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Abstract. We establish that the ranges of the orders of hypergroup extensions are
described in the form of orders with respect to their subhypergroup and quotient hyper-
group. We obtain two families of hypergroup extensions which include the extensions
of all orders in the range of our estimation. Remarkable fact is that there exist hy-
pergroup extensions which have an order higher than one of the direct product of a
subhypergroup and a quotient hypergroup.

1 Introduction Let K be a finite commutative hypergroup. If K has a subhypergroup
H, then the quotient K/H = L is a hypergroup. In this case, K is called a hypergroup
extension of L by H. Fix commutative hypergroups L and H. The problem of extensions
in the category of commutative hypergroups is to determine all commutative hypergroup
extensions K of L by H and to analyze them.

We have discussed the extension problem of hypergroups in [HKKK], [HK1] and [K] in
general situation for splitting extensions. In the papers [HK2], [KST], we have succeeded
to determine all extensions in the case that H is a group. Moreover we have analyzed the
almost all classes of hypergroup extensions in the case that L is a group [IKS].

Wildberger[W2] determined all strong hypergroups of order three using the harmonic
analysis of hypergroups. In the paper [IK], we have considered the extension problem in the
case of order four that both of H and L are hypergroups of order two. This is the model
case that H and L are not necessarily groups. We have determined all hypergroups of order
four and characterized strong hypergroups among them. The present paper is devoted to
giving explicit answers to the question whether there exists a hypergroup extension of order
five or much more. Theorem 9 and Theorem 11 show the existence of a hypergroup of order
five in some cases.

The maximal order of hypergroup extension is calculated in Proposition 4. But the
hypergroup extension K of the maximal order does not always exist for arbitrary hyper-
groups H and L [IK][IKS]. Furthermore Corollary 7 shows that there exist many extension
problems which the maximal order of Proposition 4 does not appear in the case of group L.

Applying the result in Preliminaries, we finally give two series of signed hypergroup
models which are described by character tables and have arbitrary orders, as in Proposition
8 and Proposition 10. These models give hypergroup examples which attain all orders
in the range which is estimated in Proposition 4. Furthermore we can know that there
exist many extension problems such that hypergroup extensions have orders in the range
of Proposition 4.

The authors would like to give sincerely thanks to Professor Herbert Heyer, University
Tubingen, whose comments and suggestions were innumerably valuable throughout the
course of our study.
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2 Preliminaries We recall some notions and facts on finite commutative hypergroups
from Wildberger’s paper [W1] and Bloom-Heyer’s book [BH]. A pair (K, A(K)) is called a
finite commutative signed hypergroup of order n+1 if the following conditions (a1)-(a6) are
satisfied.

(a1) Unit : A(K) is a ∗-algebra over C with unit c0,

(a2) Basis: K = {c0, c1, . . . , cn} is a C-linear basis of A(K),

(a3) Involution: K∗ = K,

(a4) Structure constants : cicj =
∑n

k=0 nk
ijck, where nk

ij ∈ R such that

(i) c∗i =cj ⇐⇒ n0
ij > 0, (ii) c∗i �= cj ⇐⇒ n0

ij = 0,

(a5) Stochastic:
∑n

k=0 nk
ij = 1 for any i, j,

(a6) Commutativity: cicj = cjci for any i, j.

We simply write K = (K, A) and the order |K| = n + 1. In the case that nk
ij ≥ 0 for any

i, j, k, we call K a finite commutative hypergroup. If c∗i = ci for all i = 1, 2, . . . , n, then K is
called a hermitian hypergroup. We note that finite commutative groups are hypergroups.
If a finite hypergroup is indexed by numbers 0, . . . , n, then we choose the element indexed
by zero for the unit.

Let L(q) = {�0, �1 s.t. �2
1 = q�0+(1−q)�1, �0 unit} be the smallest non trivial hypergroup

of order 2 for 0 < q ≤ 1. Specially L(1) equals Z2.

