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ABSTRACT. In this paper, we shall discuss generalizations of the results on Ando-Hiai
inequality and a generalized Furuta-type operator function.

Firstly we shall obtain a generalization of our recent result on generalized Ando-Hiai
inequality, that is, if A™" § B? < I for A,B >0 and p,r > 0, then

_r_
p+r

A7 fsar BP <A fsur B

T s+t

for0<s<p, 0<t<rand —t<d<s,
Secondly, as a related result to Furuta’s and our recent ones, we shall show the
following: Let A, B > 0. If A* > B* > 0 for some t € (0,1] and p > 1, then

—t —t
FOopu)=A 4t 1-1n (A2 BPAZ )",
(p—t)n+Xx
satisfies F'(q,w) > F(r,s) for any s > 1, r > t, 117%’; <w<sand 0 < qg<r, and also
these two theorems lead Grand Furuta inequality.
Moreover we discuss further extensions of the results on these two topics.

1 Introduction Throughout this note, A and B are positive operators on a complex
Hilbert space. For convenience, we denote A > 0 (resp. A > 0) if A is a positive (resp.
strictly positive) operator.

First of all, we recall Furuta inequality [10] (cf. [2, 11, 17, 20]): If A > B > 0, then for
each r > 0,

(i) (BEAPB%)s > B and (i) ASF > (A3BPA%):

for p > 0 and ¢ > 1 with (14 r)g > p + r. Furuta inequality is established as an extension
of Lowner-Heinz theorem “A > B > 0 ensures A* > B for any o € [0,1].” As stated in
[17], when A > 0 and B > 0, Furuta inequality can be arranged in terms of a-power mean

fo for a € [0,1] introduced by Kubo-Ando [19] as A #, B = A7(A2 BAz )*Az :

(F) A>B>0with A >0 implies A*THHTT BP<B<Aforp>1andr>0.

On the other hand, Ando and Hiai [1] have shown the following inequality (called Ando-
Hiai inequality): For A, B > 0,

(AH) Aty B<Iforae(0,1) implies A" 4, B" <TI forr>1.
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By (AH), they obtained that for A, B > 0,
(AH) A7l f1 A7 BPAT < I implies A7 #1 (A%IBPA%)T <Iforp>1andr>1.
We remark that (AH’) is equivalent to the main result of log majorization.

As a generalization of Furuta inequality and Ando-Hiai inequality, Furuta [12] obtained
the following theorem (cf. [5, 9, 13, 15, 21, 22, 24]).

Theorem 1.A (Grand Furuta inequality [12]). If A > B > 0 with A > 0, then for
each t € [0,1] and p > 1,
(1.1) F(r,s) = AT (A5 (AT BPAT P A5} o0 AT

is decreasing for v >t and s > 1, and A* 7T > {Ag(A_TtBPA_Tt)SAg}@:t)ﬁT holds

forr >t and s> 1.

We remark that (1.1) can be rewritten by using a-power mean as follows:

(1.1) F(Ap) = A s (A= BPAZ )M,

p—t)pu+X

Recently, we investigate extensions of Ando-Hiai inequality in [4, 6], and the following
results are obtained.

Theorem 1.B ([6]). For A,B >0 and o € (0,1), if Ao B <1, then
(GAH) A" e B'<Afy B<I

fors>1andr > 1.

Theorem 1.C ([4]). For A,B >0 and o € [0,1], if A #, B <1, then

Aty B<A* 4 __oun  B?

(I—a)X+ap

for w e [0,1] and X € [0, 1].

Very recently, as a generalization of [18, Theorem] (cf. [8]), the following theorems were
shown on monotonicity of a generalized Furuta-type operator function (1.1) or (1.1°).

Theorem 1.D ([14]). Define F(A\ p) as in (1.1). Let A> B > 0 with A > 0, t € [0,1]
and p > 1. Then F(\ ) satisfies the following properties:

(i) F(r,w) = F(r,1) 2 F(r,s) = F(r,s')
holds for any s’ > s>1,r >t and:ﬁgwgl.
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(ii) F(q,s) > F(t,s) > F(r,s) =2 F(r',s)
holds for any ' >r>t, s>1andt —1<q<t.

