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ABSTRACT. Various generalizations of Hardy’s theorem and Morgan’s theorem, which
assert that a function on R and its Fourier transform cannot both be very small, are
known. We give two theorems which improve various generalizations known so far.

1 Introduction For an integrable function f on R, we define the Fourier transform f by

~ +m .
o= [ rwe s, yer
Classical Hardy’s theorem [4] reads as follows: if a,b > 0, ab = 1/4, and if f is a measurable
function on R such that

(1) f@)e™ € L®(R) and f(y)e € L=(R),

then f is a constant multiple of e~ An immediate corollary of this theorem is the
following: if a,b > 0, ab > 1/4, and if f is a measurable function on R satisfying (1), then
f = 0 almost everywhere. The examples f(z) = 6“12P(x) with P(z) polynomials show that
there are infinitely many f’s that satisfy (1) for ab < 1/4. Morgan [6] proved the following
variant of Hardy’s theorem: if 1 < <2< a < oo, 1/a+1/8=1,a,b> 0, and

(2) (a)/*(BB)"P > (sin(m (8 — 1)/2))"/7,
and if f is a measurable function on R satisfying
(3) J@)e " € L*(R) and  f(y)e™” € L*(®),

then f = 0 almost everywhere. He also obtained that the condition (2) is optimal; if
(ac)"/*(bB)YP = (sin(w(B8—1)/2))*/?, then for any m € R and m/ = (2m —a+2)/(2a—2),
there exists a measurable function f on R such that (1 + |z|)~™ f(x)e®*I” € L>*(R) and
(1+ |y))~™ f(y)etl¥!” € L>°(R). Therefore, there are infinitely many f’s that satisfy (3).

Various generalizations of Hardy’s theorem and Morgan’s theorem are known. Cowling
and Price [2] proved that, if in Hardy’s theorem the assumption (1) is replaced by

f(w)e‘“”2 € LP(R) and f(y)eby2 € LY(R)

with 1 £ p,q £ oo and with at least one of p and ¢ finite, then f = 0. The third author
proved that (see [5], Theorem 1), if a,b > 0, ab = 1/4, and if f is a measurable function on
R such that

P 2
gt e

f(ﬂlc)e‘“”2 € L*(R) + L*>(R) and / Tdy < 00

— 00
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for some C' > 0, then f is a constant multiple of e=9%”. Here LY(R) + L>=(R) is the set of
functions of the form f = fi + fo, fi € LY(R), f» € L¥(R), and log" 2 = logz if z > 1
and logt # = 0 if # < 1. Ben Farah and Mokni [1] proved that, if we replace L in the
assumptions of Morgan’s theorem by LP and L?, 1 < p,q < oo, then f = 0 and the condition
(2) is optimal.

The purpose of the present paper is to give further generalizations of the above theorems.
Our results are the following two theorems.

THEOREM 1 Let 1 < o, < 00, 1/aa+1/6=1, a,b>0, and

(4) (ac)/*(b8) /P > e(a, )
with

_ [ (sin(n(8 - 1)/2))"/? if B<2,
(5) cle, ) = { (sin(r(a — 1)/2))/e if B8>2.
Suppose f is a measurable function on R such that
(6) el®l” f(z) € LY(R) + L=(R)
and

e @)l dy

(7) /_OO log™ C T 1] < 00

for some C > 0. Then f =0 almost everywhere.

THEOREM 2 Ifa,b >0, ab=1/4, and if f is a measurable function on R that satisfies (6)
and (7) with o = = 2, then f(z) is a constant multiple of e—az”

REMARK 3 (a) If the conditions (4) and (6) are satisfied and if we take ¢’ < a sufficiently
near to a, then (4) is still satisfied with a’ in place of @ and the condition (6) implies

f(@)e” 1™ = f(z)edlel®ela’~a)lel® ¢ LI(R).

Hence the essential claim of Theorem 1 remains unchanged if the assumption (6) is replaced
by the seemingly stronger assumption f(z)e®®l” € L'(R).

