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ABSTRACT. This paper concerns the bifurcation problem from equilibrium to invariant s-compact
periodic sets iR x R", for one parameter families of periodic ordinary differential equations. The
analysis is accomplished by using appropriate families of discrete autonomous dynamical systems
and some previous results of the authors on the relationship between conditional and unconnditional
stability properties of sets iR x R".

1 Introduction. Consider a one parameter family of differential systems f(¢,z, ), z € R",
> 0, wheref is smooth and periodic itfor a constanty > 0 (in particulart—independent). Moreover
we assume that the originis an equilibrium for eacl. The present paper concerns the bifurcation from
the origin into invariantw—periodic, asymptotically stables--compact sets iR x R™, under a drastic
change of the stability properties of the origin through the value 0 of the parameter.

For bifurcation phenomena the stability theory plays an important role not only in the analysis of
the stability of the bifurcating sets, but also in the analysis of their existence and structure. An example
is Hopf bifurcation (see for instance [3],[6] and references within).

The bifurcation problem from the origin inteindependent sets was described in [5] for continuous
or discrete autonomous dynamical systems. This problem is analyzed here for periodic differential sys-
tems allowing, as we already pointed out, to periodic bifurcating sets. The results are obtained by using
stability arguments and appropriate discrete dynamical systems. The interest of periodic bifurcating sets
is due to the fact that the cyclic processes in Natural Sciences are often connected to the periodicity of
motion of sets rather than the periodicity of motion of single points.

In this paper we have considered the two different situations that the bifurcating sets are of dimension
n + 1 or of adimensions + 1, v < n. The last situation is presented in the case that there exists a
periodic invariant manifoldp,, in the time space on which each bifurcating 3£t lies. To connect the
stability properties of the bifurcating sets$,, with respect to the perturbations lying én,, the stability
properties of®,,, and the unconditional stability properties &f,,, we have applied some results that
we obtained in [12]. These results concern the general case that neither the differential equations nor
the invariant manifold are necessarily periodic. They will be summarized in Sextiotheir general
formulation as well as in the periodic case.

We have tried to pick out the essential ingredients of the bifurcation phenomenon and then we have
assumed the existence of the invariant manifd|dwithout specifying any particular condition gh
which allows to this existence. In this respect papers [10] and [1] are revisited and enriched.

More detailed information on the structure of the bifurcating 3étsare given in Sectiod in the
cases = 1 andv = 2. In the first case, for ang the sectior,(¢) is homeomorphic to a straigthline
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passing through the origin. Each sectitaiy () is homeomorphic to the union of two segments located in

the regiong; > 0 andy < 0 respectively. The end points are fixed with respect to the discrete dynamical
system induced of®,, (t), while their motion with respect to the differential system is periodic with the
same period of the system. Ii> = 2, in the autonomous case we find the results already known in the
usual treatment of Hopf bifurcation although now the asymptotic stabiliy,ohear the origin is not
necessarily exponential. In the nonautonomous periodic case, under some additional assumption we finc
that the sections/,,(t) are homeomorphic to Jordan curves and then theldgtare homeomorphic to

tori by interpretingt as an angular variable.

2 Preliminaries. Denote by|| - || the Euclidean norm ilR™ and byp the induced distance. L&
be a nonempy set iR™ and fora > 0 let B®(D,a) = {z € R" : p(x,D) < a}, B"|D,a] = {z €
R" : p(z,D) < a}, S"(D,a) = {x € R" : p(z,D) = a}. Consider a sel in R x R". We say
that A is s—nonempty if for anyt € R the sectionA(t) = {z € R" : (¢,x) € A} is nonempty. IfA
is s—nonempty and there exists a compact@eh R" such thatA(t) C @ for allt € R, thenA is
said to bes—bounded. In this case the intersection of all these@etsll be denoted byR*(A4). If A
is s—bounded and eacl(t) is compact, we say that is s—compact. When the mapping— A(t) is
w—periodic for somey > 0 or in particulart—independent, we say thatis w—periodic ort—independent
respectively.