Theorem 1.E ([16]). Define F(\, u) as in (1.1’). Let A > B > 0 with A > 0, t € [0,1]
and p > 1. Then F(\ ) satisfies

F(q,w) > F(t,1) > F(r,s) > F(r',s")
forany s’ >s>1,1r >r>t, :}%tgwgl andt —1<q<t.

We remark that the domain of Theorems 1.A, 1.D and 1.E can be expressed by the
following Figure 1.
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FIGURE 1

In this paper, we shall discuss generalizations of the results on Ando-Hiai inequality and

a generalized Furuta-type operator function.
Firstly we shall obtain a generalization of Theorem 1.C, that is, if A" ﬂp_L BP < for

A,B >0 and p,r > 0, then
A7 o1 BP < A7 $500 BF
p+r s+t

for0<s<p,0<t<rand —t<J<s,
Secondly, as a related result to Theorems 1.D and 1.E, we shall show the following: Let
A,B>0.If A' > B" > 0 forsome t € (0,1] and p > 1, then (1.1°) satisfies F'(¢,w) > F(r, s)

forany s > 1, r > t, ﬁ <w < sand 0 < g <7, and also these two theorems lead Theorem

1LA. -

Moreover we discuss further extensions of the results on these two topics.
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2 Main results We can rewrite Theorem 1.C by putting A = ;, pw==and o =
replacing A with A~" and B with BP as follows:

Corollary 2.A ([4]). For A, B>0,p>0andr >0, if A~ ﬁp—ir BP < I, then
A4 BP<A'Y., B¥
p+r s+t
for s €10,p] and t € [0, r].

Then we can obtain a generalization of Corollary 2.A.

Theorem 2.1. For A/ B>0,p>0andr >0, if A" ﬁrfrr B? < I, then
A7 fsur BP < A" 500 BF
p+r

s+t
for0<s<p, 0<t<rand —t<d <s.

Proof. Put C = A2 BPA2. Then A™" ﬁ#T BP < [ if and only if
(2.1)

A" > (AEBPA%)w E

ptr = C'r+r,

By (2.1) and Lowner-Heinz theorem, A" > Cvr since =t € [0,1], so that we have

A7 e B = A7 (AT Bse (A2B%A2))A= = A= (A" fors (A g C)A=
> AT (CFF foe (CFF7 42 O)AT = AT CPAT = A7 o BY

for0<s<p, 0<t<rand —t<d<s. O
Remark 1. Concerning Corollary 2.A, they might expect that if A" ﬁp% BP < [ for
some p > 0 and r > 0, then

A_tﬂﬁ B*°<I for0<s<pandO0<t<r.

But it is pointed out in [23] that this conjecture does not hold, and the following counterex-
ample in [3] plays an important role in the proof. Let

2 2
17 7 1 0

A (T ) e (20,

Then

A2 — (AB%A)} = (135716.49504 -

62374.58231 ... 0
62374.58231 ... -

28669.17453 . ..
since eigenvalues of A2 —(AB2A)z are 164383.89711 ... and 1.77246 . . ., so that A=2 § B2 <
I. On the other hand,

1

L 11 (309.39438... 138.04008 ...
A= (A2BAR)? = (138.04008... 60.06152...) 20

since eigenvalues of A— (A% BA7)3 are —1.27415 ... and 370.73006 . . ., so that A" B £ I.

Remark 2. [7, Theorem 4] can be expressed as a special case of Theorem 2.1 as follows:
For A,B >0, p>0and r > 0, suppose A~" ﬁp_L BP < I. Then




ANDO-HIAI INEQUALITY AND FURUTA-TYPE OPERATOR FUNCTION 47

(i) for each § € [0,p], A™" ]ja% BP < AT ﬁa% B? for 0 < s <p,
pTT s+

(ii) for each t € [0,7], A™" ]ja% BP < A7t 45y BP for —t < § < p.
ptr

Pt

In fact, by putting ¢ = r and 6 > 0 in Theorem 2.1, we can get (i). Similarly, by putting
s = p in Theorem 2.1, we can get (ii).

Next we shall obtain the following Theorem 2.2 related to Theorems 1.D and 1.E.

Theorem 2.2. Let A,B > 0. Define F(\,p) as in (1.1"). If At > Bt > 0 for some
t € (0,1] and p > 1, then F(\, u) satisfies

F(qw) = F(r,s)

foranyszl,TZt,:ﬁgwgsandqugr.

