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ABSTRACT. We consider boundary value problems for the one-dimensional Schrédinger
operator with Dirac delta potential. Green functions G(z,y) are constructed by using
the symmetric orthogonalization method, and their aspects as reproducing kernel are
also investigated. As an application, the best constants of the corresponding Sobolev
inequalities is expressed as the maximum of the diagonal value G(y,y).

1 Conclusion

The present problem has two real parameters, a and b. We consider the following four
cases.

I 0<b<oo, 0O0<a<o
II —00<b<0, bl<a<oco
111 —00<b<0, a=|y
v —0<b<0, 0<a<|b
b
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v
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We introduce Sobolev space

H = H(a,b) = {u(m) u(z), u'(z) € L*(—o0,00),

in case of III and IV, we require / u(z) exp(—|bl|z|)dz = 0 } (1.1)

Sobolev inner product

(u,0) 5 = /_ h [u'(x)ﬁ'(x) + a2u(x)v(x)}dx + 2bu(0)3(0) (1.2)
Sobolev energy

lully = @ = [ [[@F + @ |u(@)*]ds + 25 |u(©) (13)
and Sobolev functional

sw = (_sw _uw)1) /1ol (14

—oo<y<oo

(+,+)m is proved to be an inner product of H afterwards. H is Hilbert space with an inner
product (") g-
The purpose of the present paper is to find the supremum of Sobolev functional S(u).

The following two equivalent theorems were derived.

Theorem 1.1

sup  S(u) = C(a,b) = 2i (I, III, IV)
uwEH, u#0 a
1 - (1.5)
-y

Theorem 1.2 There exists a positive constant C such that for any u(xz) € H Sobolev

inequality

(Lsw_lut) |)2 <o|[ [W@P + @l P]e - wlw0f] 0

—oo<y<oo — 0

holds. The best constant C(a,b) among such C' is the same as that in (1.5).

The present paper is composed of five sections. In Section 2, we consider boundary
value problems for one-dimensional Schriodinger operator with Dirac delta potential. In
Section 3, Green functions are constructed. In particular, in cases III and IV, we use the
symmetric orthogonalization method [2, 3, 4]. In Section 4, we show that Green functions
are reproducing kernels for H and (-,-)g [1, 5]. Finally, Section 5 presents the proof of the
main theorem, Theorem 1.2.
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2 Boundary value problems
In this section, we explain the boundary value problem for second-order one-dimensional
Schrédinger operator with Dirac delta potential.

We first survey the well-known case. For any f(z) € L?(—o0,0), the boundary value

problem
—u" + a*u = f(z) (—o0 <z < 0) (2.1)
u(z), u'(z) € L*(—00,00) (2.2)
has a unique solution expressed as
u@) = [ Haile =y f)dy  (~oo <o <o0) (23)
H(a;z) = 2_1a exp(—ax) (0 <z < ). (2.4)
Note that
H'(a;z) = —aH(a;x), H"(a;2) = a® H(a; ). (2.5)

Before discussing the boundary value problem treated herein, we consider the following

eigenvalue problem:
—u” + (a® + 206(z))u = \u (—o0 < 2 < 0) (2.6)
{ u(z), v'(z) € L*(—o0,00) (2.7)
where 6(z) is Dirac delta function. If b > 0 then A = 0 is not an eigenvalue. However, if b < 0

and a = |[b], A = 0 is an eigenvalue and the corresponding eigenspace is one-dimensional.

The normalized eigenfunction is given by
p(x) = 22 H(Jb|; |2]) (=00 <z < o0). (2.8)

For f(z) € L?(—o0, o) satisfying the solvability condition

S (Solvability condition) : none (I, 1)
e 2.9
| twewa=o @) 29
we consider the following boundary value problem:
BVP
—u” + (a® + 2b6(x))u = f(x) (—oo0 < < 00) (2.10)
u(z), v'(z) € L*(—00,00) (2.11)
O (Orthogonality condition) : none 1, II)
e 2.12
/ u(z)p(z)de =0 (11, IV). (2.12)

Theorem 2.1  For any f(z) € L?*(—o0,00) which satisfies the condition S, BVP pos-

sesses a unique solution u(x) expressed as
o
u(z) = / Gla.y) fW)dy  (—o0 <z <o) (2.13)
— 00

where Green function G(x,y) is given by Theorem 2.2.
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Theorem 2.2 Green function G(z,y) is given by (1) and satisfies properties (2)~(8).

