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ABSTRACT. This paper concerns the bifurcation problem from equilibrium to invariant s-compact
periodic sets inR ×R

n, for one parameter families of periodic ordinary differential equations. The
analysis is accomplished by using appropriate families of discrete autonomous dynamical systems
and some previous results of the authors on the relationship between conditional and unconnditional
stability properties of sets inR×R

n.

1. Introduction. Consider a one parameter family of differential systemsẋ = f(t, x, µ), x ∈ R
n,

µ ≥ 0, wheref is smooth and periodic int for a constantω > 0 (in particulart–independent). Moreover
we assume that the origin0 is an equilibrium for eachµ. The present paper concerns the bifurcation from
the origin into invariant,ω–periodic, asymptotically stable,s–compact sets inR × R

n, under a drastic
change of the stability properties of the origin through the valueµ = 0 of the parameter.

For bifurcation phenomena the stability theory plays an important role not only in the analysis of
the stability of the bifurcating sets, but also in the analysis of their existence and structure. An example
is Hopf bifurcation (see for instance [3],[6] and references within).

The bifurcation problem from the origin intot–independent sets was described in [5] for continuous
or discrete autonomous dynamical systems. This problem is analyzed here for periodic differential sys-
tems allowing, as we already pointed out, to periodic bifurcating sets. The results are obtained by using
stability arguments and appropriate discrete dynamical systems. The interest of periodic bifurcating sets
is due to the fact that the cyclic processes in Natural Sciences are often connected to the periodicity of
motion of sets rather than the periodicity of motion of single points.

In this paper we have considered the two different situations that the bifurcating sets are of dimension
n+ 1 or of a dimensionν + 1, ν < n. The last situation is presented in the case that there exists aω–
periodic invariant manifoldΦµ in the time space on which each bifurcating setMµ lies. To connect the
stability properties of the bifurcating setsMµ with respect to the perturbations lying onΦµ, the stability
properties ofΦµ, and the unconditional stability properties ofMµ, we have applied some results that
we obtained in [12]. These results concern the general case that neither the differential equations nor
the invariant manifold are necessarily periodic. They will be summarized in Section2 in their general
formulation as well as in the periodic case.

We have tried to pick out the essential ingredients of the bifurcation phenomenon and then we have
assumed the existence of the invariant manifoldΦµ without specifying any particular condition onf
which allows to this existence. In this respect papers [10] and [1] are revisited and enriched.

More detailed information on the structure of the bifurcating setsMµ are given in Section4 in the
casesν = 1 andν = 2. In the first case, for anyt, the sectionΦµ(t) is homeomorphic to a straigthliney
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passing through the origin. Each sectionMµ(t) is homeomorphic to the union of two segments located in
the regionsy > 0 andy < 0 respectively. The end points are fixed with respect to the discrete dynamical
system induced onΦµ(t), while their motion with respect to the differential system is periodic with the
same periodω of the system. Ifν = 2, in the autonomous case we find the results already known in the
usual treatment of Hopf bifurcation although now the asymptotic stability ofΦµ near the origin is not
necessarily exponential. In the nonautonomous periodic case, under some additional assumption we find
that the sectionsMµ(t) are homeomorphic to Jordan curves and then the setsMµ are homeomorphic to
tori by interpretingt as an angular variable.

2. Preliminaries. Denote by‖ · ‖ the Euclidean norm inRn and byρ the induced distance. LetD
be a nonempy set inRn and fora > 0 let Bn(D, a) = {x ∈ R

n : ρ(x,D) < a}, Bn[D, a] = {x ∈
R

n : ρ(x,D) ≤ a}, Sn(D, a) = {x ∈ R
n : ρ(x,D) = a}. Consider a setA in R × R

n. We say
thatA is s–nonempty if for anyt ∈ R the sectionA(t) = {x ∈ R

n : (t, x) ∈ A} is nonempty. IfA
is s–nonempty and there exists a compact setQ in R

n such thatA(t) ⊆ Q for all t ∈ R, thenA is
said to bes–bounded. In this case the intersection of all these setsQ will be denoted byQ⋆(A). If A
is s–bounded and eachA(t) is compact, we say thatA is s–compact. When the mappingt → A(t) is
ω–periodic for someω > 0 or in particulart–independent, we say thatA isω–periodic ort–independent
respectively.

We denote byL(x) the class of functionsf : R × R
n → R

n, (t, x) → f(t, x), which are locally
Lipschitzian inx. We will write f ∈ Lu(x) if f satisfies the condition that for every compact set
K ⊂ R

n there exists a constantL(K) > 0 such that‖f (t, x) − f(t, y)‖ ≤ L(K)‖x − y‖ for all x, y
in K andt in R, and writef ∈ Lub(x) if in addition for every compactK ⊂ R

n the functionf is
bounded. Triviallyf ∈ Lu(x) implies f ∈ Lub(x) if there exists at least onex ∈ R

n such that the
functionf(·, x) is bounded.

