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A RANK-BASED SELECTION WITH CARDINAL
PAYOFFS AND A COST OF CHOICE.
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Abstract. A version of the secretary problem is considered. The ranks of items,
whose values are independent, identically distributed random variables X1, X2, . . . , Xn

from a uniform distribution on [0; 1], are observed sequentially by the grader. He has
to select exactly one item, when it appears, and receives a payoff which is a function
of the unobserved realization of random variable assigned to the item diminished by
some cost. The methods of analysis are based on the existence of an embedded Markov
chain and use the technique of backward induction. The result is a generalization of the
selection model considered by Bearden [2]. The asymptotic behaviour of the solution
is also investigated.

1 Introduction Although a version of the secretary problem (the beauty contest prob-
lem, the dowry problem or the marriage problem) was first solved by Cayley [4], it was
not until five decades ago there had been sudden resurgence of interest in this problem.
Since the articles by Gardner [12, 13] the secretary problem has been extended and gen-
eralized in many different directions by Gilbert and Mosteller [14]. Excellent reviews of
the development of this colourful problem and its extensions have been given by Rose [22],
Freeman [11], Samuels [25] and Ferguson [9]. The classical secretary problem in its simplest
form can be formulated following Ferguson [9]. He defined the secretary problem in its
standard form to have the following features:

(i) There is only one secretarial position available.

(ii) The number of applicants, N , is known in advance.

(iii) The applicants are interviewed sequentially in a random order.

(iv) All the applicants can be ranked from the best to the worst without any ties. Further,
the decision to accept or to reject an applicant must be based solely on the relative
ranks of the interviewed applicants.

(v) An applicant once rejected cannot be recalled later. The employer is satisfied with
nothing but the very best.

(vi) The payoff is 1 if the best of the N applicants is chosen and 0 otherwise.

This model can be used as a model of choice in many decisions in everyday life, such as
buying a car, hiring an employee, or finding an apartment (see Corbin [5]). The part
of research has been devoted to modified version of the problem where some important
assumption of the model has been changed to fit it to the real life context. There are
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analysis of decision maker’s aims. It could be that he will be satisfied by chosing one of
the K best (see Gusein-Zade [16], Frank and Samuels [10]). It was shown that the optimal
strategy in this problem has very simple threshold form. The items are observed and
rejected up to some moments jr (thresholds) after which it is optimal to accept the first
candidate with relative rank r, r = 1, 2, . . . , K. The thresholds jr are decreasing on r. This
strategy is rather intuitive. When the candidates run low we admit acceptance the lowest
rank of chosen item. If the aim is to choose the second best item then the form of the
optimal strategy is not so intuitively obvious (see Szajowski [32], Rose [21], Mori [18]). In
the same time the possibility of backward solicitation and uncertain employment was also
investigated (see Yang [35], Smith and Deely [30], Smith [29]).

There are also experimental research with subjects confronted with the classical secretary
problem (see Seale and Rapoport [27, 28]). The optimal strategy of the grader in the
classical secretary problem is to pass k�

N − 1 applicants, where k�
N

∼= [Ne−1] and stop at
the first j ≥ k�

N which is better that those seen so far. If none exists nothing is chosen.
The experimental study by Seale and Rapoport [27] of this problem shows that subjects
under study have tendency to terminate their search earlier than in the optimal strategy.
Bearden [2] has considered application the best choice problem to the model of choice for
the trader who makes her selling decision at each point in time solely on the basis of the
rank of the current price with respect to the previous prices, but, ultimately, derive utility
from the true value of the selected observation and not from its rank. The assumption
(vi) is not fulfilled in this case. Bearden [2] has made efforts to explain this effect and the
new payoff scheme has proposed. He shows that if the true values Xj are i.i.d. uniformly
distributed on [0, 1] then for every N the optimal strategy is to pass c − 1 applicants, and
stop with the first j ≥ c with rank 1. If none exists, stop at time N . The optimal value of
c is either �√N� or �√N�.