(b) It is easy to see that (3) or its LP-L%-version implies (6) and (7). Therefore, LP-L?
Morgan’s theorem follows from Theorem 1.

(c) Theorem 2 is an improvement of the third author’s Theorem 1 in [5], where the condition
(7) was assumed with dy instead of dy/(1 + |y|)-

(d) Similarly as Morgan’s result, the condition (4) is optimal.

In §3 we shall prove Theorems 1 and 2. Part of the argument will be only a slight mod-
ification of that of [5]. Since the paper [5] was published in a proceedings of a local seminar
in Japan and is not easy to refer, we shall repeat some argument of [5] for convenience of
the reader.
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2 Key lemmas For —oo < a < § < o0, we write
D(a,B) = {z] a < argz < B},

which is the domain in the Riemann surface of log z. We shall give three lemmas. The first
lemma is an improvement of Lemma 1 of [5], where the integral (8) below is taken with
respect to ds instead of ds/s.

LEMMA 4 Let —c0 < a < 8 < o0 and f be a bounded holomorphic function on D(«a, ).
Then for each 8 with a < 6 < 3,

(8) sup log |f(re")|

0<r<oo

§c+(a,6,9)/0 1og+|f(sem)\§+c_(a,5,e)/0 log™ |7 (s¢%)] 2,

where
(. 5.0) 1+ cos ”%075)
c+@, I, =
2(8 — a) sin W(a ;‘)

and f(se'®) and f(se®) denote the nontangential boundary values of f(z).

Proof. Let 6 = (8 — a)/m. For z = re? € D(a, ), we make a change of variables as
z = e@w’. Then w € D(0,7) and g(w) = f(z) = f(ew?) is a bounded holomorphic
function on the upper half plane. Let P, (t) = Sw/(7|w — t|?) be the Poisson kernel for the
upper half plane. Then Jensen’s inequality (cf. [3], Chap. II, §4, p.65) gives

g 1(2)| = loglg(w)] < | " Pat) loglg(0)|dr

IN

Py (t)log* |g(t)]dt
Py (t)log™ | f(ei )]t

I
S S — T T

Py (t)log™ | f(e™%)|dt + / h Py (—t)log™ | f(ePt°)|dt
0

/ P, (t““)t”“ log* | (') 2L

0 t
1/6\,1/8 1ot 1 ¢ oiBpy Gt
0o () %
If we write w = (7"614(9_"‘))1/‘S = u + iv, then
vs
I -
o {sPu(Ea)} = | T = or iy | o e
v Vu2 +v2+u
= = :6C:|:(aaﬂ70)'
2w (Vu? +v2 Fu) 2mv
Hence the desired inequality follows. [ |

LEMMA 5 Let 0 < S —a < m/p and f be a holomorphic function on D(«, 3). Suppose that
there exist constants A, B > 0 such that

/()] < AePF
for all z € D(a, 8). Then (8) holds for each § with o < 6 < (3.
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Proof. By a rotation of the variable, we may suppose that « = —3 and 0 < § < 7/(2p).
Take a 7 such that v > p and v3 < /2. For ¢ > 0, set f.(z) = f(z)e"%*". Then f. is
holomorphic on D = D(—£, 3). Moreover, if z € D and ¢ = arg z, then

|f€(2)‘ — |f(z)‘€76|z"ycosv¢ < AeB|z|"fe\z|“’cosvﬁ.

Since v > p and cosvy@ > 0, it follows that f. is bounded on D. Hence (8) holds with f
replaced by f.. We note that |fe(z)| < |f(2)| on D and f.(z) — f(z) as ¢ — 0. Hence,
letting € — 0, we have the desired inequality. [ ]

The last lemma is well known as the Phragmén-Lindelof theorem, which can be proved
by an application of Lemma 5 to f(z)/M.

LEMMA 6 Let «,3,p and f satisfy the same assumptions as in Lemma 5. Assume in
addition that there exists a constant M such that |f(z)] < M on the boundary of D(«a, (3).
Then |f(z)| < M for all z € D(a, ).