Consider the system of differential equations

ẋ = f(t, x), (̇) =
d

dt
(2.1)

wheref ∈ C(R × R
n,Rn) and satisfies conditions ensuring the uniqueness of solutions. Moreoverf

is supposed to be such that (2.1) admits an invariants–compact setM in R × R
n. For any(t0, x0) ∈

R × R
n let us denote byx(t, t0, x0) the solution through(t0, x0) and byj+(t0, x0), j−(t0, x0) its

maximal interval of existence in the future and in the past respectively.
Let nowA be an invariant set inR × R

n. The stability concepts ofA are supposed to be known.
Assuming thatM is contained inA, we limit ourselves to define some stability properties ofA “near
M ” in the sense specified in [12]:

Definition 2.1 For anyγ > 0 let I[M, γ] = {(t, x) : t ∈ R, x ∈ Bn[M(t), γ]}. Then we will say that
A has a stability property nearM if there existsγ > 0 such that the property is satisfied with respect to
the perturbations(t0, x0) ∈ I[M, γ].

For instance:A is said to be:(i) stable nearM if there existsγ > 0 such that for anyt0 ∈ R and
ε > 0 one may findδ(t0, ε) > 0 with the property thatx0 ∈ Bn[M(t0), γ] andρ(x0, A(t0)) < δ(t0, ε)
imply ρ(x(t, t0, x0), A(t)) < ε for any t ∈ J+(t0, x0); (ii) attracting nearM if there existsγ > 0
such that one may findα(t0) > 0 for which x0 ∈ Bn[M(t0), γ] andρ(x0, A(t0)) < α(t0) imply
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j+(t0, x0) = [t0,+∞) andρ(x(t, t0, x0), A(t)) → 0 ast → +∞. Similarly one may define the other
stability or attractivity properties ofA nearM .

Remark 2.1 SinceM is contained inA, and thenρ(x0, A(t0)) ≤ ρ(x0,M(t0)) for any (t0, x0) ∈
R × R

n, the uniform attractivity ofA nearM may be defined as follows: There existsσ > 0 such
that t0 ∈ R and x0 ∈ Bn[M(t0), σ] implies thatx(t, t0, x0) exists for all t ≥ t0 and satisfies
ρ(x(t, t0, x0), A(t)) → 0 ast → +∞, uniformly in(t0, x0).

We need some of the results given in [12]. We summarize them in the following theorem.

Theorem 2.1 Let us assume that for some integerν ∈ [1, n) there exists for system (2.1) an invariant
set inR × R

n defined by

Φ = {(t, y, z) : t ∈ R, y ∈ R
ν , z ∈ R

n−ν , z = g(t, y)},

g ∈ C1, g ∈ L′

ub(y) such that(i) M ⊂ Φ; (ii) M is uniformly asymptotically stable onΦ, that is with
respect to the initial perturbations(t0, x0) ∈ Φ. Here byg ∈ L′

ub(y) we want to mean thatg belongs to
Lub(y) together with its first partial derivatives. We have:

(a) If f ∈ Lu(x) andΦ is stable (asymptotically stable) nearM , thenM is stable (asymptotically
stable);

(b) If f ∈ Lub(x) andM is uniformly stable (uniformly asymptotically stable), thenΦ is uniformly
stable (uniformly asymptotically stable) nearM .

Let us give now the version of Theorem2.1 when f andM are bothω–periodic int for the same
constantω > 0, f is continuous andf ∈ L(x). The conditionsf ∈ Lub(x) and thenf ∈ Lu(x) are
clearly satisfied. Moreover in this case the stability and the asymptotic stability ofM when occurring are
uniform. Consequently even the stability or the asymptotic stability ofΦ when occurring are uniform.
Indeed ifΦ is stable nearM ,M is stable by virtue of statement(a), then uniformly stable, and thenΦ
is uniformly stable by virtue of statement(b). Similarly one may proceed for asymptotic stability. Thus
the following corollary of Theorem2.1 holds.

Corollary 2.1 Assume thatf andM are bothω–periodic in t for the same constantω > 0, f is
continuous andf ∈ L(x). Then under the assumptions of Theorem2.1, M is stable (asymptotically
stable) if and only ifΦ is stable (asymptotically stable) nearM .

