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Abstract. We prove that every closed exhaustive vector-valued modular measure on a
lattice ordered effect algebra L can be decomposed into the sum of a Lyapunov exhaustive
modular measure (i.e. its restriction to every interval of L has convex range) and an ”anti-
Lyapunov” exhaustive modular measure.

This result extends a Kluvanek-Knowles decomposition theorem for measures on Boolean
algebras.

1. Introduction.

In 1974 I. Kluvanek and G. Knowles (see [K-K]) proved a decomposition theorem for a
closed σ-additive measure µ on a σ-algebra with values in a quasi-complete locally convex
linear space. Precisely, µ can be expressed as the sum of a Lyapunov vector measure and
an anti-Lyapunov vector measure.

The decomposition theorem of [K-K] is based on a characterization of Lyapunov measures
given in [K-R] and in [K]. In [A-B1] a similar characterization has been proved for modular
measures on D-lattices (i.e. lattice ordered effect algebras), extending a result of [D-W] for
measures on σ-algebras. Then a natural question which arises is if for modular measures
on D-lattices a Kluvanek-Knowles type decomposition theorem also holds.

In this paper we give a positive answer to this question.
Precisely, we prove (see Theorem (3.16)) that, if X is a Hausdorff locally convex linear

space, every closed exhaustive X-valued modular measure on a D-lattice can be decomposed
into the sum of a Lyapunov exhaustive modular measure and an ”anti-Lyapunov” exhaustive
modular measure.

We recall that effect algebras have been introduced by D.J. Foulis and M.K. Bennett in
1994 (see [B-F]) for modelling unsharp measurement in a quantum mechanical system. They
are a generalization of many structures which arise in quantum physics (see [B-C]) and in
Mathematical Economics (see [B-K], [G-M] and [E-Z]), in particular of orthomodular lattices
in non-commutative measure theory and MV-algebras in fuzzy measure theory. After 1994,
there have been a great number of papers concerning effect algebras. We refer to [D-P] for
a bibliography.
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2. Preliminaries.

We will fix some notations.

Definition (2.1). Let (L,≤) be a partial ordered set (a poset for short). A partial binary
operation � on L such that b � a is defined if and only if a ≤ b is called a difference on
(L,≤) if the following conditions are satisfied:

(1) If a ≤ b, then b � a ≤ b and b � (b � a) = a.
(2) If a ≤ b ≤ c, then c � b ≤ c � a and (c � a) � (c � b) = b � a.

Definition (2.2). Let (L,≤ �) be a poset with difference. If L has greatest and smallest
elements 1 and 0, respectively, the structure (L,≤,�) is called a difference poset (D-poset
for short), or a difference lattice (D-lattice for short) if L is a lattice.

An alternative structure to a D-poset is that of an effect algebra introduced by Foulis
and Bennett in [B-K]. These two structures, D-posets and effect algebras, are equivalent as
shown in [D-P, Theorem 1.3.4].

We recall that a D-lattice is complete (σ-complete) if every set (countable set) has a
supremum and an infimum.

We write aα ↑ a (respectively, aα ↓ a) whenever (aα) is an increasing net in L and
a = supα aα (respectively, (aα) is a decreasing net in L and a = infα aα).

If a, b ∈ L, we set a�b = (a ∨ b) � (a ∧ b). If a ≤ b, we set [a, b] = {c ∈ L : a ≤ c ≤ b}.
Moreover we set ∆ = {(a, b) ∈ L × L : a = b}.

If a ∈ L, we set a⊥ = 1 � a. By (1) of (2.1), we have (a⊥)⊥ = a for every a ∈ L. It is
easy to see that, if L is a D-lattice, then (a ∨ b)⊥ = a⊥ ∧ b⊥.

We say that a and b are orthogonal if a ≤ b⊥ (or, equivalently, if b ≤ a⊥), and we write
a ⊥ b. If a ⊥ b, we set a⊕ b = (a⊥ � b)⊥. Thus a⊕ b exists and equals c if and only if b� c
exists and equals a. This sum is commutative and associative.

