or negative half-
integer. In our case, (n + 1)/2 is the magic number associated to Rn. The notation ·̂ used
there means ”symmetric”.

It is easily checked that the symmetrization of δt⊗ δs which is a member of K̂(−3/2)(R2)
and is associated to : Ḃ(t)Ḃ(s) : the renormalized product of Ḃ(t) and Ḃ(s), t and s may
or may not be equal.

Interesting example, according to Volterra and Lévy, is a normal functionals expressed
in ther form

∫
f(t) : Ḃ(t)2 : dt.

Functionals of this form play very important roles in the harmonic analysis of white
noise functionals, and also in applications.

4) More general functionals.

Now generalizations of H
(1)
1 and of H

(−2)
1 to the space H

(−n)
n is almost straightforward.

We can take the symmetric Soblolev space of order −(n + 1)/2 over Rn is taken to define

the space H
(−n)
n :

H(−n)
n

∼= K̂(−(n+1)/2)(Rn),

where the constant
√

n! is ignored.

Finally, we define the space (L2)+ of test white noise functionals:

(L2)+ = ⊕∞
0 cnH(−n)

n ,

where H
(0)
0 = {1} and where the cn is an increasing sequence of positive numbers. The

choice of the cn depends on the place where the analysis in question is done.

The dual space (L2)− of (L2)+ is expressed as a sum

(L2)− = ⊕∞
0 c−1

n H(
n − n),

and it is called the space of generalized white noise functionals.

Theorem 2 The collection of the Wick products (the Hermite polynomials in Ḃ(t)’s)
{: Πn

j=1Ḃ(tj) :; tj ∈ Ra, n ≥ 0} is total in (L2)−, where Ra is the set of rational number.

The space (L2)− is therefore separable.

Proof. As in the proof of Theorem 1, the proof can be reduced to the totality of the
system {Πn

1 eitjλj} in L2(Rn).

5) For the innovation approach to random fields, white noise with multi-dimensional
parameter plays essential roles. It is often denoted by W (t) and appears in an explicit
form, where t may run through higher dimensional Euclidean space.

Note. We shall not state explicitly, but similar theory can be proceeded in the case
where the noise is Poisson.
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4 Calculus on (L2)− Having introduced a space of generalized white noise functionals,
we are ready to discuss analysis of those functionals.

Since Ḃ(t) is one of the variables, we can define a partial differential operator ∂t:

∂t =
∂

∂Ḃ(t)
.

Its domain is rich including (L2)+.

The operator ∂t is also called an annihilation operator. We can further define its adjoint
operator, denoted by ∂∗

t , by using the Gel’fand triple introduced in the last section. It is
called a creation operator. The domain is wide enough in (L2)−.

Theorem 3 The creation operator defines a stochastic integral in such a way that for
ϕ ∈ (L2)− ∫

∂∗
t ϕdt,

where the integrand is not necessarily non-anticipating.

Actual computations of the commutation relations of operators are listed in the following
theorem.

Theorem 4

1) The following commutation relations hold

[∂t, ∂s] = [∂∗
t , ∂∗

s ] = 0.

[∂s, ∂
∗
t ] = δ(t − s)1.

2) Multiplication by Ḃ(t) is expressed by

∂t + ∂∗
t .

3) The generator rt,s of the rotation acting on (Ḃ(t), Ḃ(s))-plane is expressed in the
form

rt,s = ∂∗
t ∂s − ∂∗

s∂t

and the commutation relations are as follows

[rs,t, rt,u] = δ(0)rs,u, s 6= u,

[rs,t, ∂u] = δ(u − t)∂s − δ(u − s)∂t,

[rs,t, ∂
∗
u] = δ(u − t)∂∗

s − δ(u − s)∂∗
t ,

For further calculus, like harmonic analysis, can be proceeded by using operators arising
from the collections of ∂t and of the ∂∗

t . We shall omit those operators since there will be,
at present, no connections with the biocomputations.