We denote byC(z) the class of functiong : R x R® — R", (t,z) — f(t,z), which are locally
Lipschitzian inz. We will write f € L,(z) if f satisfies the condition that for every compact set
K c R" there exists a constafif K) > 0 such that| f(t,z) — f(t,v)|| < L(K)||x — y|| for all z,y
in K andt¢ in R, and writef € L,;(z) if in addition for every compack’ ¢ R" the functionf is
bounded. Triviallyf € £, (z) implies f € L,;(x) if there exists at least one € R"™ such that the
function f (-, ) is bounded.

Consider the system of differential equations

d

(2.1) i = f(t,z), 0= dt

wheref € C(R x R™, R"™) and satisfies conditions ensuring the uniqueness of solutions. Morgover
is supposed to be such thatl) admits an invariani—compact sef/ in R x R". For any(to, z¢) €
R x R" let us denote by(t,tg, zo) the solution throughto, zo) and by ;™ (to, zo), j~ (to, zo) its
maximal interval of existence in the future and in the past respectively.

Let now A be an invariant set iR x R™. The stability concepts oft are supposed to be known.
Assuming thatM is contained inA, we limit ourselves to define some stability propertiesAdfhear
M in the sense specified in [12]:

Definition 2.1 For any~y > 0 let I[M,~] = {(¢,z) : t € R,z € B"[M(¢),~]}. Then we will say that
A has a stability property nead/ if there existsy > 0 such that the property is satisfied with respect to
the perturbationsto, zo) € I[M,~].

For instance:A is said to be(i) stable neat\/ if there existsy > 0 such that for any, € R and
e > 0 one may findj(¢g, €) > 0 with the property that, € B™[M (to),~] andp(zo, A(to)) < 6(to,€)
imply p(z(t,to, o), A(t)) < e foranyt € Jt(to,z0); (ii) attracting neadV/ if there existsy > 0
such that one may find(t,) > 0 for which zy € B"[M (to),~] and p(zo, A(to)) < a(to) imply
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J T (to, ®o) = [to, +o0) andp(z(¢,to, z0), A(t)) — 0 ast — +oo. Similarly one may define the other
stability or attractivity properties ofl near)M.

Remark 2.1 SinceM is contained inA, and thenp(zg, A(to)) < p(xo, M (to)) for any (to, zo) €
R x R™, the uniform attractivity ofA near M may be defined as follows: There exists> 0 such
thatty € R andzy € B"[M(ty), o] implies thatx(¢,t,xz0) exists for allt > to and satisfies
p(x(t, to, x0), A(t)) — 0 ast — +oo, uniformly in(to, o).

We need some of the results given in [12]. We summarize them in the following theorem.

Theorem 2.1 Let us assume that for some integee [1, n) there exists for syster.() an invariant
setinR x R defined by

d={(t,y,2): teR,yeR", ze R"", z=g(t,y)},

g€ Clge L, (y) suchthati) M C ®; (ii) M is uniformly asymptotically stable ob, that is with
respect to the initial perturbation@o, o) € ®. Here byg € £! , (y) we want to mean that belongs to
L.(y) together with its first partial derivatives. We have:

(a) If f e L,(x)and® is stable (asymptotically stable) nedf, then M is stable (asymptotically
stable);

(b) If f € Lyp(x) and M is uniformly stable (uniformly asymptotically stable), thenis uniformly
stable (uniformly asymptotically stable) ne&f.

Let us give now the version of Theoretil when f and M are bothw—periodic int¢ for the same
constantv > 0, f is continuous ang’ € L(x). The conditionsf € L,;(x) and thenf € £, (x) are
clearly satisfied. Moreover in this case the stability and the asymptotic stabilitywwhen occurring are
uniform. Consequently even the stability or the asymptotic stabilit @fhen occurring are uniform.
Indeed if® is stable nead/, M is stable by virtue of statemefi), then uniformly stable, and theh

is uniformly stable by virtue of statemefit). Similarly one may proceed for asymptotic stability. Thus
the following corollary of Theorer.1 holds.

Corollary 2.1 Assume thaff and M are bothw—periodic int for the same constant > 0, f is
continuous andf € L(x). Then under the assumptions of Theorzm M is stable (asymptotically
stable) if and only ifd is stable (asymptotically stable) neaf.