If a1, · · · , an are in L, we inductively define a1 ⊕ · · · ⊕ an = (a1 ⊕ · · · ⊕ an−1)⊕ an if the
right-side exists. The definition is independent on any permutation of the elements. We say
that a finite family (a1, · · · , an) is orthogonal if a1 ⊕ · · · ⊕ an exists. We say that a family
(aα) is orthogonal if every finite subfamily is orthogonal. If (aα) is orthogonal, we define⊕

α∈A aα = sup{⊕α∈F aα : F ⊆ A finite}.
We need the following result of [D-P] (see 1.1.2 and 1.1.6).

Proposition (2.3).

(1) If a ≤ b and b ≤ c, then b � a ≤ c � a and (c � a) � (b � a) = c � b.
(2) If a ⊥ b and b ≤ c, then a ⊕ b ≤ a ⊕ c and (a ⊕ c) � (a ⊕ b) = c � b.

An element c in a D-poset is said to be central if, for every a ∈ L, both a ∧ c and a ∧ c⊥

exist and a = (a ∧ c) ∨ (a ∧ c⊥). By [A-V] (Lemma 5.1), if L is a D-lattice, c ∈ L is central
if and only if, for each a ∈ L, a = (a∧ c)⊕ (a∧ c⊥). The set C(L) of all central elements of
L is called centre of L and is a Boolean algebra, as proved in [D-P, 1.9.14].

A subset I of L is said to be a D-ideal if the following conditions are satisfied:
(1) For every a, b ∈ I with a ⊥ b, a ⊕ b ∈ I.
(2) For every a ∈ I and c ∈ L, (a ∨ c) � c ∈ I.

We will need the following result of [A-V] (see 4.4 and 5.3).

Theorem (2.4). If I is a D-ideal and sup I exists, then it is central.

A D-congruence on a D-lattice L is a lattice congruence N which satisfies the following
condition: if (a, b) ∈ N, (c, d) ∈ N, c ≤ a and d ≤ b, then (a � c, b � d) ∈ N.
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If (G,+) is an Abelian group and L is a D-lattice, a function µ : L → G is said to be
modular if, for every a, b ∈ L, µ(a ∨ b) + µ(a ∧ b) = µ(a) + µ(b) and it said to be a measure
if, for every a, b ∈ L, with a ⊥ b, µ(a⊕ b) = µ(a)+µ(b). It is easy to see that µ is a measure
if and only if, for every a, b ∈ L, with a ≤ b, µ(b � a) = µ(b) − µ(a).

If G is a topological Abelian group, by 4.2 of [A-B2], every modular measure µ : L → G
generates a D-uniformity U(µ), i.e. a uniformity on L which makes ∨,∧,� and ⊕ uniformly
continuous.

A measure µ is said to be σ-additive if, for every orthogonal sequence (an) in L such that
a =

⊕
n an exists, µ(a) =

∑
n∈N µ(an). Moreover µ is said to be completely additive if, for

every orthogonal family (aα)α∈A in L such that a =
⊕

α aα exists, the family (µ(aα) : α ∈ A)
is summable and µ(a) =

∑
α µ(aα). We say that µ is σ-order continuous (σ-o.c. for short)

if an ↑ a implies that (µ(an)) converges to µ(a) and order-continuous (o.c. for short) if
aα ↑ a implies that (µ(aα)) converges to µ(a). By [A-B2, 2.4], a measure µ is σ-additive if
and only if it is σ-o.c. We say that µ is exhaustive if, for every orthogonal sequence (an) in
L, the sequence (µ(an)) converges to 0. By 2.3 of [A], a modular measure µ is exhaustive
if and only if µ is exhaustive in the sense of [A-B1] (i.e. every monotone sequence in L is
Cauchy in U(µ)).

Throughout this paper, X is a Hausdorff locally convex linear space and L is a D-lattice.