The analysis of Poisson noise functionals can be discussed in a similar manner to the
Gaussian case, however it is noted that there are many dissimilarities between them, and
they are quite significant. Even we can see dualities between two noises. But at present
stage, we do not find good connections in applications, so they are omitted here.
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5 Generalization to random fields Multi-dimensional parameter case can be dealt
with in a similar manner with some modifications.

1) The Rd-parameter stochastic processes (random fields).

The most important process is again a Brownian motion, called Lévy’s Brownian motion
B(a), a ∈ Rd. We may tacitly understand that a is the space-time variable, but space and
time will not necessarily be discriminated.

A Brownian motion B(a) is defined by

1) It is a Gaussian system,

2) B(b) − B(a) is Gaussian N(0, |b − a|),

3) B(o) = 0, o being the origin of Rd.

To fix the idea, we now consider the case d = 2.

Set a = (t, θ), and let {ϕn(θ), n = 0, 1, 2, · · ·} be a complete orthonormal base of L2(S1).
Then, X(a) = X(r, θ) has Fourier series expansion:

X(t, θ) =

∞∑
1

Xn(t)ϕn(θ),

where

Xn(t) =

∫ 2π

0

X(t, θ)ϕn(θ)dθ.

We know how to obtain the innovations which are family {Ḃn(t)} of white noises. There
are, then, the canonical representations of Xn(t) in terms of the white noises Ḃn(t), n ≥ 1 :

Xn(t) =

∫ t

0

Fn(t, u)Ḃ(u)du.

By taking all of the Ḃn, we can proceed the analysis. Therefore, if a random fields are
functionals of Brownian motion or white noises, we can discuss analysis of them in line with
innovation approach, namely within the framework of white noise analysis that has been
established so far. And, of course a similar and somewhat complicated analysis follows.
The idea is, however, just the same.

In short, a functional of B(a), a ∈ R2, |a| ≤ t, can be expressed as a functional of
Xn(s), |s| ≤ t, n ≥ 1. In this sense, the causality holds. Namely, the information obtained
by X(a), |a| ≤ t, is exactly equal to that obtained by the innovation Bn(s), s ≤ t, n ≥ 1.
This can be proved by using the fact that the representation of Xn(t) is canonical in terms
of the Ḃn(t) for every n.

6 Applications There are various directions of application. We shall restrict our atten-
tion to biological fields. We shall list some of fruitful directions of applications below.

i) Partial differential operator ∂t = ∂
∂Ḃ(t)

and its adjoint operator ∂∗
t have been defined,

and they are used efficiently in the calculus. If the input signal is expressed in terms of
white noise, the instanteneous change of the input at instant t may be expressed by ∂t.
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ii) With the help of the creation operators ∂∗
t , the stochastic integral can be defined.

The integral is more general and even simpler than the classical stochastic integral.

iii) Stochastic differential equations can be dealt with in a similar manner to the non
random case in the world of white noise.

iv) Apply to physics and engineering ; like representation of the kinetic energy of a
Brownian movement (e.g. Feynman’s path integral), generalized white noise functionals
are involved and we can proceed calculus.

v) Applications to random fields. See [11].

Some examples are now in order.

1. Method of identification of a black box that admits a white noise input.

A good example can be seen in the Naka’s approach to a method of identification of
function of retina (of a catfish). See [12] and [13]. In the experimental laboratory, the input
is taken to be a white noise, so that the output X(t) is a functional of white noise. The
X(t) is the observed data so that it is to be expressed in the form

X(t) = f(Ḃ(s), s ≤ t; t).

It can be a causal representation, so X(t) is a function only of Ḃ(s), s ≤ t. We may assume
that the system is stationary in t; that is, the passage of time, say t → t + h, implies the
shift of the input Ḃ(t) → Ḃ(t + h); as a result we have the shift from X(t) → X(t + h).
Therefore, we may write

X(t) = f(Ḃ(s), s ≤ t).