3. Bifurcation from equilibrium to s–compact sets for one - parameter families of periodic differ-
ential equations. Consider the one-parameter familyS of differential systems

(S)µ ẋ = f(t, x, µ), (̇) = d
dt
,

with f ∈ C1(R × R
n × R

+,Rn) and periodic int for some constantω > 0. Moreover we assume
f(t, 0, µ) ≡ 0 so that(S)µ admits the null solution for everyµ ≥ 0. We denote byM0 the so–called
null set,M0 = {(t, x) : t ∈ R, x = 0}. Given any(t0, x0) ∈ R × R

n andµ > 0 let us denote by
x(S)µ

(t, t0, x0) the solution of(S)µ through(t0, x0) and byj+(t0, x0, µ), j−(t0, x0, µ) its maximal
intervals of existence in the future and in the past respectively.
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Definition 3.1 We say thatµ = 0 is a bifurcation value on the right for the familyS at x = 0 if there
existµ⋆ > 0 and a family{Mµ}, µ ∈ (0, µ⋆), of s–compact andω–periodic subsets of(R×R

n)−M0

having the following properties:

(a) for eachµ ∈ (0, µ⋆),Mµ is invariant under(S)µ;

(b) Mµ(t) → {0} asµ→ 0 uniformly int.

We give now a very general theorem concerning the bifurcation from the origin into bifurcatings–
compact sets of dimensionn + 1. The case that the bifurcating sets lie on an invariant manifold of
dimensionν + 1, ν < n, will be treated afterwords. In the sequel a setH in R × R

n will be said to be
as–compact neighborhood ofM0 if H is s–compact and each sectionH(t) is a compact neighborhood
of x = 0.

Theorem 3.1 Suppose that the originx = 0 is asymptotically stable forµ = 0 and completely unstable
(i.e. asymptotically stable in the past) forµ > 0. Thenµ = 0 is a bifurcation value on the right.
Precisely there existµ⋆ > 0 and ans–compact neighborhoodH ofM0 such that for eachµ ∈ (0, µ⋆)
the largests–compact invariant set of(S)µ contained inH −M0, sayMµ, is nonempty,ω–periodic,
and the family{Mµ} satisfies(b) in Definition3.1. Moreover eachMµ is asymptotically stable under
(S)µ.

Proof. Let r, r′ be two numbers such that0 < r < r′. For eachµ ≥ 0 consider the familyS′ of
systems

(S′)µ ẋ = f(t, x, µ)α(x),

whereα ∈ C∞(Rn, [0, 1]) is such thatα(x) = 1 for ‖x‖ < r andα(x) = 0 for ‖x‖ ≥ r′. Because of
the local character of our problem, and because for eachµ system(S)µ coincides with(S′)µ in Bn(r),
the new familyS′ satisfies all the stability assumptions in Theorem3.1 and may replace the original
family S. For any(t0, x0) ∈ R × R

n andµ ≥ 0 let us denote byx(S′)µ
(t, t0, x0) the solution of(S′)µ

through(t0, x0). This solution clearly exists for allt in R. The proof is divided into four steps.

(i) Since the origin is an asymptotically stable solution of(S′)0 there exists a numberγ ∈ (0, r) and a
functionV ∈ C∞(R × R

n,R), ω–periodic int, such that

a(‖x‖) ≤ V (t, x) ≤ b(‖x‖),(3.1)

V̇(S′)0(t, x) ≤ −c(‖x‖),(3.2)

for all t ∈ R andx ∈ Bn(γ) [7, 8]. Herea, b, c are continuous strictly increasing functions fromR+

into R
+ with a(0) = b(0) = c(0) = 0, and the left hand side of (3.2) is the derivative ofV along the

solutions of(S′)0. We determine now a numberµ⋆ > 0 and ans–compact neighborhoohH ofM0 such
that for allµ ∈ (0, µ⋆)H is asymptotically stable under(S′)µ and invariant only in the future. Precisely
choose a numberλ ∈ (0, a(γ)) and consider the subset ofR × R

n

H = {(t, x) : ‖x‖ ≤ γ, V (t, x) ≤ λ}.
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Clearly(t, x) ∈ H implies‖x‖ < γ. Moreover we see thatH contains the points for whicht ∈ R and
|‖x‖ ≤ b−1(λ). Thus each sectionH(t) is a compact neighborhood ofx = 0 and is contained in the
open ballBn(γ). By (3.2) and continuity arguments we may selectµ⋆ so that

V̇(S′)µ
(t, x) ≤ −c(

b−1(λ)

2
)

for all µ ∈ (0, µ⋆), t ∈ R andx ∈ Bn(γ) − Bn(b−1(λ)). HenceH has all the properties we have
required above and in addition its region of attraction under(S′)µ contains a fixed neighborhoodH⋆ of
H . We will chooseH⋆ = {(t, x) : ‖x‖ ≤ γ, V (t, x) ≤ λ⋆}, for someλ⋆ > λ.

(ii) Let Z be the set of the integers. For any fixedt0 ∈ R andµ ∈ (0, µ⋆) consider the mapΠ :=
Πt0µ : Z × R

n → R
n defined byΠ(i, x) = x(S′)µ

(t0 + iω, t0, x). Clearly we haveΠ(0, x) = x and
Π(i1 + i2, x) = Π(i1,Π(i2, x)) for every i1, i2 ∈ Z andx ∈ R

n. HenceΠ defines an autonomous
discrete dynamical system depending ont0, µ. Forx ∈ R

n let J+(x) := J+
t0µ(x), J−(x) := J−

t0µ(x)
be the positive and the negative prolongational limit set ofx underΠ. Precisely:

J+(x) = {ξ ∈ R
n : there exist two sequences(ik), ik → +∞, (xk), xk → x,

such thatΠ(ik, xk) → ξ},

J−(x) = {ξ ∈ R
n : there exist two sequences(ik), ik → −∞, (xk), xk → x,

such thatΠ(ik, xk) → ξ}.