The weight of an element ci ∈ K is defined by w(ci) := (n0
ij)
−1 where cj = c∗i . We define

the weight of a subset S ⊂ K:

w(S) =
∑

s∈S

w(s).

and the total weight w(K) :=
∑n

i=0 w(ci). Then w(L(q)) = 1 + 1/q.

For a finite commutative signed hypergroup K, a complex valued function χ on K is
called a character if

(1) χ(c0) = 1, (2) χ(c∗i ) = χ(ci)−, (3) χ(ci)χ(cj) =
n∑

k=0

nk
ijχ(ck).

It is well known that the conjugate function of a character also is a character. The set K∧
of all characters of K forms a finite commutative signed hypergroup of the same order |K|
where the involution of χ ∈ K∧ is the conjugate function χ− ∈ K∧. The duality K∧∧ ∼= K as
signed hypergroups holds in the sense of isomorphisms between signed hypergroups[W1][Z].
A finite hypergroup K is called a strong hypergroup if the dual K∧ is a hypergroup. If
K∧ = {χ0, . . . , χn}, then the matrix

(
χi(cj)

)
ij

∈ Mn+1(C) for χi ∈ K∧, cj ∈ K is said to
be a character table.

Definition 1. Let U ∈ Mn+1(C) be a square matrix of order n + 1. If the conjugate of
any column vector of U is some column vector and the conjugate of any line vector of U is
some line vector, then U is called real constants type.

Lemma 1. Let a matrix
(
χi(cj)

)
ij

with positive values {w(ci)}i, {w(χi)}i be given in a
form :
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c0 c1 · · · cn

χ0 1 1 · · · 1 w(χ0) = 1
χ1 1 χ1(c1) · · · χ1(cn) w(χ1)
...

...
...

. . .
...

...
χn 1 χn(c1) · · · χn(cn) w(χn)

w(c0) = 1 w(c1) · · · w(cn) W

where W =
∑

i w(ci) =
∑

i w(χi). If the matrix
(
χi(cj)w(χi)1/2w(cj)1/2W−1/2

)
ij

is a real
constants type unitary, then there exists a signed hypergroup whose characters and weights
table coincide with the above form.

Proof. Consider a column vector of the above table ci = T
(
χ0(ci), . . . , χn(ci)

)
in ∗-algebra

Cn+1 and K = {c0, . . . , cn}, where T X is a transposed matrix of X . Then products and
involution are given as:

cicj = T
(
χ0(ci)χ0(cj), . . . , χn(ci)χn(cj)

)
, c∗i = T

(
χ0(ci)−, . . . , χn(ci)−

)
.

It is obvious that (a1)(a6) in the axiom of signed hypergroups hold. Now (a2) is shown as
matrix

(
χi(cj)

)
ij

is regular and (a3) c∗i ∈ K is from the assumption of ”real constant type”.
By the assumption of ”unitary” we have

δij = w(K)−1
∑

k

χk(ci)χk(cj)−w(χk)w(ci)

and

δij = w(K)−1
∑

k

χi(ck)χj(ck)−w(ck)w(χi).

Hence we have that 〈ci, cj〉 = w(ci)−1δij and w(c∗i ) = w(ci) where the standard in-
ner product 〈ci, cj〉 = w(K)−1

∑
k χk(ci)χk(cj)−w(χk) [W2]. Similarly w(χ−i ) = w(χi).

Noting that {c0, . . . , cn} is an orthogonal system, the structure constants are given by
nk

ij = w(ck)〈cicj , ck〉 for all i, j, k, where cicj =
∑

k nk
ijck is expanded. Since the sum of two

summands χ, χ−:

χ(cicj)χ(c∗k)w(χ) + χ(cicj)−χ(c∗k)−w(χ−) = 2w(χ)�(
χ(cicj)χ(c∗k)

)

is real, it is obtained that all nk
ij are real. Thus (a4) is shown. Applying the trivial character

χ0 to cicj =
∑

k nk
ijck, we have (a5).