1) Gy =
Has e —yl) = 22 H(as Jo]) Hlas Jy)) (1, 1)
H(ai o =yl) = 20 (e + alyl + 3) HasJal) HCai ) (a0
H(a;lz—y|) — |§|GE)|GH(a; lz|)H(a; |y|)+
3
s HO s el HOl: ) ()
(—o0 < z,y < 0) (2.14)

(2) 0:G(x,y) =

2a%b
—asgn(z —y) H(a; v —yl) + ——psgn(z) H(a; |2]) H(a; Jy]) (I, 1I)
—asgn(x —y)H(a; |z —y|)+
9 1
2asgn(o) (alel -+ aly| ~ 3 ) H(a Jal) H(as o) (1)
~asn(o —y) H(ai [0 ~3]) + 50 senta) Has ol H(a o)) -
s senl) Ho bl (s o) (v)
(—o <z, y<oo, x#0,y) (2.15)

(3) 97G(x,y) =
2a°b

@ Hiailo—yl) -~

H(as|z|)H(as lyl) = a® G(z,y) (I, 1)

3
o H(as e ~ol) - 20 (alal + abl ~ 3 ) H(as o) (a3 o]) =

@ Glr.y) + olz) o) ()
a3
@ H(ai o =3l — G Has Jal) H(as o))+
5
s HHS ) 8 bl) = o Gl) + 9(o) (0 v)

(—oo <z, y<oo, z#0,y) (2.16)
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4) G(0,y) =
—5 Haz ) (I, 1)
= (alvl - 3) HCas ) (1
e )+ Rt H ) av)
(—o0 <y <o) (2.17)
z=—0 z=+0
- 20 Has ) = - 260.) o m
~20 (abl - 3) Hlai bl) = 26(0.9) (1)
— 20 s o)) + RS BB ) = 2600 (V)
(—o0o <y <o) (2.18)
(6) G(x,y)‘y:m_o - G(ar;,y)‘y:“_0 =0
8$G(ac,y)‘ - 8$G(x,y)‘ - 1 (I, IL 10, IV)
y=z—0 y=z+0
(—o0 <z < o0) (2.19)
(7) G(z,y) yio G(z,y) o =0
8$G(ac,y)’ " %G| =1 (LI L IY)
(—00 <y < o0) (2.20)
(8) /_OO o(z) G(z,y)dx = 0 (I11, 1IV) (—o0 <y < 00) (2.21)

Expression (1) of Green function is derived in Section 3. Properties (2)~(8) are shown
through simple calculations.

3 Symmetric orthogonalization

In this section, we derive expression (1) (Theorem 2.2) of Green function by means of
the symmetric orthogonalization method [2, 3, 4].

We first treat the simple cases I and II. Since the solution u(z) of BVP satisfies

—u” + a®u = f(x) — 2bu(0) () (—o0 <z < 00)
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we have
uta) = [ ai o) [f(y) ~ 2bu(0) 8(y)| dy =

/jo H(a; [z —yl) f(y)dy — 20u(0) H(a; |x]). (3.1)

Setting z = 0, we have

a
a+b

uo) = 4 [ " Has lyl) £(y) dy.

Thus, we obtain

2ab
a+b

o) = [ [H<a;|x—y|> =2 fas el H as )| £ dy.

—00

Next, we consider case III. We assume that the function w(z) satisfies the conditions
(2.10) and (2.11). For (3.1) putting b = —a and = = 0, we have

/ " fw) H(as ) dy = 0 (3.2)

and ©(0) is not determined. (3.2) is the necessary condition of the existence of classical

solution to (2.10) and (2.11). The solution u(z) is expressed as

ww) = [ Has o - ) S dy + aple)  (—oo < <o)

where « is a suitable constant.
Green function of BVP is constructed by the symmetric orthogonalizaion method start-
ing from the above proto Green function H(a; |x —y| ). Namely, Green function G(z,y) is

constructed from H(a; |x — y|) as follows:
Gle,y) = Ha: |z —y]) -
o) [ o) Hai e —y)ds’ — [ H(as o -y o) dy' olw) +
o) [ [ Hlas e~y Do) i ply) (o <my <o) (33

We next prove the following lemma.

