
Scientiae Mathematicae Japonicae Online, e-2008, 221–231 221
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Abstract. The mathematical and computer modelling of functioning regulatory

mechanisms (regulatorika) of cellular communities is actual at solving the many bio-
logical problems which are connected with the quantitative evaluation of an organism’s
cells behaviour, united by performing some general functions. In this work we consider
the mathematical modelling method for the regulatorika of cellular communities based
on the functional-differential equations of a function unit of cellular communities in
multicellular organisms. Results, obtained applying this approach to the quantitative
analysis of CD4 lymphocytes number regulatorika in HIV/AIDS, as well as thyroid
gland follicles cellular communities in malignant neoplasms are given.

1 Introduction The quantitative study of an organism’s cellular community regulatorika
is conducted, basically, in three directions. In the first direction the biosystem is considered
as a system of uniform cell groups, possessing existence feature in some discrete conditions
and researchers have interest in the quantitative correlations of cells in different uniform
groups [1, 2, 3, 4]. In this works, results, obtained in the field of population’s mathematical
theories, are widely used. In the second and the third directions, attempts are made to
take into account of the intracellular processes in modelling the regulatorika of cellular
communities [5, 6, 7]. Herewith, in the models of the second direction the main attention
is devoted to regulatory mechanisms of cellular functions, while in the models of the third
direction the cell’s space-temporary organization on the considered area of multicellular
organism is taken into account.

In the first direction, in the models studying the regulatorika of cellular communities for
rapidly regenerating cellular systems, the following three groups of uniform cells are usually
taken into account [8, 9]:

• the proliferative pool is the set of cells , which will inevitably divide by mitosis, if at
the division moment they will be in the given cellular system;

• the fixed pool is the set of cells, which do not enter in mitosis, being in same conditions,
as the cells from the first group;

• the ballot pool is the set of cells , which go either in the first group with probability
p, or in the second group with probability 1 − p.

The main parameter of the given modelling variant is the probability of daughter cells
entering in the division cycle. V.G. Tyajelova conducts cell population partition on dividing,
ripening and functioning pools in proliferative cell systems [10, 11]. The given direction
models are suitable for the analysis of quantitative correlations between different cells in
the considered organ (or process). In modelling infectious processes in the organism the
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number of normal and infected cells and some features of their habitat are often taken into
account. Let us consider character equation system of these models, developed in respect
to the virus disease [12]:

dX

dt
= λ − dX − βXV ;

dY

dt
= βXV − aY ; (1)

dV

dt
= kY − uV ,

where X is the number of non-infected cells; Y is the number of infected cells; V is the
number of free virus particles; λ, d, β, a, k, u are non-negative constants. In some models
in this direction the temporal factors in mutual relations between cells and virus are taken
into consideration [13]:

dT (t)

dt
= s − µT T (t) + rT (t)

(

1 −
T (t) + I(t)

Tmax

)

− k1T (t)V (t);

dI(t)

dt
= k

′

1T (t − τ)V (t − τ) − µII(t); (2)

dV (t)

dt
= Nµb − k1T (t)V (t) − µV V (t),

where T (t) represents concentration of healthy CD4+ T-cells at time t; I(t) represents the
concentration of infected CD4+ T-cells, and V (t) the concentrations of free HIV at time
t; s is the source of CD4+ T-cells from precursors; µT is the natural death rate of CD4+

T-cells; r is CD4+ T-cells growth rate (thus, r > µT in general); Tmax is CD4+ T-cells
carrying capacity; k1 represents the rate of infection of T-cells with free virus; k

′

1 is the
rate at which infected cells become actively infected; µI is a blanket death term for infected
cells; N represents source for free virus; µb is the lytic death rate for infected cells; µV is
the lass rate natural of virus.

In the second direction of model studying cellular communities regulatorika the main
attention is given to mathematical modelling separate cellular functions regulatorika, re-
alizing the process in consideration. M. Eigen and P. Shuster [5], V.A. Ratner and other
[6] simulated cell’s self-reproducing function by means of “information box” notions. Con-
centration change in macro-molecules and proteins communities in ”information box” is
quantitatively described by the ordinary differential equation system. Mathematical models
of cellular functions regulatorika can be constructed by quantitative description regulation
mechanisms for corresponding molecular-genetic systems [14, 15] with taking into account
temporal relations in intracellular processes regulation loops [16, 17]. In the third direction
of model investigating cellular communities regulatorika it is observed attempt to imitate
cells spatial organizations with the account of intracellular processes [14, 15, 16].