Therefore it follows that K is a signed hypergroup and its character table is a given
one.

3 Main Results Let K be a finite commutative hypergroup and H ⊂ K be a subhy-
pergroup. It is well known that the quotient K/H is also a hypergroup [SW]. In order to
describe this situation, we often use the form of short exact sequence 1 → H → K ϕ→ L → 1
where L = K/H and ϕ is the quotient homomorphism. K is said to be a hypergroup
extension of L by H.

The extension problem is to determine all extensions K and parametrize some useful
families of them when H and L are given.
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Now fix a finite commutative hypergroup K and a subhypergroup H of K.

H(s) = {h ∈ H s.t. hs = s}

is called a stabilizer of s ∈ K under H-multiplication.

Lemma 2. Let 1 → H → K be an exact sequence of finite commutative hypergroups. An
element h ∈ H(s) is characterized by the following property (∗) :

(∗) χ(h) = 1 for χ ∈ K∧ such that χ(s) �= 0.

Furthermore H(s) is a subhypergroup.

Proof. For χ ∈ K∧ such that χ(s) �= 0, we have that χ(hs) = χ(h)χ(s) = χ(s), so that
χ(h) = 1. Conversely it is shown that χ(hs) = χ(s) for all χ ∈ K. Thus hs = s and
h ∈ H(s). To start with showing that H(s) is a subhypergroup, we notice that h∗ ∈ H(s)
if h ∈ H(s) from the property (∗). Therefore H(s)∗ = H(s). For h, h′ ∈ H(s), we write
hh′ =

∑
i nici where

∑
i ni = 1, ci ∈ K. Assume that χ ∈ K∧ such that χ(s) �= 0. It

is always satisfied |χ(ci)| ≤ 1 for a hypergroup K [W2], then �(χ(ci)) ≤ 1. We then get
1 = χ(h)χ(h′) = χ(hh′) =

∑
i niχ(ci) =

∑
i ni · �(χ(ci)) ≤ ∑

i ni = 1 because the sum of
imaginary part is vanishing.

We note that �(χ(ci)) = 1 if and only if χ(ci) = 1. It is clear to see that χ(ci) = 1 for i
such that ni �= 0. Thus hh′ belongs to a real linear span of elements in H(s).

Provided that K is a group, it is well known that the above subhypergroup H(s) = {c0}.
We can find an example which has the maximal stabilizer, i.e. H ∨ L has H(s) = H for an
element s �∈ H.

We give some relations among weights of hypergroups in a short exact sequence.

Lemma 3. Let 1 → H → K ϕ→ L → 1 be an exact sequence of finite commutative hyper-
groups. For any � ∈ L, the following conditions (1)-(3) are satisfied :

(1) w(K) = w(H)w(L),

(2) w(ϕ−1(�)) = w(H)w(�),

(3) w(�) ≤ w(s) ≤ w(H)w(�) for s ∈ ϕ−1(�).

Proof. Let eK0 = w(K)−1
∑

ci∈K w(ci)ci be the normalized Haar measure of K. The image
ϕ(eK0 ) equals the normalized Haar measure eL0 of L. Let �0 be the unit of L, and ϕ−1(�0) =
H. From the expression

ϕ(eK0 ) = w(K)−1
(∑

c∈H
w(c)�0 + · · · +

∑

d∈ϕ−1(�)

w(d)� + · · · )

= w(K)−1
(

w(H)�0 + · · · + w(ϕ−1(�))� + · · · ),

it is obtained that w(K)−1w(H) = w(L)−1 and w(K)−1w(ϕ−1(�)) = w(L)−1w(�). This
shows (1),(2) and the second inequality of (3).

The first one of (3) is shown by the fact w(s)−1 ≤ w(�)−1 since

ϕ(ss∗) = ϕ(w(s)−1c0 + · · · ) = (w(s)−1 + · · · )�0 + · · · = w(�)−1�0 + · · · .
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In the category of signed hypergroup extensions, namely if K is a signed hypergroup,
the conditions (1),(2) and (3) w(s) ≤ w(H)w(�) in Lemma 3 also hold but (3) w(�) ≤ w(s)
does not always hold. It turns that

(3′) 0 < w(s) ≤ w(H)w(�).