3 Bifurcation from equilibrium to s—compact sets for one - parameter families of periodic differ-
ential equations. Consider the one-parameter familyof differential systems

(S)H j::f(t,x,,u), OZ%’

with f € C1(R x R" x R*,R") and periodic int for some constant > 0. Moreover we assume
f(t,0, 1) = 0 so that(S),, admits the null solution for every > 0. We denote by\/, the so—called
null set,My = {(t,z) : t € R, z = 0}. Given any(to,z0) € R x R™ andu > 0 let us denote by
(), (t,to, zo) the solution of(S),, through(to, zo) and by;j* (to, zo, 1), 5~ (to, zo, 1) its maximal
intervals of existence in the future and in the past respectively.
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Definition 3.1 We say thaj, = 0 is a bifurcation value on the right for the family at = = 0 if there
existp* > 0 and a family{M,}, n € (0, u*), of s—compact and—periodic subsets ¢R x R"™) — M
having the following properties:

(a) foreachy € (0, n*), M, is invariant under(S),,;
(b) M, (t) — {0} asp — 0 uniformly int.

We give now a very general theorem concerning the bifurcation from the origin into bifurcating
compact sets of dimensiom + 1. The case that the bifurcating sets lie on an invariant manifold of
dimensiorv + 1, v < n, will be treated afterwords. In the sequel a Bein R x R™ will be said to be

a s—compact neighborhood afl if H is s—compact and each sectiéf(t) is a compact neighborhood
ofz = 0.

Theorem 3.1 Suppose that the origin = 0 is asymptotically stable fqu = 0 and completely unstable
(i.e. asymptotically stable in the past) for > 0. Theny = 0 is a bifurcation value on the right.
Precisely there exist* > 0 and ans—compact neighborhoo of M, such that for eaclu € (0, u*)
the largests—compact invariant set fS),, contained inH — My, sayM,,, is nonemptyw—periodic,
and the family{ )/, } satisfies(b) in Definition3.1. Moreover each\/,, is asymptotically stable under

(S)u-

Proof. Letr, ' be two numbers such that< r < r’. For eachu > 0 consider the familyS’ of
systems

(S/)M T = f(t?x’/‘)a(x)v

wherea € C*°(R", [0, 1]) is such thaty(z) = 1 for ||z|| < r» anda(x) = 0 for ||| > . Because of
the local character of our problem, and because for gagystem(S),, coincides with(S’),, in B"(r),
the new familyS’ satisfies all the stability assumptions in Theorgrhand may replace the original
family S. For any(to, z9) € R x R"™ andp > 0 let us denote by s/, (¢, to, zo) the solution of(S"),,
through(t, o). This solution clearly exists for allin R. The proof is divided into four steps.

(i) Since the origin is an asymptotically stable solutior{8f), there exists a numbere (0,r) and a
functionV € C*°(R x R™, R), w—periodic int, such that

3.1 a(flz])) < V(t,2) < b(lz[)),
3.2) Visno(t, ) < —c((]]),

forallt € R andx € B"(y) [7, 8]. Herea, b, ¢ are continuous strictly increasing functions frdr
into Rt with a(0) = b(0) = ¢(0) = 0, and the left hand side 08() is the derivative ofi” along the
solutions of(.5")o. We determine now a numbgr > 0 and ans—compact neighborhoaH of M, such
that for ally € (0, p*) H is asymptotically stable undés’),, and invariant only in the future. Precisely
choose a numbex € (0, a(y)) and consider the subsetBf x R™

H={(t,2): o]l <7, V(L) <AL
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Clearly (t,z) € H implies||z|| < . Moreover we see tha{ contains the points for whiche R and
l||z]| < b=1(X). Thus each sectiof/ (¢) is a compact neighborhood of = 0 and is contained in the
open ballB™ (). By (3.2) and continuity arguments we may selgttso that

bt
2

Visn, (t,z) < —¢( )

forall p € (0,u*),t € Randz € B"(y) — B"(b~(\)). HenceH has all the properties we have
required above and in addition its region of attraction ur{déy,, contains a fixed neighborhodd* of
H. We will chooseH™* = {(t,z) : ||z|]| <7, V(¢t,z) < X*}, for somer* > A.