In this work we consider a method for mathematical modelling cellular communities
regulatorika based on the notion of function units of cellular communities for multicellular
organisms (section 2), its method application to analyzing CD4 lymphocytes count dynam-
ics in an immune system to HIV/AIDS (sections 3, 4 and 5) and to the quantitative study
of thyroid gland follicles cellular communities regulatorika at the norm and anomalies (sec-
tion 6). In the section 7 the problems on controlling cellular communities regulatorika at
anomalies are considered.
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2 The method of mathematical modelling cellular community regulatorika at
anomalies The notion of function units of cellular communities which is introduced in
the works [16, 17, 18] allows to realize the mathematical and computer modelling cellular
community regulatorika with taking into account the main uniform groups of multicellular
organism cells and temporal relations in its regulation system. According to this notion,
the cells of multicellular organism in the course of performing the general functions are
united in structural-functional formation, consisting of character cells groups, fulfilling the
following functions: dividing - M , growing - B1, specialization - D, fulfilling the specific
functions - S1, S2, ..., Sn and aging - B2 (Figure 1), i.e. united in Cellular Communities
Functional Units (CCFU), its spatial and functional formation forms organs and tissues of
multicellular organism.

Figure 1: Scheme of cellular transitions in CCFU.

Let X1(t) be a value, characterizing dividing cells number; X2(t) - growing cells; X3(t)
- differentiating cells; X4(t), X5(t), ..., Xn+3(t) (n is integer and ≥ 1) performing specific
functions and Xn+4(t) aging cells number at time t. Then, using method for constructing
equations for quantitative description of changing the cells number in CCFU concrete groups
[16, 17, 18], we can offer (under certain simplifications) the following system of functional-
differential equations for regulatorika of cellular communities number

dX1(t)

dt
= a1





n+3
∏

k=1(k 6=2,3)

Xk(t − 1)



 e
−

n+4P
j=1

δjXj(t−1)

+ b1X2(t − 1) − a2X1(t);
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dX2(t)

dt
= a2X1(t − 1) + b2X3(t − 1) − (b1 + a3)X2(t);

dX3(t)

dt
= a3X2(t − 1) + b3Xn+4(t − 1) −

(

b2 +
n+3
∑

k=4

ak

)

X3(t); (3)

dXk(t)

dt
= akX3(t − 1) − an+4Xk(t);

k = 4, 5, ..., n + 3;

dXn+4(t)

dt
= an+4

n+3
∑

k=4

Xk(t − 1) − (b3 + c)Xn+4(t),

where a1 is rate constant of cells division in M ; ai (i = 2, ..., n+4) are rate constants of direct
transitions; bk (k = 1, 2, 3) are rate constants of inverse transitions; δj (j = 1, 2, ..., n + 4)
are the repression parameters of proliferative pool M ; c are the death rate constant of aged
cells.

Equations (3) form a closed system of functional-differential equations for regulatorika
of cells number of cellular communities. Unique existence theorems of continuous solutions,
as well as approximate solutions to the given equations on PC can be obtained using the
method of consequent integrating by Bellman-Cooke if we have the initial functions on the
unit length segment [17, 18, 19].

3 Equations of CD4 lymphocytes number dynamics in an immune system CD4
lymphocytes lesion in immune system underlies HIV/AIDS pathogenesis [4, 20, 21, 22]. In
the event that we use the method for mathematical modelling cellular communities regula-
torika, CD4 lymphocytes number dynamics in immune systems can be investigated based
on the functional-differential equations (3). For the simplicity we can consider proliferative
pool and other uniform groups in immune system concerning CD4 lymphocytes only. Then
(3), with taking into consideration only one specific cellular function (S), have the form

dX1(t)

dt
= a1X1(t − 1)X4(t − 1)e

−
5P

j=1

δjXj(t−1)

+ b1X2(t − 1) − a2X1(t);

dX2(t)

dt
= a2X1(t − 1) + b2X3(t − 1) − (b1 + a3)X2(t);

dX3(t)

dt
= a3X2(t − 1) + b3X5(t − 1) − (b2 + a4)X3(t); (4)

dX4(t)

dt
= a4X3(t − 1) − a5X4(t);

dX5(t)

dt
= a5X4(t − 1) − (b3 + c)X5(t),

where X1(t) is the function, expressing thymus proliferative cells number; X2(t), X3(t),
X4(t) and X5(t) are growing, differentiating, fulfilling the specific function and aging CD4
lymphocytes, accordingly; the other parameters are similar to such designations in (3).