Using Lemma 3 on the relations about weights, we give a general condition about orders
of hypergroups in a short exact sequence.

Proposition 4. Let 1 → H → K ϕ→ L → 1 be an exact sequence of finite commutative
hypergroups. Then the inequalities :

|H| + |L| − 1 ≤ |K| ≤ |H| + �w(H)�(|L| − 1)

hold, where the floor function �x� = max{n ∈ Z | n ≤ x} for a real number x.

Proof. The first inequality is obvious, equality occurs if and only if K = H ∨ L, i.e. a join
hypergroup of H with L. From the above Lemma 3 (2)(3), w(H)w(�) =

∑
s∈ϕ−1(�) w(s) ≥∑

s∈ϕ−1(�) w(�) = |ϕ−1(�)|w(�). Hence w(H) ≥ |ϕ−1(�)|. The second inequality holds from
K =

⋃
�∈L ϕ−1(�).

This estimation is strict since we will show that there exist hypergroup extensions of
several order in the inequalities. It is trivial that the direct product hypergroup K = H×L
is a hypergroup extension of order |H| · |L|.

We first show some cases in which the maximal order of hypergroup extension K of L
by H equals |H| · |L|.

When H is a group, we have w(H) = �w(H)� = |H|. The condition of Proposition 4
is in the form |H| + |L| − 1 ≤ |K| ≤ |H| · |L| which is established in [K]. In the case of
|H| ≤ w(H) < |H| + 1, the above condition also holds.
We define for subsets M, N of K,

MN = {cicj ∈ A(K) s.t. ci ∈ M, cj ∈ N}.
We note that the set MN is not usually enclosed in K.

Proposition 5. Let 1 → H → K ϕ→ L → 1 be an exact sequence of finite commutative
hypergroups and H be a group. Fix � ∈ L. The following statements (1)-(4) are satisfied :

(1) hs ∈ ϕ−1(�) for s ∈ ϕ−1(�) and h ∈ H,

(2) H{s} = ϕ−1(�) for s ∈ ϕ−1(�),

(3) H(s) = H(s′) for s, s′ ∈ ϕ−1(�), and |ϕ−1(�)| = |H/H(s)|,
(4) w(s) = w(�) · |H|/|ϕ−1(�)| for s ∈ ϕ−1(�).

Proof. The statements (1),(2) and (3) were proved in the section 3 of [K]. The values
of character |χ(h)| = 1 ∀χ ∈ K∧ as H is a group. For s′ = hs, h ∈ H, writing K =
{χ0, . . . , χn}, we have

w(s′)−1 = 〈s′, s′〉 = w(K)−1
n∑

k=0

|χk(s′)|2w(χk)

= w(K)−1
n∑

k=0

|χk(h)χk(s)|2w(χk)

= w(K)−1
n∑

k=0

|χk(s)|2w(χk) = w(s)−1.
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Finally Lemma 3 (3) and the above show the last (4).

Proposition 5 gives many examples of hypergroups whose stabilizer have any subgroup
of H.

In the paper [IKS], it was shown that if H = L(q) and L is a group, then |H|+ |L|− 1 ≤
|K| ≤ |H| · |L| holds, more precisely |L| + 1 ≤ |K| ≤ 2 · |L|.

It is obvious from Proposition 3 that the maximal order K is |H| · |L| provided that
|H| ≤ w(H) < |H| + 1. For example, H = L(q) for 1/2 < q ≤ 1.

What happens in the case of a general finite commutative hypergroup H and of any
finite commutative group L ? The following is an answer to this question.