For the characterization of asymptotic stability by means of prolongational limit sets see for instance [2].
This characterization is usually given for continuous dynamical systems but, with slight modifications
in the proof, it remains valid also for discrete dynamical systems. The setH(t0) is a uniform attractor
underΠ and its region of uniform attraction containsH⋆(t0). Therefore,x ∈ H⋆(t0) impliesJ+(x) 6= ∅
andJ+(x) ⊆ H(t0). Letφ := φt0µ be the largest invariant set underΠ contained inH(t0)) and denote
by A−(0) := A−

t0µ(0) the region of negative attraction of the origin ofR
n underΠ. Clearly, because

of our assumptions,A−(0) is an open neighborhood ofx = 0. We show thatφ ⊃ A−(0). Since
A−(0) is invariant forΠ, it is sufficient to show thatH(t0) ⊃ A−(0). Indeedx ∈ A−(0) implies the
existence ofi ∈ Z

− such thatΠ(i, x) ∈ H(t0) and thenx = Π(−i,Π(i, x)) ∈ H(t0) by virtue of
the positive invariance ofH(t0). Define now the setMµ with the condition that its section at any time
t0 ∈ R isMµ(t0) = φ − A−(0). We prove thatMµ(t0) is a uniform attractor underΠ and its region
of uniform attractivity containsH⋆(t0)− {0}. Indeed, assumex ∈ H⋆(t0)− {0}, thenJ+(x) 6= ∅ and
J+(x) ⊆ H(t0). SinceJ+(x) is invariant underΠ, we haveJ+(x) ⊆ φ. Hence it remains to prove that
y ∈ J+(x) impliesy /∈ A−(0). Indeed we havex ∈ J−(y). Therefore ify ∈ A−(0), thenJ−(y) = {0}
and consequentlyx = 0. This is a contradiction and the assert is proved. SinceH(t0) = H(t0 +ω) and
Π remains unchanged whent0 is replaced byt0 + ω, we haveMµ(t0) = Mµ(t0 + ω). ThenMµ is a
ω–periodic set inR × R

n. It is immediate to recognize thatMµ is s–compact and thatMµ(t) → {0}
asµ → 0 uniformly in t.

(iii) We prove now thatMµ is invariant under(S′)µ. Clearly it is sufficient to show that for eacht0 the
setMµ(t0) is the image ofMµ(0) under the flow generated by(S′)µ. LetG = x(S′)µ

(t0, 0,Mµ(0)).
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We have

Π(i, G) = x(S′)µ
(t0 + iω, t0, G) = x(S′)µ

(t0 + iω, t0, x(S′)µ
(t0, 0,Mµ(0)))

= x(S′)µ
(t0 + iω, iω, x(S′)µ

(iω, 0,Mµ(0))) = x(S′)µ
(t0 + iω, iω,Mµ(iω))

= x(S′)µ
(t0, 0,Mµ(iω)) = x(S′)µ

(t0, 0,Mµ(0)) = G.

ThusG is a compact invariant set forΠ which does not contain the origin. ThereforeG ⊆ Mµ(t0).
By using the same argument we find thatMµ(0) ⊇ W , whereW = x(S′)µ

(0, t0,Mµ(t0)). Then
x(S′)µ

(t0, 0,W ) ⊇ G and sincex(S′)µ
(t0, 0,W ) = Mµ(t0), we haveMµ(t0) ⊆ G. HenceG = Mµ(t0)

and this completes the proof of the invariance ofMµ. It is also clear thatMµ is the largests–compact
invariant set of(S′)µ contained inH −M0.

(iv) Finally we prove thatMµ is an asymptotically stable set under(S′)µ. For this it is sufficient to
prove thatMµ is a uniform attractor under(S′)µ. Let σ denote any positive number such that the set
{x : ρ(x,Mµ(0)) < σ} is contained inH⋆(0) − {0}. It is easy to see that given anyβ > 0 we
can find a numberδ(β) ∈ (0, σ) such that forj ∈ Z and t0 = jω, ρ(x,Mµ(t0)) < δ(β) implies
ρ(x(S′)µ

(t, t0, x),Mµ(t)) < β for all t ∈ [t0, t0 + ω]. The existence of the numberδ(β) follows
by using the compactness ofMµ(t0), continuity arguments and theω–periodicity of(S′)µ. Moreover,
sinceMµ(0) is a uniform attractor underΠ0µ we have that relatively toδ(β) there exists an integer
h(β) = τ(δ(β)) such thatρ(x,Mµ(0)) < σ implies ρ(Π0µ(j, x),Mµ(jω)) < δ(β) for j ∈ Z and
j ≥ h(β). Taking into account that our choice impliesMµ(t0) = Mµ(jω) = Mµ(0), in conclusion we
obtain thatρ(x,Mµ(0)) < σ impliesρ(x(t, 0, x, µ),Mµ(t)) < β for all real t ≥ h(β). The proof is
complete.