(i7) Let Z be the set of the integers. For any fixede R andp € (0, u*) consider the mapl :=
iy : Z x R — R™ defined byll(i, z) = z(g1, (to + iw, to, z). Clearly we havel(0, z) = = and
I(é1 + i2,2) = I(41,11(i2, z)) for everyiy,io € Z andxz € R™. Hencell defines an autonomous
discrete dynamical system dependingtgnu. Forz € R" let J*(z) := J;gu(x), J7(x) == Iy, (2)
be the positive and the negative prolongational limit set ahderIl. Precisely:

Jt(z) = {¢ € R" : there exist two sequences), ix — +00, (Tx), Tk — ,
such thafl(ix, z) — £},

J~(z) ={£ € R" : there exist two sequencgs), ix, — —o0, (zk), Tk — T,
such thatl(ix, ) — £}

For the characterization of asymptotic stability by means of prolongational limit sets see for instance [2].
This characterization is usually given for continuous dynamical systems but, with slight modifications
in the proof, it remains valid also for discrete dynamical systems. Th& &gf) is a uniform attractor
underII and its region of uniform attraction contaif& (¢, ). Thereforex € H*(to) impliesJ ™ (x) # ()
andJ*(z) C H(ty). Let¢ := ¢y, be the largest invariant set undércontained inf (¢,)) and denote

by A=(0) := A;,,(0) the region of negative attraction of the originBf* underll. Clearly, because

of our assumptions4A~(0) is an open neighborhood of = 0. We show thatp > A~(0). Since
A~(0) is invariant forIl, it is sufficient to show that? (o) > A~ (0). Indeedz € A~ (0) implies the
existence ofi € Z~ such thafll(i,z) € H(ty) and thenz = II(—4,11(i,2)) € H(to) by virtue of

the positive invariance off (t,). Define now the sel/,, with the condition that its section at any time

to € Ris M, (to) = ¢ — A~ (0). We prove thatM,(to) is a uniform attractor unddi and its region

of uniform attractivity containg?*(¢o) — {0}. Indeed, assume € H*(t,) — {0}, thenJ " (x) # () and

JT(z) C H(tg). SinceJ ™ (z) is invariant undefl, we haveJ*(z) C ¢. Hence it remains to prove that

y € JT(x) impliesy ¢ A= (0). Indeed we have € J~ (y). Therefore ify € A~ (0), thenJ~ (y) = {0}

and consequently = 0. This is a contradiction and the assert is proved. SHi¢& ) = H (t; +w) and

IT remains unchanged whep is replaced by, + w, we haveM,,(ty) = M, (to +w). ThenM,, is a
w—periodic set iR x R™. It is immediate to recognize that,, is s—compact and that/,(t) — {0}

asy — 0 uniformly in¢.

(i43) We prove now thafl/,, is invariant unde(S’),,. Clearly it is sufficient to show that for ea¢hthe
setM,,(to) is the image ofM,,(0) under the flow generated y5’),,. Let G = z (g1, (to,0, M, (0)).

m
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We have

H(Y:, G) = T(s"), (t() + 1w, to, G) =T(g"), (to + iw, to, (S, (t(), 0, MH(O)))
= (s, (tO +iw, w, LS, (iw7 0, MM(O))) =TS, (tO +iw, iw, Mu(iw))
= {E(S/)“ (to, 0, MH(ZW)) = {E(S/)“ (to, 0, MN(O)) =G.

ThusG is a compact invariant set faf which does not contain the origin. Therefake C M, (o).
By using the same argument we find thef,(0) 2> W, whereW = z(s) (0,t0, M,(to)). Then
z(sn, (to, 0, W) 2 G and sincer sy, (to, 0, W) = M,(to), we haveM,(to) C G.HenceG = M, (to)
and this completes the proof of the invarianceldf. It is also clear thafl/,, is the largest—compact
invariant set of S’),, contained inH — M.