3. Lyapunov decomposition theorem.

Let µ : L → X be an exhaustive modular measure.
Set

I(µ) = {a ∈ L : µ([0, a]) = {0}}
and

N(µ) = {(a, b) ∈ L : ∀ c ≤ a�b, µ(c) = 0}.
By 3.1 of [W], 4.3 of [A-B2] and 4.5 of [A-V2], N(µ) is a D-congruence, I(µ) is a D-ideal
and the quotient L̂ = L/N(µ) is a D-lattice. Moreover the function µ̂ : L̂ → X defined as
µ̂(â) = µ(a) for a ∈ â ∈ L̂ clearly is a modular measure, too.

We say that µ is closed if L̂ is complete with respect to the uniformity U(µ̂) generated
by µ̂.

We need the following result of [A-B1] (see 4.2).

Lemma (3.1).

(1) µ is closed iff µ̂ is o.c. and (L̂,≤) is complete.
(2) If µ is o.c., then µ is completely additive.
(3) If X is metrizable, then µ is closed.

Definition (3.2). We say that µ is semiconvex with respect to h ∈ L if, for every a ≤ h,
there exists b ≤ a such that µ(b) = 2µ(c).

Definition (3.3). We say that µ is pseudo-injective with respect to h ∈ L if, for every
b, c /∈ I(µ) with b ⊥ c and b ⊕ c ≤ h, µ(b) �= µ(c).

Definition (3.4). We say that µ is pseudo non-injective with respect to h ∈ L if, for every
a ≤ h with a /∈ I(µ), µ is not pseudo-injective with respect to a.

Definition (3.5). We say that µ is Lyapunov with respect to h ∈ L if, for every a ≤ h,
µ([0, a]) is convex.
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Definition (3.6). We say that µ is anti-Lyapunov with respect to h ∈ L if, for every a ≤ h
with a /∈ I(µ), µ is not Lyapunov with respect to a.

Observe that µ is Lyapunov (or anti-Lyapunov, or pseudo non-injective or semiconvex,
respectively) with respect to h ∈ L if and only if, for every k ≤ h, µ is Lyapunov (or
anti-Lyapunov, or pseudo non-injective or semiconvex, respectively) with respect to k.

If µ is Lyapunov (anti-Lyapunov, respectively) with respect to 1 (and therefore with
respect to any element of L), we say that µ is Lyapunov (anti-Lyapunov, respectively).

In the sequel, we need the following result.

Lemma (3.7). Let (bα)α∈A be a family of elements of L and suppose that the supremum
b = supα bα exists in L. The following conditions hold:

(1) Let a ∈ L be such that a ⊥ b. Then c = supα(a ⊕ bα) exists in L and c = a ⊕ b.
(2) Let c ∈ L be such that c ≥ b. Then a = infα(c � bα) exists in L and a = c � b.

Proof. (1) is proved in 1.8.7 of [D-P].
(2) Let d ∈ L be such that d ≤ c� bα for every α. Then d ⊥ bα and d⊕ bα ≤ c for every

α. Therefore d ⊥ b and, by (1), d ⊕ b = supα(d ⊕ bα). Hence we obtain that d ⊕ b ≤ c,
whence d ≤ c� b. Since c� b ≤ c� bα for every α, we have that inf(c� bα) exists and equals
c � b. �

¿From 4.5 of [A-B1], the following result can be derived.

Theorem (3.8). Let µ be closed. Then µ is pseudo non-injective with respect to h ∈ L if
and only if µ is Lyapunov with respect to h.

Proof. By 4.5 of [A-B1], the assertion holds for h = 1. Then, since [0, h] is clearly a D-lattice,
it is sufficient to prove that the restriction µ of µ to [0, h] is closed.

It is easy to see that we can replace L by L̂ = L/N(µ), since µ is closed iff µ̂ is closed and
µ is pseudo non-injective (respectively, Lyapunov) with respect to h ∈ L iff µ̂ is pseudo non-
injective (respectively, Lyapunov) with respect to ĥ ∈ L̂. Hence we can suppose N(µ) = ∆.
Moreover, since µ is closed and the infimum in L of every subset of [0, h] coincides with the
infimum in [0, h], by (3.1) it is clear that [0, h] is complete and µ is o.c. Then, again by
(3.1), µ is closed. �
Corollary (3.9). Let µ be closed. Then:

(1) µ is anti-Lyapunov with respect to h ∈ L if and only if, for every a ≤ h with a /∈ I(µ),
there exists b ≤ a such that b /∈ I(µ) and µ is pseudo-injective with respect to b.