This payoff scheme when the i.i.d. Xj ’s come from other than the uniform distribution
has been studied by Samuel-Cahn [24]. Three different families of distributions, belonging
to the three different domains of attraction for the maximum, have been considered and the
dependence of the optimal strategy and the optimal expected payoff has been investigated.
The different distributions can model various tendency in perception of the searched items.

Recently, the Bearden model has been investigated by Tamaki and Wang [33]. It has
been shown that such a simple record information achieves very high performance. More-
over, the partial rank models as generalized versions of this approach has been proposed
in [33]. The optimal rules has been derived. The effect of the available information on the
optimal payoff attained for these models was examed.

In this paper the idea of payoff function dependent on the true value of the item is
modified to include the different personal costs of choice of the item. The cost of observation
in the secretary problem with payoffs dependent on the real ranks has been investigated
by Bartoszynski and Govindarajulu [1] (see also Yeo [36]). However, the cost of decision is
different problem than the cost of observation. It will be shown that the optimal number
of items one should skip is a function of this personal cost. At the last moment the payoff
function can be slightly differently defined than in Bearden [2]’s paper. The asymptotic
expected return and asymptotic behaviour of the optimal strategy will be studied.

The organization of the paper are as follows. In Section 2 the related to the secre-
tary problem Markov chain is formulated. This section is based mainly on the suggestion
from Dynkin and Yushkevich [6] and the results by Szajowski [32] and Suchwa�lko and Sza-
jowski [31]. In the next sections the solution of the rank-based secretary problem with
cardinal payoff and the personal cost of grader is given. In Section 3 the exact and asymp-
totic solution is provided for the model formulated in Section 2. In this consideration the
asymptotic behaviour of the threshold defining the optimal strategy of the grader is studied.
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In the last section the comparison of obtained results are given.

2 Mathematical formulation of the model Let us assume that the grader observes a
sequence of up to N applicants whose values are i.i.d. random variables {X1, X2, . . . , XN}
with uniform distribution on E = [0, 1]. The values of the applicants are not observed. Let
us define

Rk = #{1 ≤ i ≤ k : Xi ≤ Xk}.

The random variable Rk is called relative rank of k-th candidate with respect of items in-
vestigated to the moment k. The grader can see the relative ranks instead of the true
values. All random variables are defined on a fixed probability space (Ω,F ,P). The
observations of random variables Rk, k = 1, 2, . . . , N , generate the sequence of σ-fields
Fk = σ{R1, R2, . . . , Rk}, k ∈ T = {1, 2, . . . , N}. The random variables Rk are indepen-
dent and P{Rk = i} = 1

k .
Denote by MN the set of all Markov moments τ with respect to σ-fields {Fk}N

k=1. Let
q : T × S × E → �+ be the gain function. Define

vN = sup
τ∈MN

Eq(τ, Rτ , Xτ ).(1)

We are looking for τ∗ ∈ MN such that Eq(τ�, Rτ∗ , Xτ∗) = vN .
Since {q(n,Rn, Xn)}N

n=1 is not adapted to the filtration {Fn}N
n=1, the gain function can

be substituted by the conditional expectation of the sequence with respect to the filtration
given. By property of the conditional expectation we have

Eq(τ, Rτ , Xτ ) =
N∑

r=1

∫
{τ=r}

q(τ, Rτ , Xτ )dP

=
N∑

r=1

∫
{τ=r}

E[q(r,Rr, Xr)|Fr]dP = Eg̃(τ, Rτ ),

where

g̃(r,Rr) = E[q(r,Rr, Xr)|Fr](2)

for r = 1, 2, . . . , N . On the event {ω : Rr = s} we have g̃(r, s) = E[q(r,Rr, Xr)|Rr = s].

Assumption 1 In the sequel it is assumed that the grader wants to accept the best so far
applicant.

The function g̃(r, s) defined in (2) is equal to 0 for s > 1 and non-negative for s = 1.
It means that we can choose the required item at moments r only if Rr = 1. Denote
h(r) = g̃(r, 1).

