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THE HIAI-PETZ GEODESIC FOR STRONGLY CONVEX NORM IS THE
UNIQUE SHORTEST PATH
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Abstract. Recently Hiai-Petz [7] introduced two types of interesting geometries of
positive-definite matrices whose geodesics are paths of operator means and then the
author [5] showed these geometries have Finsler structures for all unitarily invariant
norms. Though the geodesic is of the shortest length between fixed two matrices,
the shortest paths are not unique in general as pointed out in [7]. In this paper, we
show that their geodesic is the unique shortest path in each Hiai-Petz geometry for
all strongly convex unitarily invariant norms. As counter examples, we show that this
uniqueness is false for Ky Fan norms.

1 Introduction. Let M (resp. M+) be the n × n (complex) matrices (resp. positive
definite matrices). Throughout this paper, a path γ(t) in M+ means a smooth curve for
t ∈ [0, 1]. Recently Hiai and Petz [7] introduced a new geometry for M+ parametrized by
each real number r with a pull-back metric for a diffeomorphism A �→ lnr A to the Euclidian
space where

lnr(x) =

{
xr−1

r (r �= 0)
log x (r = 0).

In this geometry, the geodesic is

Amr,tB = ln−1
r ((1 − t) lnr(A) + t lnr(B)) = ((1 − t)Ar + tBr)

1
r ,

which we call in [4] a chaotically quasi-arithmetic mean for r ∈ [−1, 1]. Though the above
means do not have monotonicity any longer for |r| > 1, we use the same symbols for the
sake of convenience in this paper.

On the other hand, the Hiai-Kosaki mean [6] for A and B is defined by the left (resp.
right) multiplication operator LA(resp. RB) and the Hadamard product ◦:

ϕ(LA,RB)X = U
((

ϕ(di, ej)
) ◦ U∗XV

)
V ∗

where ϕ is a mean function and the matrices U and V are unitaries which diagonalize
A = Udiag (di)U∗, B = V diag (ej)V ∗. Here we use the case A = B. Throughout this
paper, we use a fixed diagonalization of a path γ as D(t) = diag (di(t)) = U∗

t γ(t)Ut. Then

ϕ(Lγ(t),Rγ(t))X = Ut

((
ϕ(di(t), dj(t))

) ◦ U∗
t XUt

)
U∗

t .

For a continuously differentiable function f , we put

ϕ(x, y) = f [1](x, y) =

{
f(x)−f(y)

x−y (x �= y)
f ′(x) (x = y).
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Then, as in [5] for the action

ΦA,r(X) ≡ ΦA,lnr (X) = U
((

ln[1]
r (di, dj)

)
◦ U∗XU

)
U∗,

the first Hiai-Petz metric is defined by

Lr(X ; A) ≡ Lr,||| |||(X ; A) ≡
∣∣∣∣∣∣∣∣∣ΦA,r(X)

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣ (ln[1]

r (di, dj)
)
◦ U∗XU

∣∣∣∣∣∣∣∣∣
which is a Finsler one [5]. In this case, they showed the distance between A and B is
||| lnr B − lnr A|||.

Hiai-Petz [7, Theorem 3.3] also introduced another parametrized geometry for α > 0
whose geodesic is (Aα#tB

α)
1
α where the path of the geometric operator means in the sense

of Kubo-Ando [8] is defined as

A #tB = A
1
2

(
A− 1

2 BA− 1
2

)t

A
1
2 .

This is an extension of the geometry of Corach-Porta-Recht [2, 3]. For the action for a
function fα(x) = xα

ΦA(X) ≡ Φ[α]
A (X) = U

[(
f [1]

α (di, dj)
)
◦ U∗XU

]
U∗,

the second Hiai-Petz metric is defined by

L(X ; A) ≡ L[α](X ; A) =
1
α
|||A−α

2 ΦA(X)A−α
2 |||

which is also a Finsler one [5].
Now, recall that the norm ‖ ‖ is strictly convex if

‖(1 − t)x + ty‖ < 1 for all t ∈ (0, 1) and all distinct unit vectors x and y.

