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Abstract.

This paper proposes a 0-1 knapsack problem considering both the maximization of
the total return including randomness and minimization of available budget, simulta-
neously. For the flexibility of setting each goal, the satisfaction function is introduced
and the model maximizing minimum aspiration levels is proposed. Since this prob-
lem is not a well-defined problem due to including randomness and fuzziness, chance
constraints are introduced, and a main problem is transformed into a nonlinear 0-1
programming problem. In previous researches, the solution method using a parametric
dynamic programming approach is constructed. However, this solution method is not
efficient due to using dynamic programming repeatedly. Therefore, in this paper, the
efficient solution method is constructed. This means that the number of using dynamic
programming is as small as possible.

1 Introduction
0-1 knapsack problem is one of basic problems in mathematical programming problems

and applied to many practical problems such as project selection problems, capital bud-
geting and resource allocation which many companies and industrial firms are faced upon.
Therefore, the 0-1 knapsack problem plays an important role in the real world. In recent
investment fields, through the remarkable development of information technology and com-
puters, many people can receive and transmit various types of information all over the
world, and so the role of budget allocation problems becomes more and more important.

Therefore, many researches with respect to knapsack problems have been conducted
until now (as a review, [7, 13]). A basic knapsack problem is solved using the strict solution
method such as dynamic programming and branch-and-bound method, or approximate
method such as greedy algorithm, genetic algorithm and many other heuristics. Recently,
most of them have been mainly studied as the proposition of its efficient solution method
(recent studies [2, 12]), the application to actual problem in the real world (for example,
traveling salesman problem [3], bin-packing [4, 14], quadratic assignment problem [2, 5]) and
the extension for multidimensional model (recent studies [1, 6, 15, 16]) or more complicate
model to apply to various situations (for example, [8, 11]).

In most of previous studies, coefficients in the problem are assumed to be known and
fixed values. However, in real world, it is hard that coefficients in the problem are considered
as the fixed values because of randomness such as the prediction derived from historical data
and fuzziness such as intuition of a decision maker. Particularly, in the cases that a decision
maker must do a decision making without having all data or information, and that there are
various types of efficient or inefficient information, the uncertain factors are more and more
increasing. Consequently, with respect to knapsack problems, in order to consider problems
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in real world more widely and flexibly, we need to construct the model of knapsack problem
considering such randomness and fuzziness, simultaneously. Therefore, in this paper, we
propose a model considering random future returns, fuzzy coefficients of the constraint and
flexibility of objective value and maximum value of constraint.

On the other hand, with respect to mathematical programming problems, the knap-
sack problem considering randomness and fuzziness is more complicate than the previous
problems due to including both random and fuzzy numbers. Then, since this problem is
not a well-defined knapsack problem, it is hard to solve it directly. Therefore, we need to
construct its efficient solution method. In this paper, we transform main problems into de-
terministic equivalent integer programming problems using chance constraints, possibility
measure and fuzzy goals based on both stochastic and fuzzy programming approaches.

Furthermore, through the development of information technology and improvement of
computers, we solve the knapsack problem more quickly using not only approximate solu-
tion methods but also strict solution methods even if it is a little bit large scale problem.
Therefore, we propose the efficient strict solution method based on dynamic programming.
In previous researches considering only random variables, the solution method using a para-
metric dynamic programming approach is constructed. However, this is not efficient due to
using dynamic programming repeatedly. In this paper, we construct the solution method
to decrease the number of using dynamic programming as small as possible.

This paper is organized as follows. In Section 2, we formulate a basic 0-1 knapsack
problem and introduce its probability fractile optimization model due to including random
variables. Furthermore, considering ambiguous situations, we introduce the fuzzy numbers
and fuzzy goals to ambiguous parameters and flexible target values. This problem is a
nonlinear 0-1 knapsack problem and so it is hard to solve it directly. Therefore, in Section
3, by the deterministic equivalent transformation of the problem and introducing the 0-1
relaxation problem, we construct the efficient solution method. Finally, in Section 4, we
conclude this paper and discuss the future studies.