Proposition 6. Let 1 → H → K ϕ→ L → 1 be an exact sequence of finite commutative
hypergroups. If L is a group, then |ϕ−1(�)| ≤ |H| for � ∈ L and w(χ) = w(χ′) for χ, χ′ ∈ K∧
such that their restrictions χ|H = χ′|H ∈ H∧.
Proof. We first obtain that the matrix [χ(si)]χ∈K∧, si∈ϕ−1(�) of the characters matrix has
rank m + 1 since the column vectors are linearly independent from Axiom of hypergroups.
Now we will calculate this rank in another way.

Fix a non-trivial character χH ∈ H∧. We define the subset Σ(χH) = {χ ∈ K∧ s.t. χ|H =
χH} of K∧. Write ϕ−1(�) = {s0, . . . , sm} ⊂ K.

Assume that χ(s0) �= 0 for some character χ ∈ Σ(χH). Since L is a group, we have
(s0)∗si ∈ A(H), so that the value χ((s0)∗si) is independent of the choice of χ ∈ Σ(χH).
Then V (χH, 0, i) := χ((s0)∗si). It is obvious that |χ(s0)|2 = V (χH, 0, 0) �= 0. This
shows that the absolute value of χ(s0) is independent of χ. It is also obtained that
χ(si) = V (χH, 0, i)χ(s∗0)

−1. Hence the vector (χ(s0), . . . , χ(sm)) is parallel to a vector
(V (χH, 0, 0), . . . , V (χH, 0, m)). The sub-matrix [χj(si)] for χj ∈ Σ(χH) and si ∈ ϕ−1(�) has
rank one. If χj(si) = 0 for all χj , si ∈ ϕ−1(�), then the sub-matrix [χj(si)] for χj ∈ Σ(χH)
turns to be zero, i.e. the rank is zero. Hence the sub-matrix [χj(si)] for χj ∈ Σ(χH) and
si ∈ ϕ−1(�) has at most rank one. Therefore the rank of the matrix [χ(si)]χ∈K∧, si∈ϕ−1(�)

is at most |H∧| = |H|. This shows that |ϕ−1(�)| = m + 1 ≤ |H|.
It is already shown that the values of χ(si) have the same absolute value for all χ ∈

Σ(χH) which depends only on si ∈ ϕ−1(�). If c ∈ K is fixed then |χ(c)| has the same value
for χ ∈ Σ(χH). From the formula for weights of characters, we have that for χ, χ′ ∈ Σ(χH),

w(χ)−1 = w(K)−1
∑

c∈K
|χ(c)|2w(c)

= w(K)−1
∑

c∈K
|χ′(c)|2w(c) = w(χ′)−1.

This implies that w(χ) = w(χ′).

We have the next corollary on the order of hypergroup extensions.

Corollary 7. Let 1 → H → K ϕ→ L → 1 be an exact sequence of finite commutative
hypergroups. If L is a group, then

|H| + |L| − 1 ≤ |K| ≤ |H| · |L|.

Proof. It is a trivial consequence of |ϕ−1(�)| ≤ |H| together with the arguments in the proof
of Proposition 4.
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We note that if a hypergroup K is strong, Corollary 7 is immediately consequence of
the duality theory and S. Kawakami’s Lemma [K]. The maximal order |H| · |L| is achieved
when K is a direct product H × L, but there does not always exist hypergroup extensions
with order of any integer between |H|+ |L|−1 and |H| · |L| in Corollary 7, which was shown
in [IKS].

Does there exist an extension K with order higher than |H| · |L| ?
Now we give the models of hermitian signed hypergroups for the answer to this question.

Proposition 8. Let n be an integer and 0 < q ≤ 1. The following character table χi(cj)
with weights w(χi), w(cj) determines a signed hypergroup K(n, q) = {c0, . . . , cn+1} of order
n + 2 and the total weight w(K) = (1 + q)2q−2.

c0 c1 c2 c3 · · · cn+1 w(χi)
χ0 1 1 1 1 · · · 1 1
χ1 1 1 −q −q · · · −q 1/q

χ2 1 −q (n − 1)q −q · · · −q
1 + q

nq2

χ3 1 −q −q (n − 1)q · · · −q
1 + q

nq2

...
...

