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Abstract. Let C be a closed convex subset of a Hilbert space and {Tn} a sequence
of nonexpansive self-mappings of C. Then we consider the following iterative sequence
{zn}: x1 = x ∈ C, xn+1 = Tnxn, and zn = 1/n

�n
k=1 xk for n ∈ �. In this paper,

we obtain a weak convergence theorem for such a sequence {zn}. Using our result, we
get a nonlinear ergodic theorem which is a generalization of Baillon [2]. Further we
apply our result to the problem of finding a common fixed point of a countable family
of nonexpansive mappings.

1. Introduction

Let C be a nonempty closed convex subset of a real Hilbert space H . Then a mapping
T : C → C is called nonexpansive if

‖Tx − Ty‖ ≤ ‖x − y‖
for all x, y ∈ C. We denote by F (T ) the set of fixed points of T . In 1975, Baillon [2] proved
the first nonlinear ergodic theorem: Define

zn =
1
n

n∑
k=1

T k−1x

for every n ∈ N and x ∈ C and suppose that F (T ) is nonempty. Then the sequence {zn}
converges weakly to some element of F (T ). It is known that many results concerning the
mean ergodic theorem for a nonlinear mapping have been obtained, for example, [2], [11],
[12], [5], [7], [8], [19]; see also [6], [3], [18], [1], [10], [9], and the references therein. Reich
[13] also proved the following weak convergence theorem; see [16] for a simple proof.

Theorem 1.1 (Reich [13]). Let C be a nonempty closed convex subset of a real Hilbert
space H and T a nonexpansive self-mapping of C. Suppose that F (T ) is nonempty. Let
x1 = x ∈ C and

xn+1 = αnxn + (1 − αn)Txn

for n ∈ N, where {αn} ⊂ [0, 1) satisfies
∑∞

n=1 αn(1−αn) = ∞. Then {xn} converges weakly
to z ∈ F (T ).

Reich [13] really proved such a theorem in a uniformly convex Banach space whose norm
is Fréchet differentiable. Motivated by Baillon [2] and Reich [13], we consider the following
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iterative sequence {zn}: x1 = x ∈ C and⎧⎪⎨
⎪⎩

xn+1 = Tnxn,

zn =
1
n

n∑
k=1

xk
(1.1)

for n ∈ N, where {Tn} is a sequence of nonexpansive self-mappings of C.
In this paper, we establish a weak convergence theorem for such a sequence {zn} gener-

ated by (1.1). Using our result, we obtain a nonlinear ergodic theorem for a nonexpansive
mapping which is a generalization of Baillon [2]. Further we apply our theorem to the
problem of finding a common fixed point of a countable family of nonexpansive mappings
in a Hilbert space.

2. Preliminaries

Throughout this paper, H denotes a real Hilbert space with inner product 〈 · , · 〉 and
norm ‖ · ‖. Let {xn} be a sequence in H and x ∈ H . Weak convergence of {xn} to x is
denoted by xn ⇀ x and strong convergence by xn → x.

Let C be a nonempty closed convex subset of H and T a mapping of C into H . A
mapping T is said to be nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ C. The set of
fixed points of T is denoted by F (T ). It is known that F (T ) is closed and convex if T is
nonexpansive. For each x ∈ H , there exists a unique point z ∈ C such that

‖x − z‖ = min{‖x − y‖ : y ∈ C}.
Such a point z is denoted by Px and P is called the metric projection of H onto C. It is
known that

〈x − Px,Px − y〉 ≥ 0(2.1)

for all x ∈ H and y ∈ C; see [15] for more details.
To prove our results, we need the following lemmas.

Lemma 2.1 (Takahashi-Toyoda [17]). Let C be a nonempty closed convex subset of a real
Hilbert space H, P the metric projection of H onto C, and {xn} a sequence in H. If
‖xn+1 − u‖ ≤ ‖xn − u‖ for all u ∈ C and n ∈ N, then {Pxn} converges strongly.