In the autonomous case the setsMµ aret–independent. Precisely one has:

Proposition 3.1 Let us assume that(S)µ is autonomous for eachµ > 0. Then the bifurcating setsMµ

are t–independent, that isMµ = R × Cµ, whereCµ is the largest compact invariant set ofR
n disjoint

from the origin, contained in a fixed positively invariant neighborhood of the origin.

Clearly, since in Proposition3.1 Mµ(t) ≡ Cµ for any t, as observed before, we may consider all the
properties associated withMµ as properties of the setsCµ of R

n . Precisely we may say that the sets
Cµ are asymptotically stable and thatCµ → {0} asµ→ 0.

We treat now the case that the bifurcating sets lie on an invariant manifold. Consider again the above
family S of differential systems and assume in addition that each(S)µ admits an invariant manifold

(3.3)µ Φµ = {(t, y, z) : t ∈ R, y ∈ R
ν, z ∈ R

n−ν , z = g(t, y, µ)},

whereν < n, (y, z) = x, g isC1 andω–periodic int, (∂g/∂t) and(∂g/∂y) are locally Lipschitzian in
y, andg(t, 0, µ) ≡ 0. We notice that the above conditions ensureg ∈ L′

ub(y). Letu = z − g(t, y, µ). In
terms ofy, u the familyS may be identified by the familyΣ:

ẏ = Y (t, y, u, µ),
(Σ)µ

u̇ = U(t, y, u, µ),
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whereY, U are continuous and locally Lipschitzian in(y, u), Y (t, 0, 0, µ) ≡ 0, U(t, y, 0, µ) ≡ 0.
Moreover in the(t, y, u)–space the manifoldsΦµ coincide all with the manifold

Φ = {(t, y, u) : u = 0}.(3.4)

Thus,Φ = R× Φ̄, with Φ̄ ⊆ R
ν . For the solutions of(Σ)µ lying on the invariant manifoldΦ they–part

of x satisfies theν–dimensional system

(Σ)yµ ẏ = Y (t, y, 0, µ).

The bifurcating sets ofΣ are homeomorphic to those of the original family while the stability properties
involved are clearly the same. We continue to denote byM0 the null set of(Σ)µ, that is the setM0 =
{(t, y, u) : , t ∈ R, y = 0, u = 0}, and we now indicate bym0 the null set of(Σ)yµ, m0 = {(t, y) :
t ∈ R, y = 0}.

Theorem 3.2 Suppose that:(1) the solutiony = 0 of (Σ)yµ is asymptotically stable ifµ = 0 and
completely unstable ifµ > 0 small; (2) Φ is asymptotically stable near the origin ofRn. Thenµ = 0 is
a bifurcation value on the right for the familyΣ. Precisely there existµ⋆ > 0 and ans–compact neigh-
borhoodH ofM0 such that for eachµ ∈ (0, µ⋆) the largests–compact invariant set ofΣ contained in
H −M0, sayMµ, is nonempty, lies onΦ, is ω–periodic, asymptotically stable, and the family{Mµ}
satisfies(b) in Definition3.1.

Proof. By a suitable redefinition of(Y, U) outside of a neighborhood of(0, 0) (as indicated in the
proof of Theorem3.1), we may assume without loss of generality that for anyµ the solutions of(Σ)µ

are globally existing for allt ∈ R. This redefinition does not modify the invariant character ofΦ (see
the proof of Theorem3.2 in [12]). Assumption(1) is equivalent to say that the origin(0, 0) of (Σ)µ

is asymptotically stable on(Σ)yµ. Taking into account assumption(2), we recognize then by virtue of
Corollary2.1 that(0, 0) is (unconditionally) asymptotically stable. This latter property implies as in the
proof of Theorem3.1 the existence of a functionV ∈ C∞(R × R

ν × R
n−ν , R), ω–periodic int, and

of three functionsa, b, c such that

a(‖(y, u)‖) ≤ V (t, y, u) ≤ b(‖(y, u)‖),(3.5)

V̇(Σ)0 (t, y, u)) ≤ −c(‖(y, u)‖),(3.6)

for all t ∈ R and(y, u) ∈ Bn(γ) for someγ ∈ (0, σ1). Here we denote byσ1 the numberσ in Remark
2.1 relative to the uniform attractivity ofΦ near(0, 0). Moreovera, b, c are again continuous strictly
increasing functions fromR+ into R

+ with a(0) = b(0) = c(0) = 0. Lettingv(t, y) ≡ V (t, y, 0), we
see thatv is a Liapunov function associated with the asymptotic stability of the solutiony = 0 of (Σ)yµ.
Assumingλ ∈ (0, a(γ)), consider the two sets

H = {(t, y, u) : ‖(y, u)‖ ≤ γ, V (t, y, u) ≤ λ},

h = {(t, y) : ‖y‖ ≤ γ, , v(t, y) ≤ λ}.