...
...

...
. . .

...
...

χn+1 1 −q −q −q · · · (n − 1)q
1 + q

nq2

w(ci) 1 1/q
1 + q

nq2

1 + q

nq2
· · · 1 + q

nq2

(1 + q)2

q2

Moreover, K(n, q)∧ = {χ0, . . . , χn+1} ∼= K(n, q).

Proof. Since the values of characters and weights of ci are real, it is clear that the matrix(
χi(cj)w(χi)1/2w(cj)1/2w(K)−1/2

)
ij

is a real constant type orthogonal matrices. Thus the
condition of Lemma 1 is satisfied. So that K(n, q) is a signed hypergroup from Lemma 1.
The weight of ci equals (1+q)n−1q−2 for all i ≥ 2, which is calculated by using Wildberger’s
harmonic analysis [W2].

Symmetry of the table leads K(n, q)∧ ∼= K(n, q).

Now we calculate structure constants of K(n, q) to determine which model K(n, q) is a
hypergroup or not.

Theorem 9. For the models K(n, q) = {c0, . . . , cn+1} for an integer n and 0 < q ≤ 1 in
Proposition 8, the following statements hold :

(t1) K(n, q) is a hypergroup if and only if 1 ≥ q(n − 1),

(t2) {c0, c1} ⊂ K(n, q) is a subhypergroup isomorphic to L(q),

(t3) the quotient K(n, q)/{c0, c1} is isomorphic to L(q).

Proof. According to Wildberger’s formula about structure constants, values of characters
and weights [W2], the multiplications have the following expression:

(1) c2
1 = qc0 + (1 − q)c1,
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(2) c1ci = (−q)ci +
1 + q

n
(c2 + · · · + cn+1),

(3) c2
i =

nq2

1 + q
c0 +

1 − q(n − 1)
1 + q

qc1 + (n − 2)qci +
1 − q(n − 1)

n
(c2 + · · · + cn+1),

(4) cicj = qc1 + (−q)(ci + cj) +
1 + q

n
(c2 + · · · + cn+1)

for 2 ≤ i, 2 ≤ j and i �= j.
(t2) is obvious from (1). Hence non negativity of coefficients in the above (2)-(4) implies

(t1). From (2), we have that 1
1+q (qc0 + c1)ci = 1

n (c2 + · · · + cn+1), so that

1
1 + q

(qc0 + c1)
1
n

(c2 + · · · + cn+1) =
1
n

(c2 + · · · + cn+1).

Summarizing (3) and (4), and writing �1 := 1
n (c2 + · · · + cn+1), we have

�1ci =
1
n

[ nq2

1 + q
c0 +

1 − q(n − 1)
1 + q

qc1 + (n − 1)qc1 + (n − 2)qci + (−q)(n − 1)ci

+(−q)n�1 + qci + (1 − q(n − 1) + (1 + q)(n − 1))�1

]

= q(
q

1 + q
c0 +

1
1 + q

c1) + (1 − q)�1.

Write �0 := (1 + q)−1(qc0 + c1). Therefore,

�2
1 =

1
n

n+1∑

i=2

�1ci = q(
q

1 + q
c0 +

1
1 + q

c1) + (1 − q)�1

= q�0 + (1 − q)�1.

Thus the quotient K(n, q)/{c0, c1} = {�0, �1} ∼= L(q), which shows (t3).

The statements in Theorem 9 mean that 1 → L(q) → K(n, q) → L(q) → 1 is exact.
K(n, q) is a self-dual hypergroup, so that it is a strong hypergroup.