2 Formulation of project selection problem under the random and ambiguous
situation
First of all, each notation in this paper means as follows:

n: Total number of decision variables

rj: Future return of decision variable j

cj: Capital budgeting of decision variable j

f : Goal of total future returns

b: Upper limited value of total capital budgeting

xj Decision variable satisfying xj =
{

1 select decision variable j
0 not select decision variable j

A basic 0-1 knapsack problem maximizing the total profit is generally formulated as follows:

Maximize
n∑

j=1

rjxj

subject to
n∑

j=1

cjxj ≤ b,

xj ∈ {0, 1} , j = 1, 2, · · · , n

(1)
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With respect to this problem, we obtain a strict optimal solution using dynamic program-
ming method or branch-bound method. However, in the case that we assume each return rj

as a random variable, problem (1) is not a well-defined problem since the objective function
also becomes a random variable. Therefore, in this paper, introducing a chance constraint
with respect to the objective function, we consider a probability fractile optimization model
for the total profit.

2.1 Formulation of probability fractile optimization model
We apply probability fractile optimization model to problem (1). This problem is formu-

lated as the following form using the chance constraint and its probability level β:

Maximize f

subject to Pr

{
n∑

j=1

rjxj ≥ f

}
≥ β,

n∑
j=1

cjxj ≤ b, xj ∈ {0, 1} , j = 1, 2, · · · , n
(2)

In this problem, we assume each future return rj occurs according to a normal distribution
N
(
r̄j , σ

2
j

)
where r̄j is the mean value of rj and σ2

j is its variance. In this paper, since each
coefficient of the objective function is assumed to be independent of other variables, i.e.

σij =
{

σ2
j , i = j
0, i �= j

, i, j = 1, 2, · · · , n(3)

Under these assumptions, its stochastic constraint is transformed into the following
inequality:

Pr

{
n∑

j=1

rjxj ≥ f

}
≥ β ⇔ Pr




n�
j=1

rjxj−
n�

j=1
r̄jxj�

n�
i=1

n�
j=1

σijxixj

≥
f−

n�
j=1

r̄jxj�
n�

i=1

n�
j=1

σijxixj


 ≥ β

⇔
n�

j=1
r̄jxj−f�

n�
i=1

n�
j=1

σijxixj

≥ Kβ ⇔
n∑

j=1

r̄jxj −Kβ

√
n∑

i=1

n∑
j=1

σijxixj ≥ f

(4)

where F (y) is the distribution function of the standard normal distribution and Kβ =
F−1 (β). Therefore, problem (2) is transformed into the following problem:

Maximize f

subject to
n∑

j=1

r̄jxj −Kβ

√
n∑

j=1

σ2
j x2

j ≥ f,

n∑
j=1

cjxj ≤ b, xj ∈ {0, 1} , j = 1, 2, · · · , n
(5)

Since each decision variable xj satisfies xj ∈ {0, 1}, we obtain x2
j = xj , and so problem (5)

is equivalently transformed into the following problem:
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Maximize f

subject to
n∑

j=1

r̄jxj −Kβ

√
n∑

j=1

σ2
j xj ≥ f,

n∑
j=1

cjxj ≤ b, xj ∈ {0, 1} , j = 1, 2, · · · , n
(6)

2.2 Introduction of fuzzy numbers and fuzzy goals
In this subsection, we consider the upper limited value of capital budgeting constraint.

Since there is a lack of information, we assume each coefficient of the constraint to be the
following L-fuzzy number:

µc̃j (ω) = L
(

ω−c̄j

dj

)
, j = 1, 2, . . . , n(7)

where L (x) is a continuous nonincreasing nonnegative function satisfying L (0) = 1, L (1) =

0. Therefore,
n∑

j=1

c̃jxj is also a fuzzy variable, and so the constraint of problem (6) is not

a well-defined constraint. Hence, for the transformation into the deterministic equivalent
constraint, we introduce the following chance constraint. The membership function with

respect to
n∑

j=1

c̃jxj is as follows:

µY (y) = L




y −
n∑

j=1

c̄jxj

n∑
j=1

djxj


(8)

Furthermore, we assume that the upper limited value b of total capital budgeting includes
flexibility. Generally speaking, it is possible to increase maximum capital budget b a little
in order to increase the goal of total future profits. On the other hand, if b is assumed to
be too large value, the aspiration level of decision maker has to be too small. Considering
these situations, we introduce a fuzzy goal with respect to b as the following membership
function:

