THE PROOF OF INDEPENDENCE OF MARGINALS FOR $k \times l$ CONTINGENCY TABLE

HISAO NAGAO

Received June 16, 2009

ABSTRACT. The purpose of this note is to extend Fisher's exact test in 2×2 table to $k \times l$ table. Also a simple numerical example is given in 2×3 table.

1. Preparation At first, we consider the following 2×2 table.

\mathcal{B} \mathcal{A}	В	\bar{B}	total
A	N_{11}	N_{12}	N_1 .
$ar{A}$	N_{21}	N_{22}	N_2 .
total	$N_{\cdot 1}$	$N_{\cdot 2}$	n

Here we denote A and B are two events and \bar{A} and \bar{B} denote the complement of A and B, respectively. We repeat n times experiment in which $A \cap B$, $A \cap \bar{B}$, $\bar{A} \cap B$ and $\bar{A} \cap \bar{B}$ occur. The N_{11} denotes the number which $A \cap B$ occurs. The other N_{12} , N_{21} and N_{22} are defined similarly. On the other hand, N_1 is sum of N_{11} and N_{12} . N_2 is sum of N_{21} and N_{22} . That is, N_1 denotes the number the event A occurs and N_2 is the number for \bar{A} . Similarly N_{11} and N_{12} are the number for B and B, respectively.

We consider the testing hypothesis problem whether the events A and B are independent. When n is small, there is Fisher's exact test in 2×2 table. To caluculate it, we must show that the random numbers N_1 and $N_{\cdot 1}$ are independent. As far as the author knows, only one book giving its proof is Kitagawa and Inaba's 「統計学通論」 written in Japanese and published by Kyoritsu-Pub. Co. (1970). Their proof is not so readable, but unclear, rather seems to be not collect. We give the proof for a more general case in the next section.

2. $k \times l$ table We consider the generality of 2×2 table. Let Ω be a whole event. Let A_1, \dots, A_k be a partition \mathcal{A} of Ω and B_1, \dots, B_l be another partition \mathcal{B} of Ω . We repeat n times experiment. N_{ij} denotes the number which $A_i \cap B_j$ appears in this experiment. Then we have the following $k \times l$ contigency table.

²⁰⁰⁰ Mathematics Subject Classification. 62-07.

 $Key\ words\ and\ phrases.$ Independence, contingency table, Fisher's exact test, probability generating function .

		\mathcal{B}						
			B_1		B_j		B_l	total
$\mathcal A$								
'	A_1		N_{11}	• • •	• • •	• • •	N_{1l}	N_1 .
	÷		÷				÷	:
	A_i		:		N_{ij}		:	:
	:		:				:	:
	A_k		N_{k1}				N_{kl}	N_k .
	total		$N_{\cdot 1}$				$N_{\cdot l}$	n

 $N_{i\cdot} = \sum_{j=1}^{l} N_{ij}$ and $N_{\cdot j} = \sum_{i=1}^{k} N_{ij}$. Here $N_{i\cdot}$ represents the number of A_{i} 's occurring and $N_{\cdot j}$ represents the number of $B_{j\cdot}$. We assume that $\Pr(A_{i} \cap B_{j}) = \Pr(A_{i})\Pr(B_{j})$ $(i = 1, \dots, k; j = 1, \dots, l)$. Then we shall show that $(N_{1\cdot}, \dots, N_{k\cdot})$ and $(N_{\cdot 1}, \dots, N_{\cdot l})$ are independent. Before giving the proof, we put $p_{i\cdot} = \Pr(A_{i}), p_{\cdot j}$

= $\Pr(B_j)$ and $p_{ij} = \Pr(A_i \cap B_j)$. Let a_1, \dots, a_k and b_1, \dots, b_l be positive numbers. We consider the probability generating function of (N_1, \dots, N_k) and (N_1, \dots, N_l) .

$$\begin{split} & \mathrm{E}(a_{1}^{N_{1}}\cdots a_{k}^{N_{k}}\cdot b_{1}^{N_{-1}}\cdots b_{l}^{N_{-l}}) = \mathrm{E}((a_{1}b_{1})^{N_{11}}(a_{1}b_{2})^{N_{12}}\cdots (a_{k}b_{l})^{N_{kl}}) \\ & = (a_{1}b_{1}p_{11} + a_{1}b_{2}p_{12} + \cdots + a_{k}b_{l}p_{kl})^{n} \\ & = (a_{1}b_{1}p_{1.}p_{.1} + a_{1}b_{2}p_{1.}p_{.2} + \cdots + a_{k}b_{l}p_{k.}p_{.l})^{n} \\ & = (a_{1}p_{1.} + a_{2}p_{2.} + \cdots + a_{k}p_{k.})^{n}(b_{1}p_{.1} + b_{2}p_{.2} + \cdots + b_{l}p_{.l})^{n} \\ & = \sum \frac{n!}{n_{1}!\cdots n_{k}!}(p_{1.}a_{1})^{n_{1}}\cdots (p_{k.}a_{k})^{n_{k.}} \times \sum \frac{n!}{n_{1}!\cdots n_{l}!}(p_{.1}b_{1})^{n_{.1}}\cdots (p_{.l}b_{l})^{n_{.l}} \end{split}$$