Lemma 2.2 (Bruck [4]). Let C be a nonempty closed convex subset of a real Hilbert space
E. Let {Sk} be a sequence of nonexpansive mappings of C into H and {βk} a sequence of
positive real numbers such that

∑∞
k=1 βk = 1. If

⋂∞
k=1 F (Sk) is nonempty, then the mapping

T =
∑∞

k=1 βkSk is well-defined and F (T ) =
⋂∞

k=1 F (Sk).

Bruck [4] showed this assertion for a strictly convex Banach space.

3. Mean ergodic theorems

Using the technique in [15, p.59], we obtain the following:

Lemma 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let {xn}
be a sequence in H, {zn} a sequence in H defined by

zn =
1
n

n∑
k=1

xk

for n ∈ N, {αn} a sequence of real numbers such that αn → 0, and T a mapping of C into
H. Suppose that there exists z ∈ C such that

αn ≤ ‖xn − z‖2 − ‖xn+1 − Tz‖2
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for every n ∈ N and a subsequence {zni} of {zn} converges weakly to z. Then z is a fixed
point of T .

Proof. For all k ∈ N we have

αk ≤ ‖xk − z‖2 − ‖xk+1 − Tz‖2

= ‖xk − Tz + Tz − z‖2 − ‖xk+1 − Tz‖2

= ‖xk − Tz‖2 − ‖xk+1 − Tz‖2 + 2 〈xk − Tz, T z − z〉 + ‖Tz − z‖2
.

Summing these inequalities from k = 1 to n and dividing by n, we get

1
n

n∑
k=1

αk ≤ 1
n

(‖x1 − Tz‖2 − ‖xn+1 − Tz‖2) + 2 〈zn − Tz, T z − z〉 + ‖Tz − z‖2

≤ 1
n
‖x1 − Tz‖2 + 2 〈zn − Tz, T z − z〉 + ‖Tz − z‖2

.

Further, replacing n by ni, we obtain

1
ni

ni∑
k=1

αk ≤ 1
ni

‖x1 − Tz‖2 + 2 〈zni − Tz, T z − z〉 + ‖Tz − z‖2
.

Since zni ⇀ z and 1/ni

∑ni

k=1 αk → 0, we obtain

0 ≤ 2 〈z − Tz, T z − z〉 + ‖Tz − z‖2 = −‖Tz − z‖2

and hence Tz = z.

We prove the main result of this paper.

Theorem 3.2. Let C be a nonempty closed convex subset of a real Hilbert space H. Let
{Tn} be a sequence of nonexpansive self-mappings of C. Let {xn} and {zn} be two sequences
in C defined by x1 = x ∈ C and ⎧⎪⎨

⎪⎩
xn+1 = Tnxn,

zn =
1
n

n∑
k=1

xk

for n ∈ N. Suppose that {Tn} is pointwise convergent and T denotes the pointwise limit of
{Tn}, that is, Ty = limn→∞ Tny for y ∈ C. Then the following hold:

(i) The mapping T is nonexpansive and
⋂∞

n=1 F (Tn) ⊂ F (T ).
(ii) If {xn} is bounded, then F (T ) is nonempty.
(iii) If F (T ) =

⋂∞
n=1 F (Tn) 
= ∅, then {zn} converges weakly to z ∈ F (T ), where z =

limn→∞ Pxn and P is the metric projection of H onto F (T ).

Proof. We first prove (i). Let x, y ∈ C be fixed. Since each Tn is nonexpansive, we have

‖Tx − Ty‖ ≤ ‖Tx − Tnx‖ + ‖Tnx − Tny‖ + ‖Tny − Ty‖
≤ ‖Tx − Tnx‖ + ‖x − y‖ + ‖Tny − Ty‖ .

Since ‖Tny − Ty‖ → 0 for all y ∈ C, we conclude that ‖Tx − Ty‖ ≤ ‖x − y‖. Suppose
u ∈ ⋂∞

n=1 F (Tn). It is easy to obtain that

‖u − Tu‖ ≤ ‖u − Tnu‖ + ‖Tnu − Tu‖ = ‖Tnu − Tu‖ → 0.