The unitary group {Ut, t ∈ R1} acts in the form

U(t)f(Ḃ(s), s ∈ R1) = f(Ḃ(s + t), s ∈ R1).

First we have a quick review of the classical method of the identification, which is the
determination of f .

We know the spectrum of the U(t) is of countably Lebesgue type, more precisely, for the
linear (Gaussian) component of X(t) has single Lebesgue spectrum, and for the nonlinear
component (i.e. homogeneous chaos) of any degree n ≥ 2 has Lebesgue spectrum with
countably many multiplicity. It is known that X(t) is a sum of the form

X(t) =

∞∑
n=1

Xn(t),

where Xn(t) is in Hn, i.e. a homogeneous chaos of degree n. For n = 1 it is a Gaussian
process, and it is actually a cyclic subspace, namely there exists a single random variable,
say X1 and UsX1 = X(s), s ∈ R1 spans the space H1. To determine the structure of X1(t)
we need to know the canonical representation expressed in the form

X1(t) = UtX1 =

∫ t

−∞

F1(t − u)Ḃ(u)du,

where Ḃ(u) is the innovation. The identification problem now turns out to the determination
of the kernel F1. It is a Volterra kernel that vanishes on the negative half line.
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Wiener’s idea (see [18]) is that we provide a channel the kernel (Volterra kernel) of which
is known, say G(s − u) such that it admits white noise input to have Y (t). Then, we have
the correlation r(h) between X1(t) and Y (t + h). By assumption we have a representation
of Y (s) as follows:

Y (s) =

∫ s

−∞

G(s − u)Ḃ(u)du.

Assume that the input to the two channels is the same Ḃ. Let s vary and compute the
correlation to have

r(h) = E(X(t)Y (t + h)) =

∫
F (t − u)G(t + h − u)du.

Let F̂ (λ) and Ĝ(λ) be the Fourier transforms of F and G, respectively. Then, we have

r(h) = (2π)

∫
eihλF̂ (λ)Ĝ(λ)dλ.

We may assume that the known channel is constructed so that Ĝ(λ) never vanishes. Using
the fact that the system {eihλ, h ∈ R1} is total in L2(R1), we can conclude that F is
uniquely determined by the information r(h) just obtained.

Note The known channel that corresponds to the kernel G can actually constructed as an
LCR circuit. The picture of this circuit can be seen in [18].

We then come to the determination of Xn(t) for n ≥ 2. Again, use the unitary group Ut.
It is known that Xn(t) lives in a space Hn of homogeneous chaos of degree n (n-ple Wiener
integrals), where the Ut has the Lebesgue spectrum with countably many multiplicity. This
means that Hn has direct sum decomposition into countably many cyclic subspaces which
are mutually orthogonal and are isomorphic to H1. Hence, in order to identify the com-
ponent Xn(t), we have to prepare infinitely many known LCR circuits and we compute
correlations. Then, we must repeat the above procedure infinitely many times at least
theoretical level to identify the system.

In the concrete example like Naka’s approch (see [13])to the identification of the function
of letina, he can choose finitely many significant cyclic subspaces chosen according to the
biologist’s experience and had enough information for the identification.

We can, in what follows, propose a method of using the partial differential operators
∂t, t ∈ R1. The steps are now in order.

(1) The expressions of X(t) and Xn(t) are the same as before.

(2) In terms of the Wick products : Ḃ(t1)Ḃ(t2) · · · Ḃ(tn) :, the Xn(t) can be written as

Xn(t) =

∫ t ∫ t

· · ·
∫ t

F (t − u1, t − u2, · · · , t − un) : Ḃ(u1)Ḃ(u2) · · · Ḃ(un) : dun,

which is written as

Xn(t) = n!

∫ t ∫ u1

· · ·
∫ un−1

F (t − u1, t − u2, · · · , t − un) : Ḃ(u1)Ḃ(u2) · · · Ḃ(un) : dun.