The risk is connected with each decision of the grader. The personal feelings of the risk
are different. When the decision process is dynamic we can assume that the feeling of risk
appears randomly at some moment ξ. Its distribution is a model of concern for correct
choice of applicant.

Assumption 2 It is assumed that ξ has uniform distribution on {0, 1, . . . , N}.
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Remark 2.1 Let us assume that the cost of choice or the measure of stress related to the
decision of acceptance of the applicant is c. It appears when the decision is after ξ and its
measure will be random process C(t) = cI{ξ≥t}. Based on the observed process of relative
ranks and assuming that there are no acceptance before k we have

c(k, t) = E[C(t)|Fk] = c
N − t + 1
N − k + 1

.(3)

The applied model is a consequence of observation that the fear of the wrong decision today
is highest than the concern for the consequence of the future decision.

Assumption 3 The aim of the grader is to maximize the expected value of applicant chosen
and at the same time to minimize the cost of choice.

In this case the function

q(t, Rt, Xt) = gc(t, Rt, Xt) =
{

(Xt − C(t))I{Rt=1}(Rt) if t < N ,
XN − c otherwise.(4)

Since Xt are i.i.d. random variables with the uniform distribution on [0, 1] we have for t ≥ r

g̃c(r, t, Rt) = E[gc(t, Rt, Xt)|Fr](5)

= (
t

t + 1
− c

N − t + 1
N − r + 1

)I{Rt=1}(Rt)

(see Resnick [20]). Let us denote h̃(r, s) = g̃(r, s, 1).
Define W0 = 1, γt = inf{r > γt−1 : Yr = 1} (inf ∅ = ∞) and Wt = γt. If γt = ∞, then

define Wt = ∞. Wt is the Markov chain with following one step transition probabilities

p(r, s) = P{Wt+1 = (s, 1)|Wt = (r, 1)} =

⎧⎪⎨
⎪⎩

1
s , if r = 1, s = 2,

r
s(s−1) , if 1 < r < s,

0, if r ≥ s or r = 1, s �= 2,
(6)

with p(∞,∞) = 1, p(r,∞) = 1 −∑N
s=r+1 p(r, s). Let Gt = σ{W1, W2, . . . , Wt} and M̃N be

the set of stopping times with respect to {Gt}N
t=1. Since γt is increasing, then we can define

M̃N
r+1 = {σ ∈ M̃N : γσ > r}.
Let Pr(·) be probability measure related to the Markov chain Wt, with trajectory start-

ing in state r and Er(·) the expected value with respect to P(r,1)(·). From (6) we can see
that the transition probabilities depend on moments r where items with relative rank 1 ap-
pears. Taking into account the form of the payoff function (5) the two dimensional Markov
chain should be considered. Denote Zt : Ω → T × T the Markov chain with the following
one step transition probabilities

P(Zt+1 = (s, j)|Zt = (s, i)) =
i

j(j − 1)
for s < i < j ≤ N , (7a)

P(Zt+1 = (k, i)|Zt = (s, i)) =
s

k(k − 1)
for s < k < i ≤ N , (7b)

and 0 otherwise.
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Let us introduce the operators based on (7) and (6)

T h̃(r, s) = E(r,s)h̃(Z1) =
N−1∑

j=s+1

s

j(j − 1)
h̃(r, j) +

⎛
⎝1 −

N−1∑
j=s+1

s

j(j − 1)

⎞
⎠ (

1
2
− c), (8a)

Th(r) = Erh(W1) =
N−1∑

j=r+1

r

j(j − 1)
h̃(r, j) +

⎛
⎝1 −

N−1∑
j=r+1

r

j(j − 1)

⎞
⎠ (

1
2
− c). (8b)

3 The cost of fear in the rank-based secretary problem with cardinal value of
the item. Let MN

r = {τ ∈ MN : r ≤ τ ≤ N} and vN (r) = supτ∈MN
r

Egc(τ, Rτ , Xτ ). The
following algorithm allows to construct the value of the problem vN . Let

vN (N) = Egc(N, RN , XN ) = E(XN ) − c.(9)

and for r < N

wN (r, s) = max{h̃(r, s), TwN (r, s)}, (10a)
vN (r) = max{h(r), T vN (r)}. (10b)

One can consider the stopping sets

Γr = {(r, s) : h(r, s) ≥ wN (r, s), r < s} ∪ {(r,N)},(11)

r ∈ T. In class of such stopping sets there are solutions of restricted problem. Based on this
partial solution the optimal stopping time is constructed and it is shown that vN = vN (1).