As in the proof of Theorem3.1 we recognize thatH is ans–compact neighborhood ofM0 which is
invariant only in the future for(Σ)µ and whose sectionsH(t) are contained inBn(γ). Similarly h is
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a compact neighborhood ofm0 for (Σ)yµ, invariant only in the future, and whose sectionsh(t) are
contained inBν(γ). Moreover{(y, u) : y ∈ h(t), u = 0} = H(t) ∩ Φ̄. If µ⋆ > 0 is sufficiently small
then for allµ ∈ (0, µ⋆) the setsH, h are asymptotically stable for(Σ)µ and(Σ)yµ and their regions of
attractions contain fixed neighborhoodsH⋆, h⋆, ofH, h respectively. By virtue of Theorem3.1 applied
to system(Σ)yµ we recognize that ifµ⋆ > 0 is sufficiently small then for eachµ ∈ (0, µ⋆) the largest
s–compact invariant set of(Σ)yµ contained inh−m0, saymµ, is nonempty,ω–periodic, andmµ → m0

asµ→ 0. Thus ifµ ∈ (0, µ⋆) the set

Mµ = {t, y, u) : (t, y) ∈ mµ, u = 0}

is for (Σ)µ nonempty,ω–periodic, invariant, contained inH − M0, and asymptotically stable with
respect to the solutions lying onΦ. Since for everyt in R the sectionH(t) and then the sectionMµ(t)
are contained inBn(γ), we see thatΦ is asymptotically stable near eachMµ, µ ∈ (0, µ⋆). By using
again Corollary2.1 and taking into accoun our choice ofγ, it follows thatMµ is asymptotically stable
even for(Σ)µ and the region of uniform attractivity containsH⋆−M0. MoreoverMµ →M0 asµ→ 0.
To complete the proof it remains only to prove thatMµ is the largest invariant set of(Σ)µ contained in
H−M0. For any fixedt0 ∈ R andµ ∈ (0, µ⋆) consider as in the proof of Theorem3.1 the autonomous
discrete dynamical systemΠ := Πt0µ : Z × R

n → R
n relative to system(Σ)µ. Clearly it is sufficient

to prove that any sectionMµ(t0) is the largest compact invariant set ofΠ contained inH(t0) − {0, 0},
and consequently inH(t0)−A−({0, 0}). Letx0 = (y0, u0) ∈ H(t0)−A−({0, 0}) andx0 /∈Mµ(t0).
Suppose that the complete orbit ofx0 underΠ is contained inH(t0) −A−({0, 0}). Denote byΛ−(x0)
the negative limit set ofx0 underΠ. The setΛ−(x0) is nonempty, contained inH(t0)−{0, 0}, invariant
underΠ, and compact. ClearlyΛ−(x0) ∩Mµ(t0) = ∅ otherwisex0 would be weakly attracted from
Mµ(t0) in the past and thenMµ(t0) could not be stable. Letδ > 0 be the distance between the two
compact setsΛ−(x0), Mµ(t0) and letξ be any point inΛ−(x0). Because of the invariance ofΛ−(x0)
we have

ρ(Π(i, ξ),Mµ(t0)) > δ for every integer i ≥ 0.(3.7)

SinceMµ(t0) is asymptotically stable underΠ, it follows thatΛ+(ξ) ⊆Mµ(t0), a contradiction.
The proof is complete.

4. On the structure of the bifurcatings sets forν = 1 and ν = 2. We need preliminarly to recall
a concept of asymptotic stability that we have used elsewhere for autonomous as well as for periodic
differential systems [9, 11]:

Definition 4.1 Let Γr
τ , τ ≥ 0, be the set of functionsW : R × R

n → R
n such that(1) W (t, w) has

continuous partial derivatives up to orderr ≥ 1, (2) W is τ–periodic int and satisfiesτ = inf {λ >
0 : W isλ − periodic in t}. Consider then–dimensional systeṁw = W (t, w), whereW ∈ Γr

τ and
W (t, 0) ≡ 0. Leth, 0 < h ≤ r, be an integer. The solutionw = 0 of the given system is said to be
h–asymptotically stable if:(i) for anyζ ∈ Γr

τ andζ = o(‖w‖h) asw → 0, the solutionw = 0 of system
ẇ = W (t, w) + ζ(t, w) is asymptotically stable;(ii) property(i) is not satisfied whenh is replaced by
anyk = 1, 2, ..., h− 1.