Then the strict triangle inequality holds

‖x + y‖ < ‖x‖ + ‖y‖
unless one of the vectors is a nonnegative multiple of the other. In particular, for nonzero
vectors, triangle equality shows one is a positive multiple of the other.

In this paper we show that the geodesic is the unique shortest path for each Hiai-Petz
geometry for all strongly convex unitarily invariant norms (Bhatia mentioned without proof
in [1] that it holds for all uniformly convex norms which are strongly convex). Conversely
we show Ky Fan norms give counterexamples for such uniqueness.

2 Geometry with the geodesic Amr,tB.

Theorem 1. If a unitarily invariant norm is strictly convex, the chaotically quasi-arithmetic
mean

Amr,tB = ln−1
r ((1 − t) lnr(A) + t lnr(B)) = ((1 − t)Ar + tBr)

1
r

is the unique shortest geodesic for the first Hiai-Petz metric

Lr(X ; A) = Lr,||| |||(X ; A) =
∣∣∣∣∣∣∣∣∣ (ln[1]

r (di, dj)
)
◦ U∗XU

∣∣∣∣∣∣∣∣∣
where the shortest length is ||| lnr B − lnr A|||.
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Proof. Suppose γ attains the shortest length. Since

Lr(γ̇; γ) =
∣∣∣∣∣∣∣∣∣ (ln[1]

r (di(t), d′jt))
)
◦ U∗

t γ̇Ut

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣d lnr γ

dt
(t)

∣∣∣∣∣∣∣∣∣
for a parametrized diagonalization U∗

t γ(t)Ut = diag (dj(t)), the length �(γ) satisfies

||| lnr B − lnr A||| = �(γ) ≡
∫ 1

0

Lr(γ̇; γ)dt �
∣∣∣∣∣∣∣∣∣ ∫ 1

0

d lnr γ

dt
(t)dt

∣∣∣∣∣∣∣∣∣ = ||| lnr B − lnr A|||

For H(t) = lnr γ(t), it must satisfy∫ 1

0

|||H ′(t)|||dt =
∣∣∣∣∣∣∣∣∣ ∫ 1

0

H ′(t)dt
∣∣∣∣∣∣∣∣∣ = ||| lnr B − lnr A|||.

Here we use the broken line approximation to obtain the length of H(t):∫ 1

0

|||H ′(t)|||dt = lim
|∆|→0

∑
tn∈∆

|||H(tn+1) − H(tn)|||.

Take the following monotone increasing sequence converging to
∫ 1

0 ‖H ′(t)‖dt:

2n∑
k=1

∣∣∣∣∣∣∣∣∣H (
k

2n

)
− H

(
k − 1
2n

)∣∣∣∣∣∣∣∣∣ ↑
∫ 1

0

|||H ′(t)|||dt.

Then all the triangle inequalities

∣∣∣∣∣∣∣∣∣H (
k

2n

)
− H

(
k − 1
2n

) ∣∣∣∣∣∣∣∣∣
�

∣∣∣∣∣∣∣∣∣H (
2k

2n+1

)
− H

(
2k − 1
2n+1

)∣∣∣∣∣∣∣∣∣ +
∣∣∣∣∣∣∣∣∣H (

2k − 1
2n+1

)
− H

(
2(k − 1)

2n+1

) ∣∣∣∣∣∣∣∣∣
are equal, so that there exists s 2k−1

2n+1
> 0 with

H

(
2k

2n+1

)
− H

(
2k − 1
2n+1

)
= s 2k−1

2n+1

(
H

(
2k − 1
2n+1

)
− H

(
2(k − 1)

2n+1

))
,

that is, H
(

2k−1
2n+1

)
at each binary fraction 2k−1

2n+1 in [0, 1] is the convex combination for H
(

k−1
2n

)
and H

(
k
2n

)
;

H

(
2k − 1
2n+1

)
=

s 2k−1
2n+1

H
(

k−1
2n

)
+ H

(
k
2n

)
s 2k−1

2n+1
+ 1

holds for all n and k = 1, · · · , 2n. Thus, all the constants s 2k−1
2n+1

are defined from the
terminal points H(0) = lnr A and H(1) = lnr(B) with s0 = 0 and s1 = 1. Therefore we can
define a function w on the binary fractions in [0, 1] inductively with the relation

H

(
2k − 1
2n+1

)
=

(
1 − w

(
2k − 1
2n+1

))
lnr A + w

(
2k − 1
2n+1

)
lnr B.