Lemma 3.1  If we introduce a function ¥(x) by

v = [ Hasle—sDet)dy  (—oo<a <o) (3.4
then we have
(1) () = a2 (alz| + 1)H(a; |x|) (—o0 < x < ) (3.5)

@ [ vwewar = 2 (3.6)
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Proof of Lemma 3.1 We first introduce a fundamental solution of the heat equation

given by

h(x,t) = (4nt)"Y2exp(—a22/(4t))  (—oo <z <00, 0<t<00). (3.7)
The proto Green function is expressed as

H(aj;lz|) = /000 exp( —a®t) h(x,t) dt (—o0 <z < 0). (3.8)

The function v (z) is calculated as

o7 V) = [ s o=l HCas ol dy =
/ / exp( —a’t) h(z —y, 1) dt/ exp(—a®s) h(y,s)dsdy =
—c0 JO 0

/w/ooexp(—aQ(t+8))/_Zh(x—y,t)h(yys)dydtds _

/ / exp(—a®(t+ s)) h(z,t +s)dtds =
(r=t+s, c=t—s)
(o)
/ /exp —a®1) (xT)dadT—/ 7 exp( —a’t) h(z,7)dr =
1
~ ~9,H(a; |z]) = — ) H(a: |z|).
5o 0uH (a3 [a]) = 55 (alel +1) H(a; la])
Hence, we have
Y(z) = a Y (alz| +1)H(a;|z]) (—o0o <z < o0)

which proves (1). Then, (2) is shown from (1) through simple calculations. |
From Lemma 3.1, Green function G(z,y) is given by

Glae.y) = H(a; lr = 3]) = o) 0ly) — 62 oly) + o5 9(2) oly) =
H(ai o =y1) = 2a (alol + aly] + 3 ) Has le)) H(a o)

(—o0 < z,y < 00). (3.9)

This shows (1) of Theorem 2.2 for case III.
Finally, we treat case IV. For any f(z) € L?(—o00, 00) satisfying condition S, the bound-

ary value problem

{ —u” + (a® = 2| 6(z))u = f(x) (—oo0 <z < 00) (3.10)
u(z), v (z) € L*(—o00,00) (3.11)

has a unique classical solution u(zx), which is expressed as

0= [ Glen iy (oo<r<o) (3.12)
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where Go(z,y) is the proto Green function given by

2ab|

Go(z,y) = H(a; |z —y|) — |b|_aH(a; lz[) H(a; lyl) (oo <y <o0).

(3.13)

Green function G(z,y) is constructed by means of Go(x,y) as

e}

G(z,y) = Golz,y) — () /

— 00

o(a") Go(2',y) da’ — /_OO Go(z,y") e(y') dy' ¢(y) +
/ / NGola' ) o) da' dyf o(y)  (—00 <,y < o). (3.14)

Before calculating the above integral, we prepare the following lemma.

Lemma 3.2

/H le—yl)H (Ibl;lyl)dy:W%CLQ(H(a;IxI)—H(IbI;IxO
(o0 <2 < 00) (3.15)
/_H(a;IyI)H(IbI;IyI)dy=m (3.16)

Proof of Lemma 3.2 Since the proof of (2) is easy, we treat only (1).

H(a; |z —yl)H([b]; |y|)dy =

88

exp(—a’t) h(z —y, )dt/ exp( —|b|*s) h(y, s)dsdy =

)
"

exp( —a’t — |b|%s) / h(z —y,t)h(y,s)dydtds =
exp( — |b?s (2, t + s)dtds =

/ooO (/T exp(—a*(r +0)/2 — |b*(t — 0)/2)h(z,7) dU) dr =

—T

(r=t+s, c=t—2s)

1 [~ [T
5/0 /,T‘”‘P((‘bl? —a)0/2) do exp(—(a® + [b[*)7/2) bz, 7) dr =
: / {exp( —a’r) —exp(—leT)} h(z,7)dr =

[b]> —a? Jo

G (e b)) — HOL )|

which completes the proof. |
The following lemma is a direct consequence of Lemma 3.2.
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Lemma 3.3  If we introduce a function ¥(x) by

o) = [ T Goley) o)y (—o0 < < o) (3.17)

then we have

3/2
(1) ¥a) =~ G B Jel) = - ot ele) (coo<o<oo) (1)

@ a0 = [ v@e@d = - (3.19)

From Lemma 3.3, we have

G(z,y) = Go(z,y) — p(x)Y(y) — ¥(@)e(y) + g0 9(x) p(y) =

2alb 4/p|3
Ha; o — o)) — 22 H(as o) H(as o) + 22 () Jaf) BB 1)
b] —a ]2 —a
(—o0 < z,y < 00). (3.20)
This shows (1) of Theorem 2.2 for case IV. |

4 Reproducing kernel
In this section, we show that Green functions G(z,y) are also reproducing kernels for

Hilbert space H equipped with its inner product (-, ) g. First, we show the following lemma.
Lemma 4.1  (-,-)gy defined by (1.2) is an inner product of H.

Proof of Lemma 4.1 It is sufficient to prove that (u,u)y =0 implies u(z) =0 (—o0 <
x < 00) in cases I ~ IV.