On the basis of the results in Section3 we may give some general information on the structure of the
bifurcating sets in the casesν = 1 andν = 2.
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A) ν = 1. In this casey is a scalar variable and(Σ)yµ is a scalar differential equation. For any fixed
t andµ let π the restriction ofΠ ≡ Πtµ to Φ̄. Moreover denote byϕ(i, y) they coordinate ofπ(i, y);
henceπ(i, y) = (ϕ(i, y), 0). Clearlyϕ is a discrete dynamical system defined onZ × R. Assume now
that the null solution of(Σ)yµ is asymptotically stable and analyze the structure of the bifurcating sets
of Theorem3.2. The setmµ(t) in the proof of Theorem3.2 is now the largest invariant compact set
of ϕ disjoint from y = 0 and contained in a fixed interval(−y⋆, y⋆) ⊂ R. Moreover, the mapping
t→ mµ(t) isω–periodic. The two setsmµ(t)∪R

+ andmµ(t)∪R
− are both compact and nonempty.

For fixedµ, we seta+(t) = min{y : y ∈ mµ(t)∪R
+} andb+(t) = max{y : mµ(t)∪R+}. Similarly

we definea−(t) andb−(t). Clearlya+(t) anda+(t) (and similarlya−(t) andb−(t)) are distinct for all
t ∈ R or always coincident. It is easy to prove thatmµ(t) = [a−(t), b−(t)] ∩ [a+(t), b+(t)] and that
the end points of these two intervals are fixed points underϕ(1, y). This latter property will imply that
if λ(t) is anyone of the above points the set{(t, λ(t), 0), t ∈ R} is a periodic trajectory of(Σ)µ.

Thus we have the following theorem.

Theorem 4.1 Suppose that all the assumptions in Theorem3.2 are satisfied withν = 1. Then each
bifurcating setMµ of Theorem3.2 is the union of two nonempty disjoints–compact setsM−

µ ,M+
µ lying

onΦ. Their sectionsM−

µ (t), M+
µ (t) are segments located in some regions, sayσ−, σ+, of Φ̄ in which

y ∈ (−y⋆, 0) and y ∈ (0, y⋆) respectively. Herey⋆ is a fixed (independent ofµ, t) positive number.
Each one of the setsR × σ−, R × σ+ contains at least oneω–periodic trajectory. If inR × σ− (resp.
R × σ+) there exists only oneω–periodic trajectory, thenM−

µ (resp.M+
µ ) reduces to this trajectory

which will be asymptotically stable.

We observe that if(Σ)µ is autonomous for eachµ > 0 , the setsMµ are t–independent anda−(t),
b−(t), a+(t), b+(t) defined above are independent oft. Hence we haveMµ(t) ≡ [a−, b−] ∩ [a+, b+],
that is the setsMµ(t) are constituted by two fixed segments, each one being bounded by two equilibrium
points. Whena− = b− (respectivelya+ = b+) the corresponding segment reduces to an asymptotically
stable equilibrium point.

We notice that Theorem4.1 holds without any other special requirement onf andg. In order to
have the uniqueness (inR × σ− andR × σ+) of theω–periodic trajectories we need to strengthen
the hypotheses on the regularity off and on the stability properties of the null solution of(Σ)yµ. We
assume that(Σ)yµ (which is now one dimensional) may be written as

(4.1)yµ ẏ = a(µ)y + q(t, y, 0, µ),

wherea(0) = 0 anda(µ) > 0 for µ > 0 andq is aCk function,k ≥ 3, ω–periodic int, vanishing
together with its first derivatives at the origin ofR for anyµ ∈ (0, µ⋆). The following theorem holds.

Theorem 4.2 Suppose that system(4.1)yµ satisfies one of the following conditions:(1) the null solution
of (4.1)y0 is3–asymptotically stable;(2) the null solution of(4.1)y0 ish–asymptotically stable with3 <
h ≤ r anda′(0) > 0, Then each one of the two setsM−

µ , M+
µ reduces to aω–periodic asymptotically

stable trajectory of(Σ)µ.

Proof. In the hypothesis(1), Theorem3.1 in [11] asserts that system(Σ)µ cannot have more than two
ω–periodic nontrivial bifurcating solutions. Hence by Theorem4.1 it follows that the number of these
solutions is exactly two. In the hypothesis(2), the result consists essentially in the statement of Theorem
7.4 in [1].
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B) ν = 2. We first consider the case thatf andg in Section3 aret–independent. The following statement
holds:

Proposition 4.1 Suppose thatf andg are time independent. Then we have: Ifν = 2 and there exists
a neighborhood of the originy = 0 on Φ̄ in which there are not equilibrium positions different from
y = 0, then each bifurcating setMµ is t–independent. Its constant section is homeomorphic to a closed
annulus and is bounded by two periodic orbitsc1,c2.

