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PATH TRANSFERABILITY OF PLANAR GRAPHS
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Abstract. We regard a path as a train moving on a graph. A graph G is called
n-transferable if any path of length n can be moved to any other such path by several
steps. We will show that every planar graph with minimum degree at least three is at
most 10 transferable.

1 Introduction. The graphs discussed here are finite, simple, undirected, and connected.
A path consists of distinct vertices v0, v1, . . . , vn and edges v0v1, v1v2, . . . , vn−1vn. When
the direction of a path P needs to be emphasized, we use the notation 〈 〉, such as
P = 〈v0v1 · · · vn〉. The reverse path of P is denoted by P−1. The number of edges in
a path P is called its length, and a path of length n is called an n-path. The last(resp. first)
vertex of a path P in its direction is called the head (resp. tail ) of P and is denoted by
h(P )(resp. t(P )); for P = 〈v0v1 · · · vn−1vn〉, we set h(P ) = vn and t(P ) = v0. The set of all
inner vertices of P , the vertices that are neither the head nor the tail, is denoted by Inn(P ).

This paper focuses on the movement of a path along a graph: Let P be an n-path. If
h(P ) has a neighboring vertex v /∈ Inn(P ), then we have a new n-path P ′ by removing the
vertex t(P ) from P and adding v to P as its new head. We say that P takes a step to v,
and denote it by P

v−→ P ′ (or briefly P −→ P ′). If there is a sequence P −→ · · · −→ Q, then
we say that P can transfer (or move) to Q, and denote it by P ��� Q.

P1 P2 P3

Θ-graph

Figure 1: [L] The movement of a path. [R] Θ-graph.

Let ¶n(G) be the set of the all directed n-paths in a graph G. A graph G is called
n-transferable if ¶n(G) �= ∅ and if P ��� Q for any pair of directed n-paths P,Q ∈ ¶n(G).

Theorem [To1]. Let G be a connected graph. If G is n-transferable, then G is (n − 1)-
transferable.
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The maximum number n for which G is n-transferable is called the transferability of G,
and is denoted by τ(G). The author further showed the following:

Theorem [To2]. We assume that a connected graph G has the minimum degree δ ≥ 2. If
G is neither a complete graph nor a cycle graph, then G is δ-transferable.

A Θn-graph consists of three internally-disjoint n-paths with common heads and tails.
This graph has the transferability 2n − 1, and hence there are planar graphs which have
arbitrary large transferability. In this paper we will show that any planar graph with
minimum degree at least three has the transferability at most 10.

2 Local structures of planar graphs. Given a connected plane graph, not necessarily
simple, the degree of a face f is the length of any facial walk of f . Vertices and faces
of degree i are called i-vertices and i-faces, respectively. A plane map is defined to be a
connected plane graph with no bridges, and a plane map is called normal if degrees of all
vertices and faces are not less than three. We notice that loops and multiple edges can
appear in a normal plane map.

By Euler polyhedral formula, a simple planar graph has a vertex of degree ≤ 5 or,
dually, any plane graph without 1-, 2-vertices has a face of degree ≤ 5. Local structures of
planar graphs are studied by Jendrol’ and Skupień, and the following lemma is a weak result
derived from their Theorem 2 in [JS] (This result was originally proved by H. Lebesgue [L]
in a bit weaker version, and was later strengthened by O. V. Borodin [B]).

Lemma 1 ([JS]). Every normal plane map contains one of the following configurations:

1. a 3-face such that if its three vertices have degrees a ≤ b ≤ c then

(a) a = 3 ≤ b ≤ 10 or

(b) a = 4 ≤ b ≤ 7 or

(c) a = 5 ≤ b ≤ 6;

2. a 4-face such that if its four vertices have degrees a ≤ b ≤ c ≤ d then

• a = 3 ≤ b ≤ c ≤ 5;

3. a 5-face with four 3-vertices.

The dual graph of any simple plane graph with minimum degree at least three is a
normal plane map. Thus we can obtain the following.

Lemma 2. Every simple plane graph with minimum degree at least three contains one of
the following configurations:

1. a 3-vertex such that if its three surrounded faces have degrees a ≤ b ≤ c then

(a) a = 3 ≤ b ≤ 10 or

(b) a = 4 ≤ b ≤ 7 or

(c) a = 5 ≤ b ≤ 6;

2. a 4-vertex such that if its four surrounded faces have degrees a ≤ b ≤ c ≤ d then
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• a = 3 ≤ b ≤ c ≤ 5;

3. a 5-vertex with its four surrounded 3-faces.

Such i-vertices, i = 3, 4, 5, are called light vertices.

A graph G is 3-connected if and only if G−v is 2-connected for each vertex v ∈ V (G). It
is well known that a plane graph is 2-connected if and only if all its facial walks are cycles.
Each vertex v of a plane graph G is contained in exactly one face of G − v. Such a face
is called the star neighbor of v, and its facial boundary walk is called the link of v. Using
this notation, we can say that a plane graph G is 3-connected if and only if the link of each
vertex of G is a cycle.