Therefore u ∈ F (T ).
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Let us show (ii). Assume that {xn} is bounded. Then {zn} is also bounded. Thus
there exists a subsequence {zni} of {zn} such that zni ⇀ z. Note that z ∈ C. Since Tn is
nonexpansive, it is clear that

‖xn+1 − Tnz‖ = ‖Tnxn − Tnz‖ ≤ ‖xn − z‖
for every n ∈ N. This yields

‖xn+1 − Tz‖2 = ‖xn+1 − Tnz + Tnz − Tz‖2

= ‖xn+1 − Tnz‖2 + ‖Tnz − Tz‖2 + 2 〈xn+1 − Tnz, Tnz − Tz〉
≤ ‖xn − z‖2 + ‖Tnz − Tz‖ (‖Tnz − Tz‖+ 2 ‖xn+1 − Tnz‖).

Hence we conclude that

αn ≤ ‖xn − z‖2 − ‖xn+1 − Tz‖2

for every n ∈ N, where αn = −‖Tnz − Tz‖ (‖Tnz − Tz‖ + 2 ‖xn+1 − Tnz‖). Since {Tn} is
pointwise convergent and both {xn} and {Tnz} are bounded, it follows that αn → 0. Thus
Lemma 3.1 implies that z ∈ F (T ). This means that (ii) holds.

Let us prove (iii). Let u ∈ ⋂∞
n=1 F (Tn). It is obvious that

‖xn+1 − u‖ = ‖Tnxn − Tnu‖ ≤ ‖xn − u‖(3.1)

for every n ∈ N. Thus {xn} is bounded. Then {zn} is also bounded. Let {zni} be a
subsequence of {zn} such that zni ⇀ z. As in the proof of (ii), we obtain z ∈ F (T ). On the
other hand, Lemma 2.1 and (3.1) imply that limn→∞ Pxn = w ∈ ⋂∞

n=1 F (Tn). To complete
the proof, it is enough to prove z = w. From z ∈ F (T ) and (2.1), it holds that

〈z − w, xk − Pxk〉 = 〈z − Pxk, xk − Pxk〉 + 〈Pxk − w, xk − Pxk〉
≤ 〈Pxk − w, xk − Pxk〉
≤ ‖Pxk − w‖ ‖xk − Pxk‖
≤ ‖Pxk − w‖M

for every k ∈ N, where M = sup{‖xk − Pxk‖ : k ∈ N}. Summing these inequalities from
k = 1 to ni and dividing by ni, we have〈

z − w, zni −
1
ni

ni∑
k=1

Pxk

〉
≤ 1

ni

ni∑
k=1

‖Pxk − w‖M.

Since zni ⇀ z as i → ∞ and Pxn → w as n → ∞, we obtain 〈z − w, z − w〉 ≤ 0. This
means z = w. This completes the proof.

Let T : C → C be a nonexpansive mapping. In Theorem 3.2, putting Tn = T for n ∈ N, we
see that xn+1 = T nx and zn = 1/n

∑n
k=1 T k−1x for every n ∈ N, and moreover, it is also

clear that Tny − Ty = 0 for all y ∈ C and F (T ) =
⋂∞

n=1 F (Tn). Therefore Theorem 3.2 (ii)
yields a fixed point theorem for a nonexpansive mapping in a Hilbert space.

Theorem 3.3 ([15, Theorem 3.1.6]). Let C be a nonempty closed convex subset of a real
Hilbert space H and T a nonexpansive self-mapping of C. Then F (T ) 
= ∅ if and only if
{T nx} is bounded for some x ∈ C.

We also obtain a nonlinear ergodic theorem which was proved by Baillon [2]; see also [15,
Theorem 3.2.1].
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Theorem 3.4 (Baillon [2]). Let C be a nonempty closed convex subset of a real Hilbert
space H and T a nonexpansive self-mapping of C. Suppose that F (T ) is nonempty. Let
x ∈ C and let {zn} be a sequence in C defined by

zn =
1
n

n∑
k=1

T k−1x

for n ∈ N. Then {zn} converges weakly to z ∈ F (T ), where z = limn→∞ Pxn and P is the
metric projection of H onto F (T ).