Let us assume that the virus load influence for immune system is realized in the end
to this that immune system proliferative function is increased. As far as we have interest
in most commonly mechanisms for CD4 lymphocytes homeostasis maintenance within the
organism lifespan we suppose that in this model in B1, D, S and B2 groups the cells number
changing occurs more quickly than in the M group. For the qualitative study we assume that
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there is equilibrium nature in quantitative changing the cells in B1, D, S and B2 areas. In
this case the system (4) can be simplified up to one equation. Then characteristic dynamics
of CD4 lymphocytes number can be investigated using the following functional-differential
equation

θ

h

dX(t)

dt
= ρX2(t − 1)e−X(t−1)

− X(t), (5)

where X(t) is the function, describing thymus proliferative cells number reproducing CD4
lymphocytes; θ is the average ”lifetime” for the proliferative cells; h is the time duration,
necessary for fulfilling feedback in organism’s immune system; ρ is the virus load parameter,
expressing rate of cell division in immune system proliferative pool.

4 Characteristic solutions of equation (5) Let us consider problems of studying
characteristic solutions of equations for CD4 lymphocytes number dynamics in immune
system. We will show that

• there are continuous, unique solutions of (5) under given continuous function on initial
time segment;

• solutions are in the first quadrant of phase space if the parameter values and initial
conditions are non-negative;

• infinitely remote points are unstable;

• there are trivial and positive steady states.

In order to prove the first formulated feature for (5) we assume that on [t0,t0+1] we have
continuous initial function ϕ(t) ≥ 0. Then the system (5) on (t0+1,t0+2] has the following
form

θ

h

dX(t)

dt
= ρφ2(t)e−φ(t)

− X(t)

and its solution has the form

X(t) =
h

θ
e−

θ
h

(t−t0−1)





θ

h
ϕ(t0 + 1) + ρ

t
∫

t0+1

ϕ2(τ)e−ϕ(τ )dτ



. (6)

t ∈ (t0 + 1, t0 + 2]

This solution is continuous on (t0+1, t0+2]. Taking the computed solution as initial function
we obtain continuous solution on (t0+2, t0+3] by stated method and etc. In such manner
we can construct continuous solution of (5) at t > 0. Uniqueness is implied by accepted
constructive methods for obtaining solutions to (5). Formula (6) shows that non-negativity
of the initial function, θ, h and ρ ensures non-negativity of solutions to (5).

Note that if X(t) → ∞ then (5) has the form

θ

h

dX(t)

dt
= −X(t),

we have unstability of infinitely remote points, i.e. equation (5) solutions are bounded.
It is obvious that there is a trivial steady state for (5). Nontrivial steady state existence

(P) depends on parameter ρ value. From equation

ρSe−S = 1
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we see that if ρ ≥ e, then we have nontrivial steady state P = 1 which splits into P1 and
P2 when parameter increases, at that

0 < P1 < 1 < P2 < ∞. (7)

Results of qualitative studying solutions (5) behavior have shown that trivial steady
state and P2 are attractors with (0, P1) and (P1, ∞) basins. Stability nature for steady
states we evaluate by studying solutions (5) near their neighbourhood, entering X(t) = P
+ y(t), where P = O, P1, P2 and y(t) is small. From (5) for y(t) we have

θ

h

dy(t)

dt
= ρP (2 − P )e−Sy(t − 1) − y(t),

whence we see that trivial attractor is stable. For nontrivial steady states P1, P2 we have

θ

h

dy(t)

dt
= (2 − P )y(t − 1) − y(t).

Its characteristic equation has the form

(θλ + h)eλ + h(P − 2) = 0. (8)

Using Hayse criterion [23] we found that equation (8) roots have negative parts if

P > 1, (9)

h(P − 2) < θξ sin ξ − h cos ξ, (10)

where ξ is the root of equation ξ =-(h/θ) tan ξ (0 < ξ < π).
(7) and (9) have shown that P1 is unstable. For nontrivial attractor P2 the inequality

(9) is true and (10) defines parameters values diapason for stable stationary regime of
CD4 lymphocytes population. That fact that given diapason is not empty, follows from
positiveness of right part (10) and possible values P2 (see (7)). For instance, performing
inequality (10) is obvious for 1 < P1 < 2.

Thereby, at fulfilling (10) we have stable attractor and solutions (5) express normal be-
havior CD4 lymphocytes number dynamics. If (10) is not true then there is Hopf bifurcation
with becoming Poincaré type limit cycles around P2. It seems that small regular oscillations
of CD4 lymphocytes number can be considered as normal condition. However, quantitative
study on PC shows that under certain parameter’s values, attractor P2 transforms into
strange attractor with the appearance of irregular oscillatory solutions.