(2) If µ is pseudo-injective with respect to h ∈ L, then µ is anti-Lyapunov with respect
to h.

In a similar way as in (3.8), the following result can be derived by 4.3 of [A-B1], but we
prefer to give here an alternative proof based on transfinite induction.

Theorem (3.10). Let L be complete and µ o.c. Then µ is pseudo non-injective with respect
to h ∈ L if and only if µ is semiconvex with respect to h.

Proof. ⇐ Let h ∈ L and a /∈ I(µ) with a ≤ h. We can suppose that µ(a) �= 0, otherwise
we replace a by an element r ≤ a with µ(r) �= 0. By assumption, we can find b ≤ a such
that µ(a) = 2µ(b). Set c = a � b. Then µ(c) = µ(a) − µ(b) = µ(b), b, c /∈ I(µ), b ⊥ c and
b ⊕ c = a. Hence µ is pseudo non-injective with respect to h.

⇒ Suppose that µ is not semiconvex with respect to h. Then we can find a ≤ h such
that, for every b ≤ a, 2µ(b) �= µ(a). It follows that a /∈ I(µ).

We construct four sequences by transfinite induction.
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Set λ = |L| and let χ be a cardinal greater then λ. We prove that, for every ordinal
β < χ, there exist aβ, cβ , dβ and rβ such that (aβ)β<χ, (cβ)β<χ and (dβ)β<χ are strictly
increasing, (rβ)β<χ is strictly decreasing, and the following properties hold:

(1) cβ ⊥ dβ and cβ ⊕ dβ = aβ .
(2) aβ ⊥ rβ and aβ ⊕ rβ = a.
(3) µ(cβ) = µ(dβ).

From (1), (2) and (3) it follows that cβ ≤ a, dβ ≤ a and 2µ(cβ) = µ(cβ) + µ(dβ) =
µ(cβ ⊕ dβ) = µ(aβ) = µ(a � rβ) = µ(a) − µ(rβ).

Let β = 0. Since µ is pseudo non-injective and a ≤ h, we can find c0, d0 /∈ I(µ) such that
c0 ⊥ d0, c0⊕d0 ≤ a and µ(c0) = µ(d0). Set a0 = c0⊕d0 and r0 = a�a0. Then the assertion
is true for β = 0. Now suppose by induction that (1), (2) and (3) are true for every β less
than an ordinal α > 0 and that (aβ)β<α, (cβ)β<α and (dβ)β<α, are strictly increasing, while
(rβ)β<α is strictly decreasing. We construct cα, dα, aα and rα.

We distinguish two cases:
(i) α is a limit ordinal.
(ii) α is a successor ordinal.

(i) In this case, we set

cα = sup{cβ : β < α}, dα = sup{dβ : β < α}.

Since cβ ⊥ dβ for every β < α, we have also cα ⊥ dα. Set aα = cα ⊕ dα. Applying (1) of
(3.7), we have

aα = cα ⊕ sup
γ<α

dγ = sup
γ<α

(cα ⊕ dγ) =

= sup
γ<α

(sup
β<α

(cβ ⊕ dγ)) = sup
β<α,γ<α

(cβ ⊕ dγ) = sup
β<α

(cβ ⊕ dβ) = sup
β<α

aβ.

Therefore we have aα ≤ a. Set rα = a � aα. From (2) of (3.7), we have

rα = inf{rβ : β < α}.

Since cβ ↑ cα and µ is o.c., µ(cα) = limµ(cβ) = limµ(dβ) = µ(dα). Moreover cα > cβ ,
dα > dβ , aα > aβ for every β < α and rα < rβ for every β < α by the inductive assumption.