(iv) Finally we prove thatV/,, is an asymptotically stable set undet'),,. For this it is sufficient to
prove that),, is a uniform attractor undgS’),,. Let o denote any positive number such that the set
{z : p(z,M,(0)) < o} is contained inH*(0) — {0}. It is easy to see that given ay > 0 we
can find a numbed(5) € (0,0) such that forj € Z andty = jw, p(z, M,(to)) < 6(8) implies
p(x(sny, (tto, ), M, (t)) < B forallt € [to,to + w]. The existence of the numbé(s3) follows
by using the compactness 8f,(t,), continuity arguments and the-periodicity of(S”),.. Moreover,
since M, (0) is a uniform attractor undéi,,, we have that relatively t6(5) there exists an integer
h(B) = 7(6(8)) such thatp(z, M, (0)) < o implies p(Ily,(j, z), M, (jw)) < 6(5) for j € Z and
J > h(p). Taking into account that our choice impli&$,(t,) = M, (jw) = M, (0), in conclusion we
obtain thatp(x, M,,(0)) < o implies p(x(t,0,z, 1), M, (t)) < § for all realt > h(53). The proof is
complete. [ ]

In the autonomous case the s&fs aret—independent. Precisely one has:

Proposition 3.1 Let us assume thatS),, is autonomous for each > 0. Then the bifurcating set¥/,,
aret—independent, that i8/,, = R x C,,, whereC), is the largest compact invariant setBf* disjoint
from the origin, contained in a fixed positively invariant neighborhood of the origin.

Clearly, since in PropositioB.1 M,(t) = C, for anyt, as observed before, we may consider all the
properties associated witl/,, as properties of the se€g, of R™ . Precisely we may say that the sets
C,, are asymptotically stable and th@f, — {0} asy — 0.

We treat now the case that the bifurcating sets lie on an invariant manifold. Consider again the above
family S of differential systems and assume in addition that €&0) admits an invariant manifold

(3.3), ¢, ={(t,y,z) :teR, yeR", ze R" ", z=g(t,y, 1)},

wherev < n, (y, 2) = z, g is C' andw—periodic int, (9g/0t) and(dg/dy) are locally Lipschitzian in
y, andg(t, 0, ;1) = 0. We notice that the above conditions ensgire £/, (y). Letu = z — g(¢,y, ). In
terms ofy, u the family S may be identified by the famil¥:

y = Y(t»%% /1’)7
(X)u
U= U(taya U,,M),
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whereY, U are continuous and locally Lipschitzian {9, «), Y (¢,0,0,u) = 0, U(t,y,0,u) = 0.
Moreover in the(t, y, u)—space the manifolds,, coincide all with the manifold

(3.4) @ ={(t,y,u) : u=0}.

Thus,® = R x ®, with ® C R". For the solutions of%),, lying on the invariant manifold they—part
of z satisfies the/—dimensional system

(Z)yu y = Y(t7y70alu“)

The bifurcating sets af: are homeomorphic to those of the original family while the stability properties
involved are clearly the same. We continue to denotéfythe null set of(X),,, that is the sefi/, =
{(t,y,uw) :,t € R,y =0, u = 0}, and we now indicate by, the null set of(¥X),,,, mo = {(t,y) :
teR,y=0}.

Theorem 3.2 Suppose that(1) the solutiony = 0 of (¥),,, is asymptotically stable i = 0 and
completely unstable ji > 0 small; (2) ® is asymptotically stable near the origin &"™. Thenu = 0is
a bifurcation value on the right for the family. Precisely there exigt* > 0 and ans—compact neigh-
borhoodH of M, such that for each: € (0, u*) the largests—compact invariant set df contained in
H — M,, sayM,, is nonempty, lies o, is w—periodic, asymptotically stable, and the famfly/,, }
satisfiegb) in Definition3.1.

Proof. By a suitable redefinition ofY, U) outside of a neighborhood @b, 0) (as indicated in the
proof of Theorens.1), we may assume without loss of generality that for arthe solutions of¥),,

are globally existing for alt € R. This redefinition does not modify the invariant characte®qsee

the proof of Theoren3.2 in [12]). Assumption(1) is equivalent to say that the origii®, 0) of (X),,

is asymptotically stable o(®),,,. Taking into account assumpti@f), we recognize then by virtue of
Corollary2.1 that(0, 0) is (unconditionally) asymptotically stable. This latter property implies as in the
proof of Theorens.1 the existence of a functioi € C*°(R x R” x R"~%, R), w—periodic int, and

of three functions:, b, ¢ such that

(3.5) a([l(y, ) < V(t,y,u) <0([I(y, w)l)),
|

|
(3.6) Visyo (t:y,u)) < ([l (y, w)])),

forallt € Rand(y,u) € B"(v) for somey € (0,01). Here we denote by, the number in Remark
2.1 relative to the uniform attractivity o near(0,0). Moreovera, b, ¢ are again continuous strictly
increasing functions froR ™ into R with a(0) = b(0) = ¢(0) = 0. Lettingv(t,y) = V(¢,y,0), we
see thav is a Liapunov function associated with the asymptotic stability of the solytierD of (X),,,.
Assuming\ € (0, a(7)), consider the two sets