5 Modelling CD4 lymphocytes number dynamics at anomalies Anomalies in cells
number regulatorika in immune system, connected with the virus load, lead to increasing
rate constant of corresponding proliferating cells (in this instance the parameters values ρ
in (5)) and the feedback systems disturbances. For the accounting last case, we suppose
that average time for division of thymus proliferative cells is more less than time interval
required for feedback realization in organism’s immune system, i.e. θ ≪ h in (5). Then, for
analyzing CD4 lymphocytes number dynamics we can use the model systems for (5) in the
following form

X(t) = ρX2(t − 1)e−X(t−1), (11)

and its discrete analogue
Xk+1 = ρX2

ke−Xk , (12)

k = 0, 1, ...
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where Xk is the value, expressing proliferative cells number in immune system on k-th step
of organism’s vital activity.

It is necessary to note that (12) is the most suitable equation for the analyzing CD4
lymphocytes number dynamics. Its solutions can be visually evaluated using Lamerey
diagrams construction and calculating Kolmogorov entropy and Lyapunov exponent on
PC.

Results of the studying solutions (12) behavior show that there are stationary, periodic
solutions, irregular fluctuations (dynamic chaos) and effect of solutions failure to trivial
attractor - ”black hole” effect. Usually, irregular oscillations and ”black hole” are identified
as biosystems anomalous conditions [23, 24].

Origin and developments regularities of irregular oscillations and ”black hole” were inves-
tigated using (12) by the analyzing Lyapunov exponent values dynamics Lamerey diagrams
construction (under different parameter values of equations (11), (12)) on PC using the spe-
cial program ”SW-FDE-3” [25]. In the Table 1 the main features of solutions (12) behavior
are presented.

Table 1: The boundaries of main behavior regimes of solutions (12).
Value (0, e) [e, 6.7) [6.7, 11) [11, 19.6) ≥ 19.6

Solutions (12) Rest Stationary Limit cycles Irregular ”Black hole”
behavior ( α ) state (β ) ( γ ) oscillations ( δ) (µ)

Thus, consecutive increase in the virus load parameter, observing under HIV infections,
leads to consequent transition from the stationary conditions mode (β) to the regular oscil-
lations mode (γ), hereinafter to the irregular oscillations (δ) of CD4 lymphocytes number,
completing by sharp destructive reducing CD4 lymphocytes reproduction (µ).

In the field of irregular oscillations CD4 lymphocytes population number has unpre-
dictable pattern, but in the field of ”black hole” there occurs sharp destructive change.
This changes end in division failure of thymus proliferative cells, reproducing CD4 lympho-
cytes. In the given method of model studies for arising AIDS disease the ”Hayflick limit”
concept attraction is not obligatory.

6 Quantitative studying thyroid gland follicles cellular communities regula-
torika at the norm and anomalies The main function unit of thyroid gland is a follicle
[26]. Mathematical and computer modelling thyroid gland follicles cellular communities
regulatorika allows to research quantitative regularities in functioning follicular system in
the syntheses process of its main hormones and failure mechanisms in thyroid gland regu-
latorika, what lead to appearance the different types of malignant growths. Supposing that
there are two specific functions S1 and S2, connected with iodine-containing hormones for-
mation (thyroxin - T4 and triiodothyronine - T3) thyroid gland follicles cellular communities
regulatorika can be investigated using the following equations based on (3)

dX1(t)

dt
= a1

(

1,4,5
∏

k

Xk(t − 1)

)

e
−

6P
j=1

δjXj(t−1)

+ b1X2(t − 1) − a2X1(t);

dX2(t)

dt
= a2X1(t − 1) + b2X3(t − 1) − (b1 + a3)X2(t);

dX3(t)

dt
= a3X2(t − 1) + b3X6(t − 1) − (b2 + a4 + a5)X3(t); (13)
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dX4(t)

dt
= a4X3(t − 1) − a6X4(t);

dX5(t)

dt
= a5X3(t − 1) − a6X5(t);

dX6(t)

dt
= a6(X4(t − 1) + X5(t − 1)) − (b3 + c)X6(t),

where Xi(t) (i=1,...,6) are the value, characterizing numbers of dividing, growing, differen-
tiating, fulfilling specific functions and aging follicles cells at time t, accordingly; the other
parameters are similar to such designations in (3) and (4).