(ii) In this case, there exists an ordinal γ such that α = γ + 1. Then we know aγ , cγ , dγ

and rγ and we have to construct aα, cα and dα greater then aγ , cγ and dγ , respectively, and
rα < rγ .

Since µ is not semiconvex, we have 2µ(cγ) �= µ(a). Then, from 2µ(cγ) = µ(a) − µ(rγ),
we obtain µ(rγ) �= 0. Therefore rγ /∈ I(µ). Since µ is pseudo non-injective, we can find
hγ , kγ /∈ I(µ) such that hγ ⊥ kγ , hγ ⊕ kγ ≤ rγ and µ(hγ) = µ(kγ). Note that, since rγ is
orthogonal to aγ and cγ , dγ ≤ aγ , then rγ is also orthogonal to cγ and dγ . Since hγ ≤ rγ

and kγ ≤ rγ , we have that hγ and kγ are orthogonal to cγ and dγ . Set

cα = cγ ⊕ hγ , dα = dγ ⊕ kγ .

Note that cα > cγ and dα > dγ since hγ , kγ /∈ I(µ). Since rγ is orthogonal to aγ and
hγ ⊕ kγ ≤ rγ , we have hγ ⊕ kγ ⊥ aγ . Hence there exists

(hγ ⊕ kγ) ⊕ aγ = (hγ ⊕ kγ) ⊕ (cγ ⊕ dγ) =

= (cγ ⊕ hγ) ⊕ (dγ ⊕ kγ) = cα ⊕ dα.
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Set aα = cα ⊕ dα. Since a = rγ ⊕ aγ ≥ aα, rα = a � aα exists. Since cα > cγ and dα > dγ ,
we have aα > aγ and then rα < rγ . Moreover

µ(cα) = µ(cγ ⊕ hγ) = µ(cγ) + µ(hγ) = µ(bγ) + µ(kγ) = µ(bγ ⊕ kγ) = µ(dα).

This completes the construction of the four sequences.
Now set A = {aα : α ∈ χ}. Since (aα)α<χ is strictly increasing, we have |A| = χ, which

is impossible since χ > λ = |L|. �
We will need the following result.

Lemma (3.11). Suppose that L is complete. If I is a D-ideal and h = sup I, then for
every a ∈ L a ∧ h = sup{a ∧ b : b ∈ I}.
Proof. Recall that by (2.4) h is central.

Let a ∈ L and set Ia = {a∧ b : b ∈ I}. Observe that Ia = {c ∈ I : c ≤ a}. Let r = sup Ia.
Since h = sup I, we have that r ≤ a ∧ h. Then the assertion follows if we prove that there
exists H ⊆ Ia such that sup H = a ∧ h.

Since h is central, from 5.1 of [A-V1] we have a ∧ h = a � (a ∧ h⊥). Set

H = {(b ∨ a⊥) � a⊥ : b ∈ I}.

Therefore H ⊆ Ia since, if s = (b∨a⊥)� a⊥ ∈ H, with b ∈ I, then s ∈ I since I is a D-ideal
and s ≤ 1� (1� a) = a. Set t = sup H. By 5.2 of [A-V1] and 2.3, recalling that h is central,
we have

t = sup{(a⊥ ∨ b) � a⊥ : b ∈ J} = (a⊥ ∨ h) � a⊥ = a � (a ∧ h⊥) = a ∧ h.

�
Now we set

J = {a ∈ L : µ is semiconvex with respect to a},
J1 = {a ∈ L : µ is pseudo non-injective with respect to a}

and
J2 = {a ∈ L : µ is anti-Lyapunov with respect to a}.

By (3.10), if L is complete and µ is o.c., then J = J1.

The following is a crucial result.

Theorem (3.12). The set J is a D-ideal.

Proof. We have to prove that J is closed with respect to ⊕ and that, for every r ∈ L and
a ∈ J, (a ∨ r) � r ∈ J.