Remark 1. We comment here about the condition between n and q in which K(n, q) is a
hypergroup. It is easy to see that K(1, q) = L(q) ∨ L(q), a join hypergroup which has
order three. The condition (t1) means n ≤ w(H) = 1 + 1/q which is proved in Proof of
Proposition 4. If an integer n > 1 + 1/q, then K(n, q) is a signed hypergroup but not a
hypergroup. There exists a signed hypergroup extension with any order higher than three.
It is well known that hypergroup extensions of a group by another group are also groups. As
L(1) = Z2, there exist well known group extension Z2×Z2 = K(2, 1) and Z4, only two group
extensions, but there exist infinite many signed hypergroup extensions K(n, 1) for n ≥ 3
which have subhypergroup Z2 and the quotient Z2. Although non splitting group extension
Z4 does not appear in our models. When the maximal integer n such that 1 + 1/q ≥ n,
namely n = 1 + �1/q�, this model K(n, q) is a self dual hypergroup with the maximal order
mentioned in Proposition 4. Moreover there exits a hypergroup extension K(n, q) whose
order is any integer between 3 and 3 + �1/q�.

When 1/2 < q ≤ 1, we have w(L(q)) < 3, so that �w(L(q))� = 2. According to
estimation in Proposition 4, the hypergroup extensions of L(q) by L(q) must have an order
less than or equal to four. Thus there exists no extension of order higher than four.
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When 0 < q ≤ 1/2, there exist many extensions of orders higher than four. If q = 1/2,
then it is easily shown that hermitian extension of order five is isomorphic to K(3, 1/2),
i.e. uniquely determined hermitian hypergroup extension provided that the character table
is symmetric. In this case it is easily seen from the table that K(3, 1/2) has four subhyper-
groups {c0, c1} ∼= {c0, c2} ∼= {c0, c3} ∼= {c0, c4} ∼= L(1/2) and their quotients are isomorphic
to L(1/2). The automorphism group of K(3, 1/2) is a permutation group of degree four on
the set {c1, c2, c3, c4}. Thus there exist three cross sections εi for i = 2, 3, 4 in the following
exact sequence:

1 → L(1/2) → K(3, 1/2) ←→ L(1/2) → 1

where hypergroup homomorphism εi maps �1 ∈ L(1/2) to ci. However K(3, 1/2) is not
isomorphic to a direct product L(1/2) × L(1/2).

Furthermore K(n + 1, 1/n) for an integer n ≥ 3 has the cross sections in the short exact
sequences.

When 1/3 < q < 1/2, there exists many hermitian extensions which are not isomorphic
to K(3, q). After suitable calculations, the set of all hypergroup extensions is parametrized
by two real dimension with respect to two weights, but we omit them. Therefore the entire
list of hypergroup extensions of L(q) by L(q) for a fixed positive number 0 < q < 1/2 and
q �= 1/n (n = 2, 3, . . . ) is intricate for us to express their all structure constants completely.
When the number q is near to 0, it is very intricate for us to done it completely even if in
the hermitian case.

We can see the above models as signed hypergroup extensions K(n, q) of a signed hy-
pergroup L(q) by another one when q > 1. But these analysis in the category of signed
hypergroups is too complex to be completed.

Remark 2. The action π of {c0, c1} ∼= L(q) on a set {c2, . . . , cn+1} is irreducible and has
the matrix form Tij appeared in [SW]. For an example, π(eH0 ) = (1/n)Jn where Jn is
n × n-matrix all components 1. The matrix in the character table in Proposition 8 equals
(1 + q)−1nq

(
π(c0) − π(c1)

)
= nq

(
π(c0) − π(eH0 )

)
. Moreover the action π is a irreducible

∗-action in Example 1 in [SW].

Since the value of characters in K(n, q) does not vanish if n �= 1, so that the stabilizer
L(q)(ci) = {c0} ⊂ L(q) for any ci ∈ K(n, q). Hypergroup K(n, q) for n > 2 and q ≤ 1/2 is
considered as an example such that the cardinal number of the section ϕ−1(�) for � does
not equal to two when � is not a unit. However that of the quotient L(q)/L(q)(ci) = L(q)
equals two. Therefore the method of stabilizers can not go well in general as same as group
theory. In a general extension problem of exact sequence 1 → H → K ϕ→ L → 1, the
cardinal number of H/H(c) for c ∈ ϕ−1(�) does not always equal the cardinal number of
ϕ−1(�).

