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PATH OF BREGMAN-PETZ OPERATOR DIVERGENCE
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ABSTRACT. For the Bregman operator divergence defined by D.Petz, we introduce
two paths of operator divergences including this one as a terminal. This gives other
explanations from the viewpoint of operator means or solidarities.

In [7], Petz introduced the Bregman operator divergence: For an operator convex func-
tion F' and positive (invertible) operators A and B on a Hilbert space, put

Dyy(A1B) = F(A) - F(B) — lim ZBFUAZ D)~ F(B)

t—+0 t
gy TFA) + (L F(B) — F(tA+ (1 - 1)B)
B t—lg-lo t
i EB) YV FA) - F(BY A
t——+40 t

He gives a nice representation of D[p) by hard calculation, by which, for density matrices
A and B and F(x) = zlogz,

Tr Dig10g2](A, B) = Tr A(log A — log B) = s(A, B),

the Umegaki relative entropy [8].
In [2, 3], we define the relative operator entropy S(A|B) as

S(A|B) = A} (10gA‘%BA‘%) A%

where —Tr S(A|B) is the Belavkin-Staszewski entropy [1]. Petz also gives another operator
version of the Bregman divergence by

Srx(A|B) = B — A — S(A|B).

But unfortunately Srx (A|B) does not coincides with D164 4](A, B) in general.

So we construct a class of operator divergences including Sgx (A|B) from the viewpoint
of operator means [6] or solidarity [4], which is based on operator monotone or operator
concave functions. To see this, we extend Digj(A|B) to fit to this viewpoint. Replacing
F with an operator concave function f = —F, we define a path of divergences extending
D[F](A|B) For 0 <t < 1, let

f(BV: A) - f(B) Vi f(A)

D4, B) = t1—t)
_JtA+ (1 -t)B) —tf(A) - (1 -1)f(B)
t(1—1t) '
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Then we have a symmetric property of this path between Dig|(A, B) and Dip)(B, A):
PH(I) Df,t(A, B) = D[F] (A, B), thrq Df’t(A, B) = D[F] (B, A)

Note that if f is an affine function f(x) = a + bz, then Df;(A, B) = O. So we assume
that a function f is non-affine throughout this note. Then we have a basic property of this
divergence:

Theorem 1. For a non-affine operator concave function f, the divergence Dy (A, B) is a
positive operator and Dy (A, B) = O holds if and only if A= B.

For this, we need the following lemma which is easily obtained since it is reduced to the
commutative case; 1 —t +tX = (1 —t+tX~1)~! holds only when X = I:

Lemma 2. For the harmonic mean Ay B = ((1—t)A=+tB~1)~t for selfadjoint invertible
operators A and B, the equation AV¢B = Al; B holds if and only if A = B.

Proof of Theorem 1. The positivity of Dy (A, B) is merely the operator concavity of f.
To show the extreme case, suppose f(AV:B) = f(A)V.f(B). Since we may assume f is
operator concave on (—1,1), then f has an integral representation

12
= b dm(t).
f@) =asbat [ dm)
The essential part of the function is
z2 2
folz) = =x+s+ ,
-8 T—8

so that we have only to show A = B when
(AViB—s) ' =1 —-t)(A—s) ' +t(B—s)!
for some s ¢ (—1,1). Taking inverse, we have
(A—5s)Vi(B—s)=AViB—s=(A—s)(B—s).
Thus, Lemma 2 shows A — s = B — s, that is, A = B. The converse is clear. [l

Now we will define a path ©¢.(A, B) including Srx (A|B). The following path of op-
erator divergences is naturally defined, but the symmetric property does not hold, so we
denote it by Dy .(4, B):

ATY2BATY2Y,0) — f(ATY2BATY2)V, f(I)
t(1—1t)
In fact, if f(z) = n(z) = —zlogz, then this path runs from Spx(A|B) to Spx(B|A):
(X Ve 1) —n(X) Vy W(I)A%
t(1—1t) ’

9,404, B) = 41211 e

9,.:(A,B) = A

where X = A~2BA~%. Then
(X +tI = X)) —n(X) +tn(X)

) A2

Duo(A, B) = lim D,.4(A, B) = lim A1

— AR/ (X)(I — X) +n(X))A?
= A%(—logX—I'i‘X)A%
= B—A—S(A|B) = Srx(A|B)
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and

+A-t)(X-1T1)—n() — (1 —t)n(X)
t(1—1)

[N

9,1(4,B) = lim D,4(A,B) = ling A0 A

= A2 (i (I)(X — I) — (X)) A*

= A3(—X +1+ XlogX)A?
= A*(—A*BA * + T+ A *BA ?log A"*BA"%)A?
=-B+A— B ?log(B2AB"?)B?