Proof. Put D = (A= BPA% )77, then A' > Bt if and only if
(2.2) I>ATB'AT = AT (ASDP 'A% s AT = A=t 4, DP .
Applying Theorem 1.B to (2.2), we have

DP=Ds = g=ry . pl=is,

(p—t)s+r

(2.3) I>A"4

(1—

t.
P
)s

+ [+

3 |4
+3

e

for s > 1 and r > ¢. By Theorem 2.1, (2.3) ensures

F(r,s) = A7 # 1-t4r Dw—b)s <ATT] 14 D=t — F(q,w)

(p—t)s+r p—tHw+tq
for 0 < (p—t)w < (p—1t)s,0 < g <rand —qg <1—t < (p—t)w. Therefore F(q,w) > F(r,s)
holdsforanyle,rzt,ﬁgwgsandogqgr. O
At the end of this section, we shall show that Theorems 1.B and 2.1 lead Theorem 1.A
via Theorem 2.2.

Proof of Theorem 1.A. We may assume that B is invertible. When ¢ € (0,1], A > B >0
ensures A > B! by Lowner-Heinz theorem. Therefore, for ¢ € (0,1] and p > 1,
F(r,s) = AT {A% (AT BPAT AR} 07 AT < F(g,w)
<F(t,1)=A2BA= < A",
for any s > ¢ > 1, r > w >t by Theorem 2.2.

When ¢ = 0, it is obtained in [6] that (F) follows from (AH), and also A’Tﬁi; Br<A
pFr

leads A‘Tﬂp_rTBP < I for p > 1 and r > 0 by Lowner-Heinz theorem. Therefore desired
result is obtained immediately by Theorem 2.1. O
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3 Further extensions In this section, firstly we shall show the following proposition

Proposition 3.1. For A,B >0 andp >0, r > 0 such that p+r # 0,
(i) if A™7 $sy4r BP < A% for some &y with —r < 0y < p, then
p+r
A7T #5400 BP < AN

p+r

for —r < 61 < dp.
(ii) if A™" #s91r BP < B% for some 0y with —r < &y < p, then
ptr

A7" 5,400 BP < B%
p+r
for dg <69 < p.

Proof. We can easily obtain (i) as follows:

A" foree BP = A" o100 (A fonie BP) < A7 f,00 A% = A%
=g SoFr

p+r So+r
Similarly, we can obtain (ii) as follows

A" tsyr BP=BP f 5,00 AT
pFr prr

= B" f-s4» (A7" #591r B)
—dp+p p+r

=BPf spip (BP §-s910 A7)
—do+p ptr

< BP 4 s,1» B® = B%.
—dp+p
Hence the proof is complete.

By considering Proposition 3.1, we can get further extensions of Theorem 2.1.

Theorem 3.2. For A)B >0 andp >0, r >0 such that p+r # 0,

(i) if A™7 $sy4r BP < A% for some &y with —r < dg < 0, then
p+r

A7 tsr BP < At fs4: BP
p+r p+t
for =6 <t <7 and -t <J <p.

(ii) if A~ Hsger BP < B% for some 8o with 0 < &y < p, then
p+r

p+r

A" fsr BP<ATT ﬁa% B?
fordog < s<pand—-r<éd<s.

Theorem 3.3. For A,B >0 andp >0, r >0 such that p+r # 0,
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(1) if A7" $s0er BP < A% for some &y with 0 < §g < p, then
p+r

A" s0r BP < A7 $500 B®
p+r

s+t
for0<s<p, =6 <t<rand —t<J<s.
(ii) if A™" #s91r BP < B% for some 0y with —r < &y <0, then
p+r
A" fser BP <A™ 50 BP

T s+t

fordog<s<p, 0<t<rand —t<4§<s.

We remark that the assumption of Theorem 3.2 is weaker than that of Theorem 2.1, and
also the assumption of Theorem 3.3 is stronger than that of Theorem 2.1 by Proposition
3.1. By putting dp = 0 in (i) or (ii) of Theorem 3.3, we have Theorem 2.1.