Lemma 3.1 For the considered problem with the payoff function (4) and c ∈ �+, there is
k0 such that for r ≥ k0 the optimal stopping time τ� in MN

r has a form τ� = inf{s ≥ r :
Ys = 1} ∧ N i.e. the stopping set is Γr = {(r, s) : s ≥ r, Yr = 1} ∪ {(r,N)}.

Proof. The function h̃(k, r) = r
r+1 − c N−r+1

N−k+1 is increasing on r ≥ k. For r = N we
have wN (k,N) = 1

2 − c. Let us construct the one step look ahead stopping time and let us
define k0 = min{1 ≤ k ≤ N : h(s) ≥ Th(s) for every s ∈ [k,N ]. For j ≥ k ≥ k0 we have
h(k) ≤ h(j) ≤ h̃(k, j) and by definition of k0 we have h̃(k, j) ≥ h(k) ≥ Th(k) ≥ Th(k, j).
The value of the problem wN (k, r) = h̃(k, r) and the optimal stopping time on MN

k0
is

defined by the stopping set Γk0 . Therefore we have TvN(r) = Th(r) for r ≥ k0 and the one
step look ahead rule is optimal in MN

k0
. �

Remark 3.2 Let us assume that s > k > k0. We take limits of k
N → y and s

N → x as
N → ∞. We get

h(y, x) = lim
k
N

→y; s
N

→x

N→∞

h̃(k, s) = 1 − c
1 − x

1 − y

h̄(y, x) = lim
k
N

→y; s
N

→x

N→∞

Th(k, s) = 1 − x

2
− cx − 1 − x

1 − y
c − xc

1 − y
log(x).

For c ∈ (0, +∞) the equation log(y) = (y − 1)( 1
2c + 1) has one root α ∈ (0, 1). When

x ≥ y ≥ α then h̄(y, x) ≤ h(y, x).
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The optimal stopping time τ∗ is defined as follows: one have to stop at the first moment
r when Yr = 1, unless vN (r) > h(r). We can define the stopping set Γ = {r : h(r) ≥
vN (r)} ∪ {N}.

Theorem 3.3 For every c ∈ [0, +∞) there is k0 such that Γ = {r : r ≥ k0, Yr = 1} ∪ {N}
and vN = vN (k0 − 1).

Proof. The function h(r) = r
r+1 − c is increasing on r. For r = N we have

vN (N) = 1
2 − c. Let us construct the one step look ahead stopping time and let us define

k0 = min{1 ≤ k ≤ N : h(s) ≥ Th(s) for every s ∈ [k,N ]. For j ≥ k ≥ k0 we have
h(k) ≤ h(j) ≤ h̃(k, j) and by definition of k0 the value of the problem on MN

k0−1 is equal to
vN (k0 − 1) = Th(k0 − 1) and the one step look ahead rule is optimal in this set of stopping
times. For r ≤ k0−1 we have h(r) ≤ vN (k0−1). If we do not stop at the moment r < k0−1
we get

vN (r) =
k0−1∑

j=r+1

r

j(j − 1)
vN (k0 − 1)

+
r

k0 − 1

⎛
⎝N−1∑

j=k0

k0 − 1
j(j − 1)

h̃(k0 − 1, j) +

⎛
⎝1 −

N−1∑
j=k0

k0 − 1
j(j − 1)

⎞
⎠ (

1
2
− c)

⎞
⎠

= rvN (k0 − 1)(
1
r
− 1

k0 − 1
) +

r

k0 − 1
vN (k0 − 1) = vN (k0 − 1).