Finally we illustrate more general models for hermitian signed hypergroup extensions
having three parameters.

Proposition 10. The following character table with weights determines a signed hyper-
group K(n, p, q) = {c0, . . . , cn+1} for an integer n and 0 < p ≤ 1, 0 < q ≤ 1. In addition
K(n, p, q) has order n + 2.
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c0 c1 c2 c3 · · · cn+1 w(χi)
χ0 1 1 1 1 · · · 1 1
χ1 1 1 −q −q · · · −q 1/q

χ2 1 −p (n − 1)
√

pq −√
pq · · · −√

pq
1 + q

npq

χ3 1 −p −√
pq (n − 1)

√
pq · · · −√

pq
1 + q

npq

...
...

...
...

...
. . .

...
...

χn+1 1 −p −√
pq −√

pq · · · (n − 1)
√

pq
1 + q

npq

w(ci) 1 1/p
1 + p

npq

1 + p

npq
· · · 1 + p

npq

(1 + p)(1 + q)
pq

Proof. In a similar way to Proposition 9, it is checked that K(n, p, q) is a signed hypergroup.

Here the structure of K(n, p, q) is calculated as:

(1) c2
1 = pc0 + (1 − p)c1,

(2) c1ci = (−p)ci +
1 + p

n
(c2 + · · · + cn+1),

(3) c2
i =

npq

1 + p
c0 +

1 + p − np

1 + p
qc1 + (n − 2)

√
pqci

+
1 − q −√

pq(n − 2)
n

(c2 + · · · + cn+1),

(4) cicj = qc1 + (−√
pq)(ci + cj) +

1 − q + 2
√

pq

n
(c2 + · · · + cn+1)

for 2 ≤ i, 2 ≤ j and i �= j.
The above structure constants are non-negative if the following conditions (T1)-(T2)

hold:

(T1) 1 + p − pn ≥ 0,

(T2) 1 − q −√
pq(n − 2) ≥ 0.

Hence K(n, p, q) is a hypergroup under the above condition. Thus the next theorem follows.

Theorem 11. K(n, p, q) is a hypergroup if (T1)-(T2) are satisfied. Moreover K(n, p, q)
has subhypergroup {c0, c1} ∼= L(p) such that K(n, p, q)/{c0, c1} ∼= L(q) and is a hypergroup
extension of L(q) by L(p).

Proof. The first statement is already proved. The statement about the quotient hypergroup
is clear in a similar way to the proof of Theorem 9.

Obviously we see that K(n, p, p) = K(n, p). From Theorem 11 we have similarly that
1 → L(p) → K(n, p, q) → L(q) → 1 is exact. This sequence gives the models of hypergroup
extensions to the problem: an exact sequence 1 → L(p) → K → L(q) → 1 in the hermitian
case of orders higher than four. These problems of hypergroup extensions in the case of
order four are described in [IK], and are completely analyzed.
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Remark 3. When p = 1, the condition (T1) turns out n ≤ 2, which is shown in [K]. When
q = 1, the condition (T2) also turns out n ≤ 2, which is shown in [IKS].

We possess many hypergroup extensions of L(q) by L(p) with order higher than four
in some case. Furthermore given 0 < q < 1 and an integer n ≥ 3, there exists a suitable
0 < p < 1 such that K(n − 2, p, q) is a hypergroup with the order n. This is shown by
checking that (T1)-(T2) hold as p → +0.

If L of order two is not a group, then we can choose a suitable hypergroup H of order
two such that there exists a hypergroup extension of any order higher than four. Fixed n
larger than two, it is shown that the region of all point (p, q) for 0 < p < 1 and 0 < q < 1
such that there exists a hypergroup extension of order n+2 is not symmetric with respect to
two parameters p, q. Thus K(n, p, q) is not always strong even if K(n, p, q) is a hypergroup.
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