µG (ω) =




1, ω ≤ b1

g (ω) , b1 ≤ ω ≤ b0

0, b0 ≤ ω
(9)

where g (ω) is a monotonically decreasing function. Then, we consider the following possi-
bility measure:

ΠY (G) = sup
y

min {µY (y) , µG (y)}(10)

In a way similar to b , we also introduce a fuzzy goal with respect to the total profit as
the following membership function:
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µF (z) =




1, f1 ≤ z
f (z) , f0 ≤ z ≤ f1

0, z ≤ f0

,

(
z =

n∑
j=1

r̄jxj −Kβ

√
n∑

j=1

σ2
j xj

)
(11)

where f (z) is a monotonically increasing function. Using these possibility measure and
fuzzy goal, we propose the following maximization model of minimum aspiration levels as
the reformulation of problem (6):

Maximize min {µF (z) , ΠY (G)}
subject to xj ∈ {0, 1} , j = 1, 2, · · · , n(12)

Then, by introducing a marameter h, this problem is transformed into the following problem:

Maximize h
subject to µF (z) ≥ h, ΠY (G) ≥ h,

xj ∈ {0, 1} , j = 1, 2, · · · , n
(13)

In this problem, constraint ΠY (G) ≥ h is equivalently transformed into the following
form:

ΠY (G) ≥ h
⇔ sup

y
min {µY (y) , µG (y)} ≥ h

⇔ µY (y) ≥ h, µG (y) ≥ h

⇔
n∑

j=1

c̄jxj − L∗ (h)
n∑

j=1

djxj ≤ y, y ≤ g−1
b (h)

⇔
n∑

j=1

c̄jxj − L∗ (h)
n∑

j=1

djxj ≤ g−1
b (h)

(14)

Then, in a way similar to transformation (14), constraint µF (z) ≥ h is transformed into
the following form:

µF (z) ≥ h ⇔
n∑

j=1

r̄jxj −Kβ

√
n∑

j=1

σ2
j xj ≥ f−1 (h)(15)

Therefore, we equivalently transform problem (13) into the following problem:

Maximize h

subject to
n∑

j=1

r̄jxj −Kβ

√
n∑

j=1

σ2
j xj ≥ f−1 (h) ,

n∑
j=1

c̄jxj − L∗ (h)
n∑

j=1

djxj ≤ g−1 (h) ,

xj ∈ {0, 1} , j = 1, 2, · · · , n

(16)
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3 The efficient solution method of proposed 0-1 knapsack problem
Main problem (16) in Subsection 2.2 is a nonlinear 0-1 knapsack problem, and so it is

hard to solve it directly using the standard solution method to solve discrete mathematical

programming problems. However, in the case that parameter h is fixed, constraint
n∑

j=1

c̄jxj−

L∗ (h)
n∑

j=1

djxj ≤ g−1 (h) is equivalent to a linear constraint with respect to x. Furthermore,

to solve problem (16) efficiently, we introduce the following subproblem:

Maximize
n∑

j=1

r̄jxj −Kβ

√
n∑

j=1

σ2
j xj

subject to
n∑

j=1

c̄jxj − L∗ (h̄) n∑
j=1

djxj ≤ g−1
(
h̄
)
,

xj ∈ {0, 1} , j = 1, 2, · · · , n

(17)

where h̄ is a fixed value of parameter h satisfying 0 ≤ h̄ ≤ 1. With respect to the relation
between subproblem (17) and problem (16), the following theorem holds based on the result
of previous research [11].