H = {(tvyvu) : H(y’u)” <7 V(tayvu) < )\}a
h=A{(ty) : [yl <7, vty <AL

As in the proof of Theoren3.1 we recognize that{ is ans—compact neighborhood dff, which is
invariant only in the future fofX),, and whose sectiond (¢) are contained irB™(vy). Similarly h is
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a compact neighborhood ef, for (X),,, invariant only in the future, and whose sectidi(g) are
contained inB” (7). Moreover{(y,u) : y € h(t), u =0} = H(t) N ®. If u* > 0 is sufficiently small
then for ally € (0, 1*) the setsH, h are asymptotically stable f¢&),, and(X),,, and their regions of
attractions contain fixed neighborhools, h*, of H, h respectively. By virtue of Theoremh1 applied
to system(X),,, we recognize that if.* > 0 is sufficiently small then for each € (0, u*) the largest
s—compact invariant set ¢&),,, contained i —my, saym,,, is nonemptyw—periodic, andn,, — mq
asy — 0. Thusify € (0, u*) the set

MH:{tay7U’) : (tvy) em,uv U':O}

is for (X),, nonemptyw—periodic, invariant, contained i — M,, and asymptotically stable with
respect to the solutions lying ab. Since for every in R the sectionH () and then the sectiof/,, (t)
are contained irB"(~y), we see thaf® is asymptotically stable near eadlf,, . € (0, u*). By using
again Corollary2.1 and taking into accoun our choice 9f it follows that\,, is asymptotically stable
even for(X),, and the region of uniform attractivity contais" — M,. MoreoverM,, — Mj asy — 0.
To complete the proof it remains only to prove tlid], is the largest invariant set ¢E),, contained in
H — M,. For any fixeds € R andu € (0, u*) consider as in the proof of Theoredn the autonomous
discrete dynamical systefh := II,,,, : Z x R™ — R” relative to systentx),,. Clearly it is sufficient
to prove that any sectioh/,, (o) is the largest compact invariant setldfcontained inf (¢y) — {0, 0},
and consequently i (to) — A~ ({0, 0}). Letzg = (yo,u0) € H(to) — A~ ({0,0}) andzg ¢ M, (to).
Suppose that the complete orbit:af underIl is contained inH (to) — A~ ({0,0}). Denote byA ™ (zo)
the negative limit set af, underIl. The setA~(z() is nonempty, contained iff (to) — {0, 0}, invariant
underIl, and compact. Clearl~(zo) N M, (ty) = 0 otherwisez, would be weakly attracted from
M, (to) in the past and then/,(to) could not be stable. Let > 0 be the distance between the two
compact setd ~ (zq), M, (to) and let§ be any point inA~ (o). Because of the invariance af (zg)
we have

(3.7) p(IL(¢,€), M, (to)) > ¢ for every integer i > 0.

SinceM,,(to) is asymptotically stable undét, it follows thatA™ (&) C M, (o), a contradiction.
The proof is complete. [ ]

4. On the structure of the bifurcatings sets forv = 1 and v = 2. We need preliminarly to recall
a concept of asymptotic stability that we have used elsewhere for autonomous as well as for periodic
differential systems [9, 11]:

Definition 4.1 LetI'7, 7 > 0, be the set of functiond” : R x R™ — R" such that(1) W (¢, w) has
continuous partial derivatives up to order> 1, (2) W is r—periodic int and satisfies = inf {\ >

0 : W isX — periodic in ¢}. Consider them—dimensional systemd = W (¢, w), whereW € I'Z and
W(t,0) = 0. Leth, 0 < h < r, be an integer. The solutiom = 0 of the given system is said to be
h—asymptotically stable if¢i) for any¢ € I'” and¢ = o(||w||*) asw — 0, the solutionw = 0 of system
w = W(t,w) + {(t,w) is asymptotically stable(ii) property (i) is not satisfied wheh is replaced by
anyk=1,2,....h — 1.