Further, we obtain the following theorem:

Theorem 3.5. Let C be a nonempty closed convex subset of a real Hilbert space H and T
a nonexpansive self-mapping of C. Suppose that F (T ) is nonempty. Let x ∈ C and let {xn}
and {zn} be two sequences in C defined by x1 = x ∈ C and⎧⎪⎨

⎪⎩
xn+1 = αnxn + (1 − αn)Txn,

zn =
1
n

n∑
k=1

xk

for n ∈ N, where {αn} ⊂ [0, 1) satisfies limn→∞ αn = 0. Then {zn} converges weakly to
z ∈ F (T ), where z = limn→∞ Pxn and P is the metric projection of H onto F (T ).

Proof. Put Tn = αnI + (1 − αn)T for n ∈ N, where I is the identity mapping on C. Then
Tn is nonexpansive and F (Tn) = F (T ) for every n ∈ N. Therefore

⋂∞
n=1 F (Tn) = F (T ) 
= ∅

and ‖Tny − Ty‖ = αn ‖y − Ty‖ → 0 for all y ∈ C. So, from Theorem 3.2 (iii), we have the
desired result.

Problem 3.6. Can we establish a theorem which unifies Theorem 1.1 and Theorem 3.5?

For the remainder of this paper we discuss the problem of approximating a common fixed
point of a given countable family of nonexpansive mappings.

Let C be a nonempty closed convex subset of a Hilbert space H . Let {Sn} be a sequence
of nonexpansive self-mappings of C and {βn} a sequence of (0, 1) such that

∑∞
n=1 βn = 1.

We define a sequence {Tn} of self-mappings of C as follows:

T1 = β1S1 + (1 − β1)S2,

T2 = β1S1 + β2S2 + (1 − β1 − β2)S3,

...

Tn =
n∑

k=1

βkSk + (1 −
n∑

k=1

βk)Sn+1,

for n ∈ N. It is easy to verify that F (Tn) =
⋂n+1

k=1 F (Sk), so that we obtain

∞⋂
n=1

F (Tn) =
∞⋂

k=1

F (Sk).(3.2)

From Lemma 2.2 we may define a nonexpansive self-mapping T of C by

T =
∞∑

k=1

βkSk.
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It also follows from Lemma 2.2 and (3.2) that

F (T ) =
∞⋂

n=1

F (Tn) =
∞⋂

k=1

F (Sk).

Let u ∈ ⋂∞
k=1 F (Sk) be fixed. Since each Sk is nonexpansive, we see that

‖Sky‖ ≤ ‖Sky − Sku‖ + ‖Sku‖ ≤ ‖y − u‖ + ‖u‖
for all y ∈ C and k ∈ N. Then we obtain

‖Ty − Tny‖ =

∥∥∥∥∥
∞∑

k=1

βkSky −
(

n∑
k=1

βkSky + (1 −
n∑

k=1

βk)Sn+1y

)∥∥∥∥∥
=

∥∥∥∥∥
∞∑

k=n+1

βkSky − (1 −
n∑

k=1

βk)Sn+1y

∥∥∥∥∥
≤

∞∑
k=n+1

βk ‖Sky‖ + (1 −
n∑

k=1

βk) ‖Sn+1y‖

≤ M

∞∑
k=n+1

βk + M(1 −
n∑

k=1

βk)

for all y ∈ C and n ∈ N, where M = ‖y − u‖+‖u‖. From the assumption that
∑∞

k=1 βk = 1,
we conclude that

lim
n→0

‖Ty − Tny‖ = 0

for all y ∈ C. So, we obtain the following theorem:

Theorem 3.7. Let C be a nonempty closed convex subset of a real Hilbert space H. Let
{Sk} be a sequence of nonexpansive self-mappings of C such that

⋂∞
k=1 F (Sk) is nonempty

and {βk} a sequence in (0, 1) such that
∑∞

k=1 βk = 1. Let {xn} and {zn} be two sequences
defined by x1 = x ∈ C and⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
xn+1 =

n∑
k=1

βkSkxn + (1 −
n∑

k=1

βk)Sn+1xn,

zn =
1
n

n∑
k=1

xk

for n ∈ N. Then {zn} converges weakly to z ∈ ⋂∞
k=1 F (Sk), where z = limn→∞ Pxn and P

is the metric projection of H onto
⋂∞

k=1 F (Sk).
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