(i) Let a1, a2 ∈ J with a1 ⊥ a2 and set a = a1 ⊕ a2. We prove that a ∈ J.
Let b ≤ a and set

b1 = b ∧ a1, d2 = (a1 ∨ b) � a1.

Since b1 ≤ a1, d2 ≤ a � a1 = a2 and a1, a2 ∈ J, we can find c1 ≤ b1 and e2 ≤ d2 such that

µ(b1) = 2µ(c1) and µ(d2) = 2µ(e2).

Set
s1 = (a1 ∨ b) � e2.
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Since s1 ≤ a1 ∨ b and s1 ≥ (a1 ∨ b) � d2 = (a1 ∨ b) � ((a1 ∨ b) � a1) = a1, we obtain
a1 ∨ b = s1 ∨ b. Therefore we have (s1 ∨ b) � s1 = (a1 ∨ b) � ((a1 ∨ b) � e2) = e2. Set

t2 = b � (b ∧ s1).

Observe that, since b∧ s1 ≥ b∧ a1 = b1, we have t2 ≤ b� b1. Then, since c1 ≤ b1, we obtain
that t2 ⊥ c1. Set

c = c1 ⊕ t2.

¿From c1 ≤ b1 and t2 ≤ b � b1, we obtain c ≤ b. Moreover, since µ is modular, we have

µ(t2) = µ(b � (b ∧ s1)) = µ((b ∨ s1) � s1) = µ(e2).

Since µ is a modular measure, we have

µ(b) = µ((a1 ∨ b) � a1) + µ(a1 ∧ b) = µ(d2) + µ(b1) =

= 2µ(e2) + 2µ(c1) = 2µ(t2) + 2µ(c1) = 2µ(c).

Hence a ∈ J.

(ii) Let a ∈ J and r ∈ L. We prove that h = (a ∨ r) � r ∈ J.

Let h′ ≤ h. Set
s = (a ∨ r) � h′.

From s ≤ a ∨ r and s ≥ (a ∨ r) � ((a ∨ r) � r) = r, we get a ∨ r = a ∨ s. Then we have
s = (a ∨ s) � h′, from which we get h′ = (a ∨ s) � s. Now set

b = a � (a ∧ s).

Since b ≤ a ∈ J, we can find c ≤ b such that µ(b) = 2µ(c). Note that, since c ≤ b and
b ⊥ a ∧ s, q = c ⊕ (a ∧ s) exists. From q ≥ a ∧ s and q ≤ b ⊕ (a ∧ s) = a, we obtain
q ∧ s = a ∧ s and hence q � (q ∧ s) = c. Now set

c′ = (q ∨ s) � s.

Since q ≤ a, we have c′ ≤ (a ∨ s) � s = h′. Moreover we have

µ(h′) = µ((a ∨ s) � s) = µ(a � (a ∧ s)) = µ(b) =

= 2µ(c) = 2µ(q � (q ∧ s)) = 2µ((q ∨ s) � s) = 2µ(c′).

Therefore h ∈ J. �

Proposition (3.13). Suppose that µ is closed and N(µ) = ∆. Then p = sup J1 exists and
is a central element of L.

Proof. By assumption, L = L/N(µ). Then, by (3.1), L is complete. Hence p exists. More-
over, by (3.10) and (3.12) J1 = J is a D-ideal. Then, by (2.4), p is central. �
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Lemma (3.14). Suppose that µ is closed and N(µ) = ∆. Then the following conditions
hold:

(1) If a /∈ J1, there exists b ≤ a such that b �= 0 and b ∈ J2.
(2) If a /∈ J2, there exists b ≤ a such that b �= 0 and b ∈ J1.
(3) J1 ∩ J2 = {0}.

Proof. (1) If a /∈ J1, µ is not pseudo non-injective with respect to a. Then we can find b ≤ a
such that b �= 0 and µ is pseudo-injective with respect to b. By (3.9)-(2), we obtain that
b ∈ J2.

(2) If a /∈ J2, we can find b ≤ a with b �= 0 such that µ is Lyapunov with respect to b.
Then, by (3.8), b ∈ J1.