132 T. HIDA

Remind that ∂t is an annihilation operator. Then, we have

Theorem 5 The kernel Fn is obtained by

E(∂t1∂t2 · · · ∂tn
X(t)) = n!F (t − t1, t − t2, · · · , t − tn),

where t ≥ t1 ≥ t2 ≥ · · · ≥ tn.
Proof. By the n-th order partial differential operator the components Xk(t), k < n

disappear. As for the components Xj(t), j > n, vanishes by the expectation after compound
differential operator is applied. Thus remains only Fn to conclude the assertion of the
theorem.

By this theorem the kernels can be obtained theoretically.

There remain several questions. First, one may ask if it is possible to change the input
a little instantaneously to realize the derivative. Continuously many points (t1, t2, · · · , tn)
can not be chosen, but we wonder how many n-tupples should be chosen in oreder to have
reasonable approximation of the kernel Fn. May we assume that Fn’s are smooth enlough
? And so forth.

2. Stochastic differential equations for stochastic processes.

Example 1. Bilinear fluctuation.

d

dt
X(t) = aX(t) + ∂∗

t (bX(t) + b′).

The solution X(t) is given by the kernels. The n-th kernel is

Fn(u1, · · · , un) =
1

n!
bn−1b′e−a minj uj χ(−∞,0]n(u1, · · · , un).

Example 2. Modified Langevin equation, which can be solved easily.

d

dt
= −λX(t) + a : Ḃ(t)2 :

Example 3. Consider the equation

∂tϕ(Ḃ) = a∂∗
t ϕ(Ḃ), t ≥ 0,

with a > 0 and
< 1, ϕ >= 1.

Then, the solution is a Gauss kernel

ϕc(Ḃ) = N exp[c

∫
: Ḃ(s)2 : ds],

where c = a
2a+1 and N is the renormalizing constant.

Incidentally, the solution is an eigenfunctional of the Lévy Laplacian.

3. Stochastic variational equations for random fields.
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Directions to random fields and applications to biology would be very fruitful area and
attractive for us.

Historically speaking, we are influenced by the monographs [16], [17] and [9] from math-
ematical side and have come to variational calculus. Then, we have gradually come to
interesting problems arising from natural phenomena expressed as random fields which are
evolutional. We have discussed the random fields such as X(a), a ∈ Rd, and as X(C) pa-
rameterized by a smooth manifold, in fact ovaloid, C that runs through a multi-dimensional
Euclidean space (see papers in [1] and [5]).

At present, it can be said that we have always discussed in line with reduction; namely,
by using the innovations of those fields. The innovation theory is somewhat complicated
in these cases for random fields, but can be discussed in the same spirit as in the case of a
stochastic process. We will, therefore, not go into details regarding the innovation, but we
should like to mention two facts; one is the identification problem of a black box where the
parameter is multi-dimensional. Lévy’s Brownian motion B(a) is most important and we
can introduce white noise that is derived from the B(s). Functionals of a Brownian motion
can be dealt with after they are expressed as functionals of white noise.

Such a whitening procedure is much significamt in the case where functionals of Poisson
noise are discussed.

The other fact is that the innovation of X(C) is quite powerful for the analysis when we
discuss the fields determined by stochastic variational equations. There classical theory of
(non-random) variational calculus is applicable efficiently. To shift the theory to the random
fields we have to determine a generalization of an additive process with R1-parameter. As
was seen in the step of whitening of Lévy’s Brownian motion, the innovation can not be
given by simple differential, but by complicated computations.

While we were trying to find a suitable method of analysis of random fields X(C),
we have come across a example that is related to generic images in geometry (see e.g.
[11]). They are represented by image plus fluctuation, where the fluctuation is taken to be
a genralization of the Lévy noise with higher dimensional parameter. We need profound
considerations to clarify the Lévy-Itô decomposition of a Lévy process in higher dimensional
parameter case.

We have recently recognized an interesting approach to a medical image processing in [2]
where the idea by Mumford (cf [11]) is seen. Having been stimulated by those literatures,
we have made some contribution with the hope that the results would make contribution
to BIOCOMP.
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