It shows that vN = vN (k0−1) and the stopping rule τ� = min{1 ≤ r ≤ N −1 : r ≥ k0, Rr =
1} ∨ N is optimal. �

N Cost of decision
c = 0 c = 1

10 c = 2
10

5 2 13
20

∼= 0.65 2 343
600

∼= 0.571667 2 7
15

∼= 0.466667
10 3 11

15
∼= 0.733333 3 0.654224 4 0.566339

15 4 31
40

∼= 0.775 4 0.69564 5 0.608834
50 7 0.868571 8 0.785822 9 0.70274
100 10 0.905446 12 0.819826 14 0.734604
∞ 0 1 [0.00251646N ] 0.9 [0.0340152N ] 0.8

Table 1: Optimal strategy and expected payoff according Theorem 3.3 and 3.4.

Let the number of applicants be going to the infinity. When the cost c is positive the
value of the problem has limit less than 1 and the asymptotic threshold is bigger than 0.

Theorem 3.4 Let us assume that c ∈ (0, +∞). We have

lim
k0
N

→α

N→∞

vN = 1 − c − (c +
1
2

)α − cα

1 − α
log(α)(12)

and α is the unique solution of the equation log(x) = (1 + 1
2c )(x − 1) in (0, 1).

Proof. It is a consequence of Theorem 3.3 and the observation from Remark 3.2. �
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Remark 3.5 It is also natural payoff structure when at the last moment N there are no
cost of decision and c ∈ [0, 1

2 ). In this case the decision maker will hesitate longer before
he accepts the candidate than in the model with cost of decision at the last moment. A
numerical example is given in Table 2. The form of optimal strategy is the same. The
threshold k�

0 is different. Its limit k�
0

N → β fulfills the equation log(x) = 1
2c(x − 1).

N Cost of decision
c = 0 c = 1

10 c = 2
10

5 2 13
20

∼= 0.65 3 3
5
∼= 0.6 3 0.566667

10 3 11
15

∼= 0.73333 4 0.679003 5 0.626485
15 4 31

40
∼= 0.775 5 0.716322 6 0.662696

50 7 0.868571 9 0.799919 14 0.729829
100 10 0.905446 14 0.830076 22 0.755734
∞ 0 1 [0.00697715N ] 0.9 [0.107355N ] 0.8

Table 2: Optimal strategy and expected payoff when there is no cost at last moment.

4 Final remarks The cost of decision included in this model gives parameter to measure
the fear of grader that his decision is too early. One can also imagine that the grader is
able to observe the true value of the item over some fixed threshold, the level of the price
acceptable by him. In this case, the value of the threshold determine the expected number of
observation to the acceptance (see Porosiński and Szajowski [19]). Such partial observation
is easy to realize by human being and it is natural behaviour for many traders. They do
not accept prices belove some threshold.

The slightly similar fenomena is modeled and investigated in the game of timing, espe-
cially in the silent duels related to putting farm product on the market (see Teraoka and
Hohjo [34]). The application of such model can be found in optimal pricing of perishable
goods (see e.g. Karpowicz and Szajowski [17], Feng and Xiao [7]).

In many real problems one can observe that the decision maker hesitates to long and
postpones the final decision. He rejects relatively best option too long. It looks that he
fears to loss the potential options. The level of fear can be dependent on the value of the
item or independent. The model of choice for such decision maker could be based on the
multicriteria optimal stopping models considered by Gnedin [15], Ferguson [8], Samuels and
Chotlos [26] and recently by Sakaguchi and Szajowski [23] and Bearden et al. [3]. In this
model the one variable is related to the value or rank of the applicant being searched. The
second coordinate would be a measure of undefined risk related to the decision process
which the decision maker is feeling. From this point of view the research is needed to adopt
the proper model for the considered case of the item selection. It also open the theoretical
investigation to formulate variation of the best choice selection.
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