Therefore we have

$$\Pr(N_{1.} = n_{1.}, \dots, N_{k.} = n_{k.}, N_{.1} = n_{.1}, \dots, N_{.l} = n_{.l})$$

$$= \Pr(N_{1.} = n_{1.}, \dots, N_{k.} = n_{k.}) \Pr(N_{.1} = n_{.1}, \dots, N_{.l} = n_{.l})$$

According to the above formula, we have

$$\Pr(N_{1.} = n_{1.}, \cdots, N_{k.} = n_{k.}) = \frac{n!}{n_{1.}! \cdots n_{k.}!} (p_{1.})^{n_{1.}} \cdots (p_{k.})^{n_{k}}$$

and

$$\Pr(N_{\cdot 1} = n_{\cdot 1}, \cdots, N_{\cdot l} = n_{\cdot l}) = \frac{n!}{n_{\cdot 1}! \cdots n_{\cdot l}!} (p_{\cdot 1})^{n_{\cdot 1}} \cdots (p_{\cdot l})^{n_{\cdot l}}$$

Thus we have the following theorem.

Theorem. If $\Pr(A_i \cap B_j) = \Pr(A_i)\Pr(B_j)(i = 1, \dots, k; j = 1, \dots, l)$, we have (N_1, \dots, N_k) and (N_1, \dots, N_l) are independent and the former is multinomial distribution with (p_1, \dots, p_k) and the latter is the same distribution with (p_1, \dots, p_l) .

To get the genelalized result for $k \times l$ table of exact test in 2×2 table, using this theorem, we have

$$\Pr(N_{ij} = n_{ij}, i = 1, \dots, k; j = 1, \dots, l | N_{i\cdot} = n_{i\cdot}, i = 1, \dots, k, N_{\cdot j} = n_{\cdot j}, j = 1, \dots, l)$$

$$= \frac{(\prod_{i=1}^{k} n_{i\cdot}!)(\prod_{j=1}^{l} n_{\cdot j}!)}{n!(\prod_{i=1}^{k} \prod_{j=1}^{l} n_{ij}!)}$$

3. Numerical example Here we suppose that the following data are given.

\mathcal{A}	B_1	B_2	B_3	total
A_1	6	3	1	10
A_2	1	1	3	5
total	7	4	4	15

These data are artificial numbers. We consider whether A's and B's are independent. If these are independent, each value estimated of each cell is as follows;

${\cal B}$ ${\cal A}$	B_1	B_2	B_3	total
A_1	14/3	8/3	8/3	10
A_2	7/3	4/3	4/3	5
total	7	4	4	15

According to Fisher's consideration, we have the following form.

For example, we denote + at $A_1 \cap B_1$, because of 6 - 14/3 > 0. Similarly we denote - at $A_2 \cap B_1$, because of 1 - 7/3 < 0. Thus we get the above table.

By generalizing the consideration of Fisher's 2×2 table, we obtain the following three types as rejection region \mathcal{R} .

$$\left(\begin{array}{ccc} 6 & 3 & 1 \\ 1 & 1 & 3 \end{array}\right) \qquad \left(\begin{array}{ccc} 6 & 4 & 0 \\ 1 & 0 & 4 \end{array}\right) \qquad \left(\begin{array}{ccc} 7 & 3 & 0 \\ 0 & 1 & 4 \end{array}\right)$$

From the result of the above theorem,

$$\begin{split} \Pr(\mathcal{R}) &= \frac{10!5!7!4!4!}{15!} \big(\frac{1}{6!3!3!} + \frac{1}{6!4!4!} + \frac{1}{7!4!3!} \big) \\ &\approx 3.83\%. \end{split}$$

When the significance level is 5%, the hypothethis is rejected.

Hisao Nagao 5-1-25-506, Senrioka Settsu,Osaka 566-0001 Japan

 $e\text{-}mail\ address:\ nagao@sb.dcns.ne.jp$