Theorem 1
Let an optimal solution of subproblem (17) be xh̄ and its optimal value Z (xh̄). Fur-

thermore, let the optimal value of problem (16) be h∗. Then the following relation holds:




Z (xh̄) > f−1
(
h̄
) ⇔ h̄ < h∗

Z (xh̄) = f−1
(
h̄
) ⇔ h̄ = h∗

Z (xh̄) < f−1
(
h̄
) ⇔ h̄ > h∗

(18)

¿From this theorem, we obtain that the optimal solution xh̄ of subproblem (17) is equiv-
alent to that of problem (16) in the case that Z (xh̄) = f−1

(
h̄
)
. Furthermore, we consider

the following auxiliary problem to subproblem (17) introducing a parameter R :

Maximize R
n∑

j=1

r̄jxj −Kβ

(
n∑

j=1

σ2
j xj

)

subject to
n∑

j=1

c̄jxj − L∗ (h̄) n∑
j=1

djxj ≤ g−1
(
h̄
)
,

xj ∈ {0, 1} , j = 1, 2, · · · , n

(19)

With respect to the relation between problems (17) and (19), the following theorem holds
based on previous research [10].

Theorem 2 ([10])

Let an optimal solution of problem (19) be x∗. If R = 2

√
n∑

j=1

σ2
j x∗

j is satisfied, x∗ is also

an optimal solution of problem (17).

Problem (19) is a parametric 0-1 knapsack problem. In previous researches, a solution
method based on the parametric dynamic programming approach has been proposed. How-
ever, in this solution method, a dynamic programming is repeatedly used. Therefore, this
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solution method is not efficient. We introduce the following 0-1 relaxation problems with
respect to problem (19);

Maximize
n∑

j=1

r̄jxj −Kβ

√
n∑

j=1

σ2
j (xj)2

subject to
n∑

j=1

c̄jxj − L∗ (h̄) n∑
j=1

djxj ≤ g−1
(
h̄
)
,

0 ≤ xj ≤ 1, j = 1, 2, · · · , n

(20)

and its auxiliary problem:

Maximize R
n∑

j=1

r̄jxj −Kβ

(
n∑

j=1

σ2
j (xj)2

)

subject to
n∑

j=1

c̄jxj − L∗ (h̄) n∑
j=1

djxj ≤ g−1
(
h̄
)
,

0 ≤ xj ≤ 1, j = 1, 2, · · · , n

(21)

Then, the following theorem holds with respect to the relation between problems (20)
and (21) based on previous research [9].

Theorem 3 ([9])

For g (R) = R − 2

√
n∑

j=1

σ2
j (x∗

j )2, the following relation holds:

R∗ > R ⇔ g (R) > 0
R∗ = R ⇔ g (R) = 0
R∗ < R ⇔ g (R) < 0

(22)

¿From this theorem, the optimal solution of problem (21) becomes equal to that of prob-
lem (20). In previous studies, parameter R is repeatedly modified using bisection algorithm
in order to solve problem (19) using dynamic programming. However, this solution method
is not efficient. Therefore, we propose a new solution method introducing the 0-1 relaxation
problem and its optimal solution. In order to construct the efficient solution method, the
following lemmas are derived.

Lemma 1
With respect to problem (19), there exists the ranges [Rk, Rk+1],(k = 1, 2, ...,K) that

the optimal solution of problem (19) is unique in the case of R including in [Rk, Rk+1] .
Proof

¿From the discreteness of decision variable, it is obvious that this theorem holds.

Lemma 2
We set a range [RL, RU ] satisfying R∗ ∈ [RL, RU ]. Let the optimal solution of problem

(19) be x̄. Then,

(
RL − 2

√
n∑

j=1

σ2
j x̄j

)(
RU − 2

√
n∑

j=1

σ2
j x̄j

)
≤ 0 holds.

Proof
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Let R∗ = 2

√
n∑

j=1

σ2
j x∗

j and R̄ = 2

√
n∑

j=1

σ2
j x̄j . In the case that R̄ < R∗, with respect to(

RU − 2

√
n∑

j=1

σ2
j x̄j

)
,


RU − 2

√√√√ n∑
j=1

σ2
j x̄j


 =

(
RU − 2R̄

)
> (RU − 2R∗) > 0(23)

holds. Furthermore, from the monotonous function R − 2

√
n∑

j=1

σ2
j x̄j with repect to R and

R∗ − R̄ > 0, it is obvious that

(
RL − 2

√
n∑

j=1

σ2
j x̄j

)
< 0. Therefore,


RL − 2

√√√√ n∑
j=1

σ2
j x̄j




RU − 2

√√√√ n∑
j=1

σ2
j x̄j


 ≤ 0(24)

holds. In the case that R̄ > R∗, with respect

(
RL − 2

√
n∑

j=1

σ2
j x̄j

)(
RU − 2

√
n∑

j=1

σ2
j x̄j

)
,

(
RL −

√
n∑

j=1

σ2
j x̄j

)(
RU −

√
n∑

j=1

σ2
j x̄j

)
=

(
RL − R̄

) (
RU − R̄

)
≤ (RL −R∗) (RU −R∗)