In fact, restricting ourselves to the coefficient of lnr B, we have the recurrence equation

w

(
2k − 1

2n

)
=

s 2k−1
2n

w
(

k−1
2n−1

)
+ w

(
k

2n−1

)
s 2k−1

2n
+ 1

.
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So, by w(0) = 0 and w(1) = 1, we have inductively

w

(
1
2n

)
=

w
(

1
2n−1

)
s 1

2n
+ 1

=
w

(
1

2n−2

)(
s 1

2n−1
+ 1

)(
s 1

2n
+ 1

) = · · · =
1∏n

k=1

(
s 1

2k
+ 1

)

w

(
3
2n

)
=

s 3
2n

w
(

1
2n−1

)
+ w

(
1

2n−2

)
s 3

2n
+ 1

=
s 3

2n
+ s 1

2n−1
+ 1(

s 3
2n

+ 1
)∏n−1

k=1

(
s 1

2k
+ 1

)

w

(
5
2n

)
=

s 5
2n

w
(

1
2n−2

)
+ w

(
3

2n−1

)
s 5

2n
+ 1

=
s 5

2n

(
s 3

2n−1
+ 1

)
+ s 3

2n−1
+ s 1

2n−2
+ 1(

s 5
2n

+ 1
)(

s 3
2n−1

+ 1
)∏n−2

k=1

(
s 1

2k
+ 1

)

w

(
7
2n

)
=

s 7
2n

w
(

3
2n−1

)
+ w

(
1

2n−3

)
s 7

2n
+ 1

=
s 7

2n

(
s 3

2n−1
+ s 1

2n−2
+ 1

)
+

(
s 3

2n−1
+ 1

)(
s 1

2n−2
+ 1

)
(
s 7

2n
+ 1

)(
s 3

2n−1
+ 1

)∏n−2
k=1

(
s 1

2k
+ 1

)
...

...
... .

By the initial conditions w(0) = 0 and w(1) = 1, the function w is monotone increasing
on the above fractions. The smoothness of γ implies that w is smoothly extended to a
function on [0, 1] which is monotone increasing and satisfies

lnr(γ(t)) = H (t) = (1 − w (t)) lnr A + w (t) lnr B.

Thus
γ(t) = ln−1

r ((1 − w (t)) lnr A + w (t) lnr B) = Amr,w(t)B,

that is, γ can be identified with Amr,tB.

Typical unitarily invariant norms which are not strongly convex are Ky Fan’s, that is
‖X‖(k) means the sum of singular values for X from the largest to the k-th. In this case, the
shortest paths are not uniquely determined for the Hiai-Petz geometry as in the following
example:

Example 1. Let B = (bj) be a diagonal positive-definite matrix greater than I with bj is
(strictly) monotone decreasing. For a path from I to B, the shortest length is ‖ lnr B‖(k).
Then, for two path of distinct means mt �= nt, we have ImtB is different from IntB as
paths by the strict monotonicity for bj .

case r = 1: Let δ(t) = Bt which differs from the geodesic (1 − t)I + tB. Then δ̇(t) =
Bt log B ≥ O and xt log x is monotone increasing for x > 1. Since ln′

1(x) = 1, we have

L1,‖ ‖(k)
(δ̇; δ) = ‖Bt log B‖(k) =

k∑
j=1

bt
j log bj ,

so that

�‖ ‖(k)
(δ) =

∫ 1

0

k∑
j=1

(bt
j log bj)dt =

k∑
j=1

∫ 1

0

(bt
j)

′dt =
n∑

j=1

[
bt
j

]1
0

=
k∑

j=1

(bj − 1) = ‖ ln1 B‖(k).

case r � 0 and r �= 1: Let γ(t) = (1 − t)I + tB = I + t(B − I). Then γ̇(t) = B − I and
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ln′
r(x) = xr−1. Hence

Lr,‖ ‖(k)
(γ̇; γ) = ‖ ln′

r(γ(t)) ◦ (B − I)‖(k)

= ‖diag
(
(1 + t(bj − 1))r−1(bj − 1)

) ‖(k).