Such reasoning that in the modelling CD4 lymphocytes number regulatorika leads to
possibility for quantitative studying the thyroid gland follicles cells number regulatorika on
the basis of the following functional-differential equation

θ

h

dX(t)

dt
= ρX3(t − 1)e−X(t−1)

− X(t), (14)

where X(t) is the function, expressing dividing thyroid gland follicles cells number; θ is
the average lifetime of these cells; h is the time interval necessary for fulfilling feedback in
organism’s hormonal systems; ρ is the parameter, expressing division rate of thyroid gland
follicles cells. In case of feedback system failure we can use the following model systems for
(14) in the form of functional equation

X(t) = ρX3(t − 1)e−X(t−1) (15)

and its discrete analogue
Xk+1 = ρX3

ke−Xk , (16)

k = 0, 1, ...

where Xk is the value, expressing number of dividing thyroid gland follicles cells on k-th
step of its vital activity.

Analysis of solutions (13)-(16) character behavior using the methods for qualitative
studying functional-differential equations has shown that in models of thyroid gland fol-
licles cellular communities regulatorika there are stationary, periodic solutions, irregular
fluctuations (dynamic chaos) and effect of solutions failure to trivial attractor - ”black
hole” effect. Irregular oscillations and ”black hole” can be identified as uncontrolled repro-
duction (malignant growth) and sharp destructive change in thyroid gland follicles cellular
communities (metastasis).

7 Problems on controlling cellular communities regulatorika at anomalies If
biosystem regulatorika is in the anomalies area (irregular oscillations and sharp destructive
change) then there appears the question on carrying off in the area of regular oscillations
and (or) in the area of stationary regime. Analysis of anomalies areas in considered model
studying regulatorika of CD4 lymphocytes number and thyroid gland follicles cells shows
that the irregular oscillations area is heterogeneous (Figure 2) and ”black hole” area has
high rate. Quantitative study of solutions (12) and (16) on PC shows that in the field
of dynamic chaos there are small regions with regular behavior - r-windows , i.e. in the
diseases field there exist the small ”windows” with normal system condition (Figure 2).

Presence of r-windows in the field of irregular fluctuations allows temporarily solving
normalization problem in cellular communities regulatorika by entering the system in the
nearest r-window in order to remove the system from the area of irregular oscillations.
Consequently system withdrawal path from the irregularity area into the area of regular
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oscillations by the chain, consisting of r-windows is efficient. Results of the qualitative
studying regulatorika equations for the considered biosystems have shown that there are
ensemble of such paths. Choice of optimum from these paths can be realized based on
the minimization of control load at the path passage. In the anomalies field we accept
irregularity level of dynamic system condition (H) as value of control load.

Figure 2: Lyapunov exponent dynamics in the field of irregular oscillations (arrows specify
r-windows).

”H” value can be calculated based on the Kolmogorov entropy or Lyapunov exponent.
Compliance with this ”principle of minimum load” can be reached by minimization H(t) in
the course of the control

H(t) =

t
∫

t0

K(x(θ), u(θ))dθ,

where K(x(θ), u(θ)) is the Kolmogorov entropy under concrete function values of condition
x(θ) and control u(θ) at time θ; t0 is the time from beginning the control process, t ≥ t0.
Destructive changes fleetingness in the event of ”black hole” effect complicates questions on
controlling behavior of CD4 lymphocytes populations. Here is required the time evaluation
for staying the system in the basin of functional attractor and designing efficient (on a time)
measures on the system transfer in the area of deterministic chaos, in the sequel in the area
of regular oscillations.

8 Conclusion Considered model studies show a possibility for using the developed functional-
differential equations of cellular community’s regulatorika (3) at quantitative studying the
number dynamics regularities of concrete cellular communities in the norm and anoma-
lies. Constructed functional-differential equations of cellular communities regulatorika, their
model systems in the forms of functional and discrete equations are applied for the quan-
titative studying CD4 lymphocytes count regulatorika and also at analyzing dynamics reg-
ularities of thyroid gland follicles cellular communities at the norm and anomalies. Model
investigations show that chronic growing parameter value at virus load leads to anomalous
behavior of CD4 lymphocytes number. The stationary condition is violated, here appears
auto-oscillation with transition to irregular fluctuations, hereinafter to the ”black hole” ef-
fect - sharp reducing CD4 lymphocytes number and AIDS development. It is necessary
to note that for the explanation of AIDS disease the attraction of ”Hayflick limit” con-
cept is not required. Quantitative study of thyroid gland follicles cellular communities
dynamics based on the developed functional-differential equations for cellular communities
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regulatorika shows the possibility for arising malignant neoplasms at breaking organism’s
hormonal regulation in the system.

Analyzing questions on optimal controlling cellular communities number behavior for
the considered biosystems for the purpose of its rapidly withdrawal in the normal area
(modes of auto-oscillations and stationary state) we show that the following scenario for
takeaway by the chain, consisting of small regions with normal behavior (r-windows) with
adhearance to the ”principle of minimal load” is more appropriate.
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