(25)

holds. Then,since we obtain (RL −R∗) < 0 and (RU −R∗) > 0, (RL −R∗) (RU −R∗) <

0 and

(
RL − 2

√
n∑

j=1

σ2
j x̄j

)(
RU − 2

√
n∑

j=1

σ2
j x̄j

)
≤ 0 hold. Consequently, this theorem

holds.

Lemma 3

In the case that T (R) = R−2

√
n∑

j=1

σ2
j x̄j = 0, x̄j is an optimal solution of main problem

(19).
Proof

¿From Theorem 2, it is obvious that this lemma holds.

Using these lemmas, the following holds.

Theorem 4

Let the optimal solution of problem (21) be x∗ and R∗ = 2

√
n∑

j=1

σ2
j (x∗

j )2. Then, the

optimal solution of the following problem;
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Maximize R∗ n∑
j=1

r̄jxj −Kβ

(
n∑

j=1

σ2
j xj

)

subject to
n∑

j=1

c̄jxj − L∗ (h̄) n∑
j=1

djxj ≤ g−1
(
h̄
)
,

xj ∈ {0, 1} , j = 1, 2, · · · , n

(26)

is also optimal for problem (19).

Consequently, in the case that we fix the parameter h of main problem (16), introducing
0-1 relaxation problem and finding its optimal solution, we obtain an optimal solution
without using dynamic programming repeatedly. Therefore, this solution method is more
efficient than previous parametric dynamic programming approaches in that the number of
using dynamic programming is significantly decreasing. Then, we construct the following
efficient solution method to solve main 0-1 nonlinear knapsack problem (16).

Solution Method

STEP1: Elicit the membership function of a fuzzy goal with respect to the total return
and the maximum budget.

STEP2: Set h← 1 and solve problem (17). If the optimal objective value Z (h) of problem
(17) satisfies Z (h) ≥ f−1 (h) and its optimal solution are included in constraints, then
terminate. In this case, the obtained current solution is an optimal solution of main
problem.Otherwise go to STEP3.

STEP3: Set h← 0 and solve problem (17). If the optimal objective value Z (h) of problem
(17) satisfies Z (h) < f−1 (h) or the feasible solution including in constraints does not
exist, then terminate. In this case, there is no feasible solution and it is necessary to
reset a fuzzy goal for the aspiration level f or maximum budget d. Otherwise go to
STEP4.

STEP4: Set Uh ← 1 and Lh ← 0.

STEP5: Set h← Uh+Lh

2 .

STEP6: Solve problem (17) and calculate the optimal objective value Z (h) of problem
(17). If Z (h) > f−1 (h), then set Lh ← h and return to Step 5. If Z (h) ≤ f−1 (h),
then set Uh ← h and return to Step 5. If Z (h) = f−1 (h), then terminate the
algorithm. In this case, x∗ (h) is equal to a global optimal solution of main problem.

4 Conclusion
In this paper, we have proposed a new model of 0-1 knapsack problem considering ran-

domness of future returns and flexible goals of available budget and total return. Since
our proposed model has been a nonlinear 0-1 knapsack problem by introducing the chance
constraint and doing the transformation into the deterministic equivalent problems, we have
constructed the efficient solution method. We have dealt with the 0-1 relaxation problem
and its optimal value and found that the number of using dynamic programming in our
proposed method is much less than that of previous parametric dynamic programming.
This solution method is applicable to the general integer programming problems, particu-
larly portfolio selection problem. As the future studies, we consider the multidimensional



282 T.Hasuike and H.Ishii

random 0-1 knapsack problem and construct its efficient solution method using not only
dynamic programming approach but also approximation methods such as genetic algorithm
and heuristic approaches.
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