Here a function f(x) = (1 + tx)r−1x is monotone increasing for x > 0 since

f ′(x) = (1 + tx)r−2(rtx + 1) � 0.

By γ̇(t) ≥ O in this case, we have

Lr,‖ ‖(k)
(γ̇; γ) =

k∑
j=1

(1 + t(bj − 1))r−1(bj − 1) =
k∑

j=1

(
(1 + t(bj − 1))r

r

)′
,

so that,

�‖ ‖(k)
(γ) =

∫ 1

0

k∑
j=1

(
(1 + t(b − 1))r

r

)′
dt

=
k∑

j=1

[
(1 + t(bj − 1))r

r

]1

0

=
k∑

j=1

br
j − 1
r

= ‖ lnr B‖(k).

case r < 0: Let 1 < bk < 1 − 1
r . Then for 0 < x < − 1

r , a function f(x) in the above is
also monotone increasing since

f ′(x) = (1 + tx)r−2(rtx + 1) > (1 + tx)r−2(−t + 1) � 0.

Similarly as the above, we have �‖ ‖(k)
(γ) = ‖ lnr(B)‖(k).

3 Geometry with the geodesic (Aα #tB
α)

1
α .

Theorem 2. If a unitarily invariant norm is strictly convex, the path

A pα,tB = (Aα#tB
α)

1
α

is the unique shortest geodesic for the second Hiai-Petz metric

L[α](X ; A) =
1
α

∣∣∣∣∣∣∣∣∣
⎛
⎝f

[1]
[α](di, dj)

(didj)
α
2

⎞
⎠ ◦ U∗XU

∣∣∣∣∣∣∣∣∣ =
1
α
|||A−α

2 U
[(

f
[1]
[α](di, dj)

)
◦ U∗XU

]
U∗A−α

2 |||

for a diagonalization U∗AU = diag (dj) and a function f[α](x) = xα where the shortest
length is ||| log(A−α

2 BαA−α
2 )1/α|||.

Note that the differential formula shows

αLα(γ̇(t); γ(t)) =
∣∣∣∣∣∣∣∣∣U∗

t γ(t)−
α
2 Ut

[(
f

[1]
[α](di(t), dj(t))

)
◦ U∗

t γ̇(t)Ut

]
U∗

t γ(t)−
α
2 Ut

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣γ(t)−
α
2 (γ(t)α)′γ(t)−

α
2

∣∣∣∣∣∣∣∣∣.
Here we use the following property of this metric instead of ‘homogeneity’: For a path

γ and an invertible matrix Y , define the path γY by

γY (t) ≡ γY,α(t) ≡ (Y ∗γα(t)Y )
1
α .

Then we have an invariance property:
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Lemma 3. L[α]( ˙γY ; γY ) = L[α](γ̇; γ).

Proof. Since |||Z||| = ||||Z|||| = |||√Z∗Z||| = |||√ZZ∗|||, we have

αLα( ˙γY ; γY ) =
∣∣∣∣∣∣∣∣∣γ−α

2
Y (γα

Y )′γ−α
2

Y

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣(Y ∗γαY )−

1
2 (Y ∗γαY )′(Y ∗γαY )−

1
2

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣(Y ∗γαY )−
1
2 Y ∗(γα)′Y (Y ∗γαY )−

1
2

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣√(Y ∗γαY )−
1
2 Y ∗(γα)′Y (Y ∗γαY )−1Y ∗(γα)′Y (Y ∗γαY )−

1
2

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣√(Y ∗γαY )−
1
2 Y (γα)′γ−α(γα)′Y ∗(Y ∗γαY )−

1
2

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣√γ−α
2 (γα)′Y (Y ∗γαY )−1Y ∗(γα)′γ−α

2

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣√γ−α
2 (γα)′γ−α(γα)′γ−α

2

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣γ−α

2 (γα)′γ−α
2

∣∣∣∣∣∣∣∣∣ = αLα(γ̇; γ).