Lemma 3. The transferability of a simple 3-connected planar graph is at most 10.

Proof. Let G be such a graph. By Lemma 2, there is a light vertex in G, say v. We
assume that it is a 3-vertex whose faces are of degrees a ≤ b ≤ c, a = 3, b = 10. Let
C = u1u2u3 · · ·u9u10 · · ·ulu1 be the cycle that is the link of v (see Figure 2). In this case,
we notice that the 11-path P = 〈u11u10u9 · · ·u3u2u1v〉 cannot take a step in G.

u1

u2
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u4 u5

u6

u7

u8u9
u10

u11

ul v

Figure 2:

For the other cases, we can similarly find l-paths, l ≤ 11, which cannot take a step in
G, hence the transferability of G is at most 10.

This result is best possible, the truncated dodecahedron (see Figure 3) gives an example
for this (any two 10-paths can actually transfer from one to another in this graph).

Figure 3: Truncated dodecahedron.



598 RYUZO TORII

3 Decomposition of a planar graph. In this section we will extend Lemma 3 to 1-,
2-connected graphs. If a graph G is not 3-connected, then the link of each vertex is not
always a cycle. However, we will find a light vertex in G whose link is a cycle.

The uniqueness of decompositions of 2-connected graphs has been studied by MacLane
[M], Tutte [Tu], Hopcroft and Tarjan [HT]. Cunningham and Edmonds [CE] have proved
that a 2-connected graph has a unique minimal decomposition into graphs, each of which is
either a 3-connected graph, a bond (i.e., two vertices and multiple edges between them) or
a cycle. For the decomposition of 2-connected graphs, Tutte [Tu] use the notation Blk3(G)
as the tree of 3-blocks of G. The definitions and notations follow from Tutte [Tu].

Lemma 4. The transferability of a simple 2-connected planar graph with minimum degree
at least three is at most 10.

Proof. Let G be such a graph. Since the assertion holds for 3-connected graphs, we assume
that G is 2-connected but not 3-connected. Let Blk3(G) be the tree of 3-blocks of G, and J
an extremal 3-block of G, i.e., the induced subgraph corresponding to a leaf of Blk3(G). We
assume that this block has the virtual edge e = ab. As far as restricting for simple graphs
with minimum degree at least three, J ∪ {e} will be a simple 3-connected graph. There is
a projection of J ∪ {e} such that the edge e lies on the infinite face of the plane ( we use
the same notation J for such a projection of J). A projection of G can be obtained as an
extension of the projection of J .

f1
f2

fm

J

a

b

e

Figure 4: An extremal 3-block in G.

Let V (J) = {a, b, v1, v2, . . . , vn} be the set of the vertices of J , and F (J) = {f1, f2, . . . ,
fm} ∪ {f∞} the set of the faces of J , each of fi, 1 ≤ i ≤ m, is a bounded face and f∞ is
the infinite face of J . We will show that there is a light vertex in V (J) − {a, b}.

We prepare twelve copies of J to make a new graph H : Let J (1), J (2), . . . , J (12) be
the copies of J . The graph H is constructed from the cube graph by inserting J (i),
1 ≤ i ≤ 12, between its twelve edges (see Figure 5). We notice that this plane graph
H has 12|V (J)| + 8 = 12(n + 2) + 8 vertices and 12m + 6 faces, and that all vertices of
H have degrees ≥ 3. This graph H has a light vertex by Lemma 2. The eight 3-vertices
that do not belong to any copies of J are not light because the new six faces of H have
degrees ≥ 12. By the same reason, the copies of the two vertices a or b are also not light.
We therefore conclude that V (J) − {a, b} contains a light vertex, say vk.
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Figure 5: The graph H constructed from twelve copies of J .

Since V (G)− vi is 2-connected for any vi ∈ V (J) − {a, b}, the link of vk is a cycle (this
cycle may go through another 3-block of G). And then we can find a l-path, l ≤ 11, which
cannot move in G as in Lemma 3, hence the transferability of G is at most 10.

We can deduce the same proposition for a planar graph which is connected but not
2-connected: Let G be a connected planar graph with minimum degree at least three and
J an extremal block of G with cut vertex v. Let H be the graph that constructed from six
copies of J with an additional 6-vertex which is adjacent to the six copies of v. Since H is a
simple plane graph with minimum degree at least three, there is a light vertex in V (J)− v
whose link is a cycle, as in Lemma 4. Therefore we can establish the following theorem.

Theorem 5. The transferability of a connected planar graph with minimum degree at least
three is at most 10.

As long as we consider triangle-free graphs, light vertices are only 3-vertices, that cor-
respond to 1(b) or 1(c) of the configurations in Lemma 2. And therefore we can deduce the
following in the same way.

Corollary 6. The transferability of a simple triangle-free planar graph with minimum de-
gree at least three is at most 8.

This is best possible; the truncated icosahedron, the frame of a “soccer ball”, has the
transferability 8.
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