(3) If a ∈ J2, we have that, for every b ≤ a with b �= 0, b /∈ J1. In particular, if a �= 0,
a /∈ J1. �

Proposition (3.15). Suppose that µ is closed and N(µ) = ∆. Set p = sup J1. Then:

(1) a ∈ J2 if and only if a ∧ p = 0
(2) J2 = [0, p⊥].
(3) a ∈ J1 if and only if a ∧ p⊥ = 0.
(4) J1 = [0, p].

Proof. (1) ⇐ Suppose that a /∈ J2. Then, by (3.14), we can find b ≤ a with b �= 0 and
b ∈ J1. Therefore, since p = sup J1, we have b ≤ a ∧ p = 0, a contradiction.

⇒ If a ∈ J2, we have a ∧ b = 0 for every b ∈ J1 since by (3.14) J1 ∩ J2 = {0}. By (3.11)
we get a ∧ p = sup{a ∧ b : b ∈ J1} = 0.

(2) Since by (3.13) p is central, we have a = (a ∧ p) ∨ (a ∧ p⊥). Then we obtain that
a ∈ J2 if and only if a = a ∧ p⊥, i.e. a ≤ p⊥. Therefore J2 = [0, p⊥].

(3) ⇐ Suppose that a /∈ J1. Then, by (3.14) we can find b ≤ a such that b �= 0 and
b ∈ J2. Hence, by (2), we have b ≤ a ∧ p⊥ = 0, a contradiction.

⇒ If a ∈ J1, by (2) we have that a∧p⊥ ∈ J1∩J2 and therefore, by (3.14)-(3), a∧p⊥ = 0.
(4) In a similar way as in (2), we obtain by (3) that a ∈ J1 if and only if a ≤ p. �

Notation.
For h ∈ L, denote by µh the function defined as

µh(a) = µ(a ∧ h), a ∈ L.

It is easy to see that, if h is central, then µh is a modular measure and µ = µh + µh⊥ .
Moreover, if µ is exhaustive (respectively, o.c.), then µh and µh⊥ are exhaustive (o.c.,
respectively), too.

Now we can prove the main result.

Theorem (3.16) (Lyapunov decomposition theorem). Let µ be closed. Then there
exists p ∈ L such that µp is a Lyapunov exhaustive modular measure on L, µp⊥ is an anti-
Lyapunov exhaustive modular measure on L and µ = µp + µp⊥ . Moreover the equivalence
class p̂ of p in L̂ = L/N(µ) is a central element of L̂ and, if q ∈ L has the same properties
as p, then q̂ = p̂.

Proof. It is easy to see that it is sufficient to prove the theorem in the case that N(µ) = ∆.
Then, by (3.13), p = sup J1 is central. Therefore µp and µp⊥ are exhaustive modular
measures and µ = µp + µp⊥ . Moreover, by (3.8) and (3.15), µ is Lyapunov with respect
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to p and anti-Lyapunov with respect to p⊥. It follows that µp is Lyapunov since, for every
a ∈ L, µp([0, a]) = µ([0, a ∧ p]).

Now we see that µp⊥ is anti-Lyapunov. First observe that, since N(µ) = ∆, I(µp⊥) =
{a ∈ L : ∀ b ≤ a, b ∧ p⊥ = 0}. Hence, by (3.15), I(µp⊥) = J1. Now let a /∈ J1. Since
µ is anti-Lyapunov with respect to p⊥ and by (3.15) a ∧ p⊥ �= 0, we can find b ≤ a ∧ p⊥

such that µ([0, b]) is not convex. Therefore µp⊥([0, b]) = µ([0, b]) is not convex. Then µp⊥

is anti-Lyapunov.
If q has the same properties as p, then q ∈ J1 and q⊥ ∈ J2, hence by (3.15) q ≤ p and

q⊥ ≤ p⊥, from which q ≥ p and therefore q = p. �
Remark. It is easy to see that, if we introduce the notion of convexity in a group as in
[D-W], all the results of this paper also hold if X is a group which does not contain Z2 as
a semigroup.
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