To show the theorem, we use the formula for H(t) = α log γ(t);

(γ(t)α)′ =
d

dt
eH(t) =

∫ 1

0

euH(t)H ′(t)e(1−u)H(t)du

and the following ‘logarithmic-geometric mean inequality’ due to Hiai-Kosaki [6]:

Hiai-Kosaki inequality:
∣∣∣∣∣∣∣∣∣ ∫ 1

0

HuXK1−udu
∣∣∣∣∣∣∣∣∣ � |||H1/2XK1/2|||.

Proof of Theorem 2. The Hiai-Kosaki inequality implies

αL[α](γ̇; γ) =
∣∣∣∣∣∣∣∣∣γ−α

2 (γα)′γ−α
2

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣e−H(t)
2

(∫ 1

0

euH(t)H ′(t)e(1−u)H(t)du

)
e−

H(t)
2

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣ ∫ 1

0

euH(t)e−
H(t)

2 H ′(t)e−
H(t)

2 e(1−u)H(t)du
∣∣∣∣∣∣∣∣∣

�
∣∣∣∣∣∣∣∣∣eH(t)

2 e−
H(t)

2 H ′(t)e−
H(t)

2 e
H(t)

2

∣∣∣∣∣∣∣∣∣ = |||H ′(t)|||.

Now suppose a path γ from A to B attains the shortest length. By the above lemma, this
condition is equivalent to that the path δ(t) ≡ γA−α/2 from I to (A− α

2 BαA−α
2 )1/α attains

the shortest length ||| log(A−α
2 BαA− α

2 )1/α|||. So we consider H for δ instead of γ. Then the
length �(γ) satisfies

||| log(A−α
2 BαA−α

2 )
1
α ||| = �(δ) ≡ 1

α

∫ 1

0

L[α](δ̇; δ)dt � 1
α

∫ 1

0

|||H ′(t)|||dt

� 1
α

∣∣∣∣∣∣∣∣∣ ∫ 1

0

H ′(t)dt
∣∣∣∣∣∣∣∣∣ =

1
α
|||H(1)− H(0)||| = ||| log(A− α

2 BαA−α
2 )

1
α |||,

so that, it must satisfy∫ 1

0

|||H ′(t)|||dt =
∣∣∣∣∣∣∣∣∣ ∫ 1

0

H ′(t)dt
∣∣∣∣∣∣∣∣∣ = ||| log A−α

2 BαA− α
2 |||.
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Therefore, similarly to the preceding proof, we have δ(t) equals
(
A−α

2 BαA− α
2
)t/α, and

hence γ(t) equals A pα,tB as paths. �
Also, we can show that the shortest paths are not unique for Ky Fan norm ‖ ‖(k) as in

the following example:

Example 2. Let B = (bj) be a non-scalar positive definite diagonal matrix with bj > 1 for
all j which is strictly monotone decreasing. Then, a path

δ(t) = (1 − t + tBα)1/α,

differs from the geodesic γ[α](t) = Ipα,tB = (Btα)1/α = Bt, and

L[α],k(δ̇; δ) =
1
α
‖δ−α/2 ˙(δα)δ−α/2‖(k) = ‖(1 − t + tBα)−1(Bα − 1)‖(k).

Putting

f(x) =
xα − 1

1 − t + txα
,

we have

f ′(x) =
αxα−1

(1 − t + txα)2
> 0

and hence f is monotone increasing. Therefore L[α],k(δ̇; δ) =
∑k

j=1 f(bj) and hence

�(δ) =
∫ 1

0

k∑
j=1

f(bj)dt =
k∑

j=1

∫ 1

0

bα
j − 1

1 − t + tbα
j

dt =
1
α

k∑
j=1

[
log(1 − t + tbα

j )
]1

0

=
1
α

k∑
j=1

log bα
j =

1
α
‖ log Bα‖(k) = ‖(log Bα)

1
α ‖(k) = �(γ[α](t)),

so that we have δ is one of the shortest paths.
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