Clearly the result expressed in this proposition follows immediately from the known Poincaré-Bendixon
arguments relative to the limit cycles. Once again we notice that we do not need to assume any additional
hypotheses onf , g. Information on the uniqueness of the periodic orbits, may be obtained under the
stronger assumption that system(Σ)yµ (which is now2–dimensional) may be written as

(4.2)yµ ẏ = A(µ)y + P (y, 0, µ),

whereA(µ) is a square matrix whose eigenvaluesα(µ)± iβ(µ) satisfyα(0) = 0, α′(0) > 0, β(0) 6= 0,
andP is aCk function,k ≥ 3, which vanish together with its first derivatives at the origin ofR

2 for
anyµ ∈ (0, µ⋆). In this case for eachµ > 0 small we havec1 = c2 if the solutiony = 0 of (4.2)y0 is
h–asymptotically stable,h ∈ [3, k], in the sense specified in Definition4.1 (see [9]).

In the periodic case we restrict ourselves to examine the situation that(Σ)yµ may be written as

(4.3)yµ ẏ = A(µ)y +Q(t, y, 0, µ),

where:(1) A(µ) is a square matrix whose eigenvaluesα(µ) ± iβ(µ) satisfyα(0) = 0 , α′(0) > 0 and
β(0) 6= 0; (2) Q is aC3 functionω–periodic int, vanishing together with its first derivatives at the
origin of R2 for anyµ ∈ (0, µ⋆) andt ∈ [0, ω].

Theorem 4.3 Suppose that system(4.3)y0 is autonomous and the null solution of(4.3)y0 is 3–asympto-
tically stable. Then the sectionsMµ(t) of the bifurcating setsMµ are Jordan curves around the origin.

Proof. Taking into account thatα(µ) > 0 for µ > 0, (iii) implies thatα(µ) may be written in the form
α(µ) = aµ + µ2σ(µ), a > 0 andσ ∈ C2, σ(0) = 0. By a convenient change of variables, and using
polar coordinates, system(4.3)yµ may be written as

ṙ = aµr − br3 + r4γ(θ, r) + µr2δ(t, θ, r, µ) + µ2rη(µ),
(4.4)yµ

θ̇ = β(µ) + r2ϕ(θ, r) + µrψ(t, θ, r, µ),

whereb > 0 is a constant andδ, ψ areω–periodic int. Underthe hypotheses of Theorem4.3 the
following statement holds:(1) there existsµ⋆ > 0, r⋆ > 0 such that for everyµ ∈ (0, µ⋆) we can
determiner1, r2 ∈ (0, r⋆), r1 < r2, with the condition that the annulusr1 ≤ r ≤ r2 (sayAµ) is
asymptotically stable, positively invariant, and its region of attraction containsB2(r⋆)−{0}; (2) it may
be assumedr1 = k(µp − µq), r2 = k(µp + µq),p = 1/2, k = (a/b)p, q ∈ (p, 2p). (For the proof see
Lemma3.1 in [1]).
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Consider the change of variables

ρ = (r − kµp)(µq)−1.(4.5)

The annulusAµ becomes the set{(θ, ρ) : |r| ≤ 1} and system(4.4)yµ assumes the form

ρ̇ = −2aµρ+ µλd(t, θ, ρ, µ),
(4.4)′yµ

θ̇ = β1(µ) + µλj(t, θ, ρ, µ).

whereλ ∈ (1, 2). By integrating over[t0, t0 + ω] and expanding inµ nearµ = 0 we obtain theθ, ρ
coordinates ofπt0µ(1, (θ0, ρ0)). Hereπ = πt0µ is the dynamical system relative to(4.4)′yµ:

ρ = [1 − 2aωµ]ρ0 + µλD(t0, θ0, ρ0, µ),
(4.6)yµ

θ = θ0 + β1(µ)ω + µλJ(t0, θ0, ρ0, µ).

Let E be the set of all functionse ∈ C3(R,R) such that(1) e(θ + 2π) = e(θ) and|e(θ)| ≤ 1 for all
θ ∈ R, (2) |e(θ1) − e(θ2)| ≤ |θ1 − θ2| for all θ1, θ2 ∈ R. By using the same arguments as in [4] it is
easy to prove that:

(a) for everyθ ∈ [0, 2π] there exists a uniquẽθ ∈ [0, 2π] such that

θ = θ̃ + β1(µ)ω + µλJ(t0, θ̃, ρ0, µ) ((mod2π);

(b) the mapF : E → E such that

F(e(θ)) = [1 − 2aωµ]e(θ̃) + µλD(t0, θ̃, e(θ̃), µ), for everyθ ∈ R,

is a contraction.

Then the manifoldΓµ corresponding to the unique fixed point ofF is invariant under the discrete
dynamical systemπ. By applying again the contraction principle we have thatΓµ is an attracting set
underπ and its region of attraction containsAµ. Hence the properties ofAµ imply Γµ = mµ(t0). The
proof is clearly complete.
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