= A— B - S(B|A) = Sri(B|A).

But a symmetric equation D o(A, B) = Ds1(B, A) does not always hold: Putting
X = A"1/2BA~1/2 we easily compute it as follows:

Dro(A, B) = lim AV2(f(XVI)(I = X) + f(X) = f(1))A'/?

= AV (FOO = X) + f(X) = f(1)AY?
— AVZFI(X)( = X)AY? 4 AV2F(X)AV? — F(D)A

and
D71(4,B) = lim Dy, (A, B) = lim A3 (f(XVI)(X = 1) — f(X) + f(I))A?
)

= AV2(f()(X - 1) = f(X) + f(I))A"/?
= f/(I)(B — A) — AV2f(X)AY? + f(I)A.

Thus the symmetric equation is false in general.

To define a symmetric path of operator divergence, we recall the Kubo-Ando theory
of operator means [6] in which they gave the one-to-one correspondence between operator
means and positive operator monotone functions. For a positive operator monotone function
f on (0,00), the transpose f° of f, defined by f°(x) = xf(x~!), is also positive operator
monotone and then A my. B = B my A, where my is the operator mean corresponding to
f:

AmsB=Aif (A—%BA—%) A% = Bige (B—%AB—%) B3.

Moreover M.Fujii [5] showed the following equivalence for f which is not always positive:

Theorem F. A real-valued function f on (0,00) is operator concave if and only if its trans-
pose f° is operator concave.

For example, the entropy function n(x) = —zlogx and logx are operator concave and
these are the transpose each other.
Now we define a path of Bregman-Petz operator divergences (A, B) for f as

SUINVY) = fI) Ve fY) Ve (Y Ve D) = f2(Y) Ve f2(1))

1
.
11— ’

N

B

for Y = B"32AB"% and in particular we denote

D4(4,B) = lim Dy4(A, B).
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Since

_JUNVY) SOV ) YV D) = FY) Ve foU)

[N

B 29;,(A, B)B”

t 1—t ’
we have
D4(4,B) = limD (4, B) = 11mBlf(I Ve )_tf(f) Vi J(Y)
= lim B3 (f'(I V, Y )(Y—I)+f(f>—f<¥>>B%
= B2(f(I(Y = 1)+ f(I) - f(V))B?
= f'(I)(A=B)+ f(I)B— B2 f(Y)B*
and also

}irq@,c,t(A,B)zyrqB%f (th”_lft(ywtf U g

iy 5t V) SOV )

= (f°)(I)(A = B) + f°(I)B — B2 f°(Y)B?* = D(A, B).

Thus this path has a kind of symmetry between ® s(A, B) and D o (A, B), which is more
clarified by the following theorem:

Nl=

B3

Theorem 3. Let f be an operator concave function and f° be the transpose of f. Then
Do (A, B) = Ds(B, A).
Proof. The equality f°(1) = f(1) holds and also (f°)'(1) = f(1) — f’(1) hods since
(f°) (@) = (xf(1/2)) = f(1/2) - if’(l/x)
For the above X = A"2BA~2 and Y = B2 AB~2, we have
Dyo(A, B) = (f(I) = f'(I))(A - B) + f(I)B - B>Y f(X)B?

= ['(D(B = A)+ (A - AP A B3 f((ATB7%)" A3 B~%) ") B
= ['(I)(B— A)+ f(I)A— A f((A2B™%(A*B~%)")"")A* B~2 B*
= f/(I)(B — A) + f(I)A— A3 f(A"5 BA™2)A% = D4(B, A).
by the above calculation for lim;_; D¢ .(4, B). O

Thus D (A, B) combines the Bregman-Petz divergences D (A, B) with ®;(B, A). In
particular, for f(z) = n(x) = —xlogz, we have

,(A,B) = B~ A~ S(AB) = Spx(A|B)

and
9,(B,A) =9,0(A,B) =A— B — S(B|A) = Spk(B|A).

Similarly to Theorem 1, we have the basic property of these divergences:

Theorem 4. For a non-affine operator concave function f, the Bregman-Petz divergence
1s positive and equals to zero if and only if the operators are equal:

Ds:(A,B)>0;  9D54(AB)=0 < A=B
(D44(A,B) > 0; D;+(A,B)=0 < A=B).
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