On the basis of the results in Sectidwe may give some general information on the structure of the
bifurcating sets in the cases= 1 andv = 2.
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A)v = 1. In this casey is a scalar variable an),,, is a scalar differential equation. For any fixed
t andy let 7 the restriction oflI = II,,, to ®. Moreover denote by(i,y) they coordinate ofr(i,y);
hencer(i,y) = (¢(i,y),0). Clearlyy is a discrete dynamical system defineddbx R. Assume now
that the null solution ofX%),,,, is asymptotically stable and analyze the structure of the bifurcating sets
of Theorem3.2. The setm,,(t) in the proof of Theorens.2 is now the largest invariant compact set
of ¢ disjoint fromy = 0 and contained in a fixed intervéal-y*,y*) C R. Moreover, the mapping
t — my,(t) isw—periodic. The two setsy,(t) UR™ andm,,(t) UR ™ are both compact and nonempty.
For fixedyu, we seta™ (t) = min{y : y € m,(t)URT} andb (t) = max{y : m,(¢t)URT}. Similarly
we definea=(t) andb~(t). Clearlya™ (t) anda™(¢) (and similarlya=(t) andb~ (¢)) are distinct for all
t € R or always coincident. It is easy to prove thay,(¢t) = [a~(¢),b™ (¢)] N [a™(¢), b1 (¢)] and that
the end points of these two intervals are fixed points ugdeéry). This latter property will imply that
if A(t) is anyone of the above points the $ét, A(¢),0), t € R} is a periodic trajectory of%),,.

Thus we have the following theorem.

Theorem 4.1 Suppose that all the assumptions in Theotethare satisfied withv = 1. Then each
bifurcating setV/,, of Theorens.2 is the union of two nonempty disjoitcompact setd/,, Mj lying
on®. Their sections\/,; (t), M, (t) are segments located in some regions, say o™, of  in which
y € (—y*,0) andy € (0,y*) respectively. Herg* is a fixed (independent gf, t) positive number.
Each one of the seR. x =, R x o contains at least one—periodic trajectory. If inR x o~ (resp.
R x o) there exists only ong—periodic trajectory, thenV/, (resp.MJ) reduces to this trajectory
which will be asymptotically stable.

We observe that ifX),, is autonomous for each > 0, the setsM,, aret—independent and~ (),
b= (t), a™(t), b™ (t) defined above are independenttoHence we havé/,(t) = [a,b~] N [a™, b1,
that is the setd/,(¢) are constituted by two fixed segments, each one being bounded by two equilibrium
points. Wheru~ = b~ (respectivelyn™ = b™) the corresponding segment reduces to an asymptotically
stable equilibrium point.

We notice that Theorem.1 holds without any other special requirement pandg. In order to
have the uniqueness (R x ¢~ andR x o™) of the w—periodic trajectories we need to strengthen
the hypotheses on the regularity pfand on the stability properties of the null solution(af),,,. We
assume thatx),,, (which is now one dimensional) may be written as

(41)’9H y = a(lt)y_FQ(tvyaOmu)a

wherea(0) = 0 anda(y) > 0 for u > 0 andq is aC* function, k& > 3, w—periodic int, vanishing
together with its first derivatives at the origin Bffor any . € (0, 1*). The following theorem holds.

Theorem 4.2 Suppose that systefh 1),,, satisfies one of the following conditior{g;) the null solution
of (4.1),0 is 3—asymptotically stablg;2) the null solution of4.1),0 is h—asymptotically stable with <
h <randa’(0) > 0, Then each one of the two sétf, , M, reduces to a—periodic asymptotically
stable trajectory ofX),,.

Proof. In the hypothesi$l), Theoren®.1 in [11] asserts that syste(i),, cannot have more than two
w—periodic nontrivial bifurcating solutions. Hence by Theorémit follows that the number of these
solutions is exactly two. In the hypothe$iy, the result consists essentially in the statement of Theorem
7.4in[1]. [ |
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B) v = 2. We first consider the case thaandg in Section3 aret—independent. The following statement
holds:

Proposition 4.1 Suppose thaf and g are time independent. Then we haver &= 2 and there exists

a neighborhood of the origip = 0 on ® in which there are not equilibrium positions different from

y = 0, then each bifurcating sel/,, is t-independent. Its constant section is homeomorphic to a closed
annulus and is bounded by two periodic orhitscs.