Since this is obvious for case I, we consider case II. We first rewrite (u,u)y as

(u,u) g = /oo [1/@)° + o u@) | do = 200l [u(0) P = 11 + I + Iy

where
b= [T (W@ P s @l de - 20 (s juwl)
=2 ) (s jue1) k=2 [(_wsgfwmwnf ~ Ju(0) F] .

I3 > 0 is obvious. Since Iy > 0 holds in the special case of Theorem 1.2 (b = 0), i.e. Sobolev
inequality in a usual sence, we have (u,u)r > Is. Note that a — |b] > 0, u(z) =0 (—o0 <
x < 00) follows from (u,u)m = 0.

We next consider case III. The eigenfunction

p(a) = 22 H([Bl; |2]) = [b]'/Zexp(—[bllz])  (—o0 <& < c0)
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satisfies the following relations:

¢'(z) = —|blsgn(z) o(z),  ¢"(z) = [b*e(z) (oo <z <oo, xz#0),
@' (—0) — ¢'(+0) — 2]b](0) = 0.

Using the above relations, we have
<%wH=/Zﬂ¢mf+wﬁﬁuﬂM—2mw@=
U+ [Hewew) +e@( - o'+ plow)]ar - 21020 =

2 (0) [¢(=0) = ¢ (+0) = 2blp(0)] = 0 (4.1)
and for any u(x) € H

(o = [ @) ¢/t@) + b ulo) olo)] do — 201 u(0) 9(0) =

[+ [H @) + (- o+ )] - 2000 =

u(0) [« (=0) = &/ (+0) = 2}plo(0)] = 0. (4:2)
In order to prove that (u,u)y = 0 implies u(z) = 0 (—o00 < & < o0), we introduce the

function v(x) defined by v(z) = u(z) — ap(z),

(u,u)g = 0, we have

o

= u(0)/(0). Under the assumption

(v)g = (u—ap, u—ap)y = (u,u)g — 2Red@ (u, )y + |af*(p, @)y = 0

from (4.1) and (4.2). On the other hand, we have

(v,v)g = /o;“v’(x”? + |b|2|v(x)|2}dx

from the definition and v(0) = 0. Hence, the relation v(z) = 0 or equivalently u(z) =
ap(z) (—oo < x < 00) holds. From the orthogonality relation ffooo u(z)p(z)dx = 0, we
conclude that u(xz) =0 (—o0 < & < 00).

Finally, we consider case IV. First, we have
oot = [ |(#@)? + )|z~ 20l0) =

)@'@) + o)~ ¢"(x) + (@) |do — 2| $2(0) =
([ [ e |

oo

PO (-0) = & (+0) ~ 2Bp(0)] = (b =) [ Pla)ds = — (B —a®) (43)

—00
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and for any u(z) € H

(o = [ i) ¢ @) + 0 ula) o(o)] do — 20/ u(0) 9(0) =

{/_Ooo+/ooo} [(W‘) @'(x))l + u(@)( - ¢'(@) +a2so(ac))]dm — 2[b|u(0) p(0) =
u(0) [so’(—O) —¢'(+0) — 2/p| <p(0)] + (a® - |b|2)/o; u(z) p(z)dz = 0. (4.4)

We show that (u,u)y =0 implies u(z) =0 (—o0o0 < x < 00). As in case III, we introduce
the function v(z) defined by v(z) = u(x) — ap(z), a =u(0)/p(0). We have

(0. 0) = (ww)y — 2Re@ (u, )1 + |ol2(p, @) = (ww)y — laf (B - a?).

On the other hand, from v(0) = 0, we have

wsz/m[wuﬁ+wﬂwmﬁpxz&/mwwﬁm.

—0o0 — 00

It follows that

oo

mmH=me+mmw%w%z&/ |v(@) |2 de + Jaf? (bl - o).

— 00

If (u,u)g = 0 then we have v(z) =0, u(x) = ap(z) (—oo < x < 00). From the orthogonal-

ity relation ffooo u(z)p(z)dr =0, we have a = 0 and therefore u(z) =0 (—oo < x < 00).
This completes the proofD |

From Lemma 4.1, it is shown that H is Hilbert space with inner product (-,) .