Proof of Theorem 3.2. Put C = A2 BPA3. Then A" fs,+» BP < A% if and only if

p+r
(3.1) Ao+ > (A5 BPAS) T = O

Proof of (i). By (3.1) and Lowner-Heinz theorem, A" ¢ > Cv since
we have

3= € [0,1], so that

A7 s BP = A7 (AT Bons (AZBPAS)AZ = A2 (A"} Bors C)A=
> AT (CF fsu C)AT — AT O AT = AT §sc0 BP

for —fp <t<rand -t <é<p.

Proof of (ii). By replacing A with B~! and B with A~! in (i), we obtain the following: For
A,B>0and p>0,r>0such that p+r # 0,

if B™" fsy+r AP > B% for some 8 with —r < dp < 0,
3.2 ptr
(32) then B farr AP > B fou AV
pET

Pt

for —dp <t<rand —t<4§<p.
On the other hand, A" #s,:» B? < B% if and only if

p+r
(3.3) B7P f#_sy1p A" > B7%,
r+p
Applying (3.2) to (3.3) for —p < —dp < 0, we have
(3.4) BP 4o, AT > B fgus AT
r+p r+s

for —(—dp) < s <pand —s < —0 <r, and also (3.4) if and only if

A7 four BP < AT f54e B®

p+r s+
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for g <s<pand —r < <s.

Hence the proof of Theorem 3.2 is complete. O

Proof of Theorem 3.8. Put C = A3 BPA%. Then A™" f5,1» B? < A% if and only if

p+r
(3.5) AP+ > (A5 BPAR) T = O

Proof of (i). By (3.5) and Lowner-Heinz theorem, A"t > C since g[;jrtr € [0,1] and
A" > C7F since 57 € [0,1], so that we have

At fse B° = A= (A fss (AZB°A2))A7 = A7 (A" $50 (A" §2 O))AT
s+t s+t s+t P
> AT (Ot (CFF 42 O)AT = AT O AT = A" $50r B

p+r

for0<s<p, —dg<t<rand —t<J<s.

Proof of (ii). By replacing A with B~! and B with A~! in (i), we obtain the following: For
A,B>0and p>0,r>0such that p+r # 0,
if B™" 504 AP > B% for some &y with 0 < §y < P,
(3.6) e »
thenBTﬂ(H—TT AP > B7" #5400 A°
ptr S+t

for0<s<p, —dg<t<rand —t<J<s.
On the other hand, A™" #s,4~ BP < B% if and only if
p+r

(3.7) B7P f 540 A" > B7%,

r+p
Applying (3.6) to (3.7) for 0 < —dg < r, we have
(3.8) BP Y sip A" > B " fsss A
rFp t+s
for 0 <t <r, —(—dy) <s<pand —s < —§ <t, and also (3.8) if and only if
A7 o1 BP < A7 $500 BF
p+r s+t
fordg<s<p,0<t<rand —t<4§<s.
Hence the proof of Theorem 3.3 is complete. O

Next, by using Theorem 3.3, we shall give a direct proof of the following Theorem 3.4
combined Theorems 1.D and 1.E. We remark that Theorem 2.2 is a variant of Theorem 3.4
since Theorem 2.2 is the result for A* > Bt > (0 for t € (0,1] and this assumption is weaker
than that of Theorem 3.4 (i.e., A> B > 0).

Theorem 3.4. Define F(A\,u) as in (1.1’). If A> B >0 with A>0, t€[0,1] andp > 1,
then F(\, 1) satisfies
F(q,w) > F(r,s)

foranyszl,TZt,;ﬁgwgsandt—lgqgr,
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Proof. We may also assume that B is invertible.
—t —t 1
Put D = (A=2 BPA= )7»—¢. By Theorem 1.A, A > B > 0 ensures

(3.9) AT > (AEDP0sAR)GomeE, thatis, AT £ i, D®DS < Al

(p—t)s+r
fort € [0,1],p > 1, s> 1 and r > t. By (i) of Theorem 3.3, for 0 <1 —¢ < (p —t)s and
r >0, (3.9) ensures

F(r,s)= A7 g, DPT° < A7 H izt DO = F(g,w)

(p—t)s+r (p—t)w+tq

for 0 < (p—thw < (p — t)s, (1—t)<q<rand—q<1—t<( — t)w. Therefore
F(q, )2F(r,s)holdsforanys>1 r>t, 1 —~ <w<sandt—-1<g<r. O
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