Clearly the result expressed in this proposition follows immediately from the known Poincaré-Bendixon
arguments relative to the limit cycles. Once again we notice that we do not need to assume any additional
hypotheses orf, g. Information on the uniqueness of the periodic orbits, may be obtained under the
stronger assumption that systé¢),,,, (which is now2—dimensional) may be written as

whereA(p) is a square matrix whose eigenvalugg) +i3(u) satisfya(0) = 0, o/(0) > 0, 5(0) # 0,
and P is aC* function,k > 3, which vanish together with its first derivatives at the origirRof for
anyp € (0, 1*). In this case for each > 0 small we have:; = ¢, if the solutiony = 0 of (4.2),0 is
h—asymptotically stablé € [3, k], in the sense specified in Definitidnl (see [9]).

In the periodic case we restrict ourselves to examine the situatiofXhigt may be written as

(43)9# y = A(/l’)y + Q(t7 ya 07 :u))

where:(1) A(u) is a square matrix whose eigenvalugg:) + i3(u) satisfya(0) = 0, ¢/(0) > 0 and
B(0) # 0; (2) Q is aC? function w—periodic int, vanishing together with its first derivatives at the
origin of R? for any i € (0, u*) andt € [0, w].

Theorem 4.3 Suppose that systefa.3),,o is autonomous and the null solution(@f3),,, is 3—asympto-
tically stable. Then the sectiordd), (¢) of the bifurcating setd/,, are Jordan curves around the origin.

Proof. Taking into account that(yx) > 0for i > 0, (i4é) implies thato () may be written in the form
a(u) = ap + p?o(u), a > 0ande € C2%, o(0) = 0. By a convenient change of variables, and using
polar coordinates, syste(d.3),,, may be written as

i=apr —br? +rty(0,r) + pr?a(t, 0, v, i) + pPro(p),
(4-4)yu .
0 = B(u) + r2p(0,7) + pr(t, 0,r, 1),

whereb > 0 is a constant and, ¢ arew—periodic int. Underthe hypotheses of Theoreh3 the
following statement holds(1) there existg.* > 0, »* > 0 such that for every, € (0, u*) we can
determinery, 72 € (0,r*), ri < ra, with the condition that the annulug < » < ry (sayA,) is
asymptotically stable, positively invariant, and its region of attraction confafts*) — {0}; (2) it may
be assumed; = k(u? — p?), ro = E(u? + p9)p = 1/2, k = (a/b)?, q¢ € (p,2p). (For the proof see
Lemma3.1 in [1]).
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Consider the change of variables

(4.5) p=(r—kuP)(u?)~".
The annulus4,, becomes the sé{(0, p) : |r| < 1} and systent4.4),,, assumes the form

p=—2app + p d(t, 0, p, ),
/
(a.4), |
0= 51(/”‘) + MA](tv 07 P, /1‘)

where) € (1,2). By integrating oveffto, to + w] and expanding i neary = 0 we obtain the), p
coordinates ofry, (1, (6o, po)). Herer = m,,, is the dynamical system relative t¢.4); :

p= [1 - 2&&)”]/}0 =+ [L)\D(tg, 007 £0; :U“)a
(4.6)yu
6 = 0 + B1(pw)w + p*J(to, 0o, po, ).

Let E be the set of all functions € C3(R, R) such that(1) e( + 27) = e(#) and|e()| < 1 for all
0 € R, (2) le(1) — e(B2)] < |01 — b2] for all 61,62 € R. By using the same arguments as in [4] it is
easy to prove that:

(a) foreveryd € [0,27] there exists a uniqué € [0, 27 such that

6 = G+ B1(p)w + 112 I (to, 6, po, ) ((mockr):

(b) the mapF : F — FE such that
F(e(8)) = [1 — 2awp]e(0) + p*D(to, 0, e(h), 1), for everyd € R,
is a contraction.

Then the manifoldl’,, corresponding to the unique fixed point #f is invariant under the discrete
dynamical systemr. By applying again the contraction principle we have thatis an attracting set
underr and its region of attraction contaiod,. Hence the properties of,, imply I, = m,,(to). The
proof is clearly complete. ]
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