Theorem 4.1 (1) Green function G(x,y) is a reproducing kernel for Hilbert space H
with inner product (-,-)g. That is to say, for any function u(z) € H, we have the following
reproducing relation:

u(y) = (u(z), G(z,y))y (-0 <y <o0). (4.5)

(2) Gly.y) = (Glx,y), G(x,9))y = |Gx,y) [ (~00 <y < o0). (4.6)
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Proof of Theorem 4.1 The left-hand side of (4.5) is calculated as

rz=y—+0

+2bamﬂg}—

0 - 8TG(1‘7 y)

x=+40

0 L) =y
( JIRCED da:) oly) (11T, 1V)

— 00

where we have used (2.16), (2.18), and (2.20) in Theorem 2.2. We have (1). (2) follows
from (1) by putting u(z) = G(x,y) in (4.5). This shows Theorem 4.1. |

5 Proof of Theorem 1.2
In this section, we prove Theorem 1.2. We prepare the following lemma concerning

C(a,b).

Lemma 5.1  The best constant C(a,b) is given by

C(a,b) = 7OOSE£)<OOG(y,y) = G(y,y) . = 2_1a (I, III, IV)
G(0,0) = 1 11 o1
0.0 = gt (D,

Proof of Lemma 5.1 In cases I and II, we have

2ab
G(y,y) = H(a;0) — P

(—00 <y <oo). (5.2)

1 b
Has o)) = 5o |1~ g ol ~2a)

Since a + b > 0, G(y,y) attains its supremum at y = oo if b >0 and y =0 if b < 0.

In case III, we observe the behavior of
1 1
Gly.y) = 5 |1 = (2alyl + 5 ) exp(—2aly]) (—o0 <y < o0). (5.3)
It is sufficient to investigate

gly) =1 = (y+1/2)exp(~y) (0 <y < o0).
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Since we have

g) = (y—1/2) exp(-y) [ <0 (0<y<1/2)
=0 (y=1/2)
>0 (1/2 < y < 00),

9(0) = 1/2,  g(+00) = 1,
g(y) attains its minimum ¢g(1/2) = 1 — exp(—1/2) > 0 at y = 1/2. Hence, we have
sup g(y) = g(+00) = L.
O0<y<oo

Finally, we consider case IV. In order to observe the behavior of

1 D] 2alb|
= —|1- —2 Sl il -2
Gly:y) = o H—a exp(—2aly|) + o — a2 exp(—2(b[y| )
(—00 <y < o00), (5.4)

it is sufficient to investigate

b 2alt)
gy) =1 — - a exp(—2ay ) + B — a2 exp(—2[bly) (0 <y <o0).
Taking the derivative of g(y), we have
2alb| 2|0|
‘(y) = —2ay) — =1 0 .
9'(y) T —a exp(—2ay) |b|+anp( bly) (0<y<oo)

Since the equation ¢’(y) =0 (0 < y < 00) has only one solution y = yg, we have

gy [ <0 (0 <y <o)
=0 (¥ = vo)
>0 (yo < y < 00).

g(y) attains its minimum g(yo) at y = yo. Setting

2|b|
|b] + a

exp(—2ayg) = exp( —2[blyo ) = co,

we have
g(yo) = 1 —co = 1 — exp(—2ayy) > 0.

Since g(0) = a/(|b] + a) < g(c0) = 1, we conclude that
szlfmg(y) = g(+00) =1

which completes the proof. |
Proof of Theorem 1.2 Applying Schwarz inequality to (4.5) and using (4.6), we have

lu() [* < uly |Gy IF = Gly,y)llullly (o0 <y < o0). (5:5)
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Noting that Lemma 5.1, we obtain Sobolev inequality

( sup |u<y>|) < Cla,b)|ul?. (5.6)

—oco<LYy<oo

First, we treat case II, in which C(a,b) = G(0,0). Setting u(x) = G(z,0) € H in (5.6),

we have

( sup [ G(y,0) I) < C(a,) | G(z,0) I} = C*(a,b).

—oco<LYy<oo
Together with a trivial inequality
2
) = 0.0 < (s 160:0)1)
—oo<LYy<oo

we have

( sup IG(y’O)I) = C(a,0) | G(x,0) |17 (5.7)

—oo<y<oo

Next, we treat cases I, III, and IV. For any yq satisfying —co < yo < 0o, we have

2
( Sup_ | G(y,90) I) < C(a,b) | G(z,y0) I = G(yo,y0) C(a,b).
—oo<y< oo
Together with a trivial inequality
2
G < (s [Glawl) .

—oo<y<oo

we have

2

(90, 0) < ( s |G<y,yo>|) < Clab) | Claryo) I = Clyo, o) Cla.d)
—oo<y< oo

and so

0 < Clab) | Cla.o) % —( sup |G<y,yo>|) <

—oco<LYy<oo

G(yo,yo)(c(%b) - G(yo,yo))

(5.8)

Yo—+00

which completes the proof. |
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