3 Proof of Theorem 1 We shall use the notation
1(0) = {re |r >0}, OcR.

Let a,b, o, 8, and f satisfy the assumptions of Theorem 1. As noted in Remark 3 (a),
by replacing a with a smaller constant if necessary, we may assume that f(t)e?!l” € L'(R).
Thus f(t), t € R, is of the form f(t) = fi(t)e~ " with f, € L'(R).

We define f(z) for z € C by

A~ +OO .
(9) f(z) = / f(t)e tdt.

—00

For z =z +iy € C,

M@ns/m|ﬁmwﬂwuwﬁ

Using Young’s inequality u®/a + v?/8 > uv for u,v > 0 with v = (a)'/®|t| and v =
lyl/(ca)t/*, we have alt|* + |y|?/(B(ac)/*) > |y||t| and thus

> _ o B B/«
/ |f1(t)]e altl® glulltl gy < elvl”/(Blac) )||f1||1.
[e.¢]

Combining the above inequalities, we see that there exists a constant ¢ such that

(10) 1f(x +iy)| < e A =1/(B(ac)?®).

It is also easy to see that f (z) is an entire holomorphic function.
We shall consider the two cases f < 2 and 3 > 2 separately.
Case I: 1 < 8 < 2. In this case the condition (4) with (5) implies

A(—cosmf3/2) < b.
Since — cosm3/2 > 0, we can take a sufficiently small € > 0 such that 0 < e < /203 and

A<(— cos7rﬁ/2)_1b(% sin? 7 3/2 + cos® ﬂﬁ/2)
= — btan(n(3/2 + Pe) sinw(3/2 — beosw/3/2

(11) =vsinm(3/2 — becosm(3/2,
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where we set
(12) v = —btan(r3/2 + Be).
We set
O.=7/2—7/20+€.
Notice that 0 < 6. < 7/2.
We shall prove that f is bounded on [(6.). To prove this, consider the function

g(z) = f(z)e(b“")zﬁ, z € D(0,7/2).

By (10), there exists B > 0 such that

(13) 19(2)| < P2’

for z € D(0,7/2). Since g(z), € R, is bounded on a neighborhood of z = 0, the condition
(7) implies that there exists a constant C’ > 0 such that

e g(x)| dx
(14) /0 1og+%?<oo

For z = re'™/2 v > 0, from (10) and (11) we have
(15) |g(z)\ < cerB(A+bcos7rﬂ/2—vsinwﬂ/2) <ec.

Since m/2 < 7w/, we can apply Lemma 5 to g on D(0,7/2) to see that g(z) is bounded on
each half line [(6) with 0 < § < 7/2. For z = re’<, r > 0, (12) gives

F@)=lg@)lle” T = |g(z) e (beos0emvsin o]
—rP in(m € ™ €
= |g(z)|e"" tbsin(mB/24Be)tv cos(mfB/240)} — | 4(2)].
Thus, since g is bounded on [(6.), fls bounded on ().

Applying the same argument to f(Z), f(—z), f(=2), we see that f is also bounded on
1(=0.), (6. + ), and I(—6, + 7). By (10), f is also bounded on [(0) and I(7). Notice that
the 6 half lines I(+6.), I(£0. + ), 1(0), and [(7) divide the complex plane into 6 sectors
each of which has angle less than 7 /8. Thus using Lemma 6, we conclude that f is bounded
on the whole plane. Thus by Liouville’s theorem f is a constant. Obviously the constant
must be 0 and hence f =0 and f = 0. This completes the proof for the case § < 2.

Case II: 2 < § < o0. Define v by

(16) v = A(sinm/20)".
Consider

g9(z) = f(2)e®* ™" 2 € D(0,7/2).

By (10) and (7), there exist constants B and C’ for which g satisfies (13) for z € D(0,7/23)
and (14). For z = re™/2% r > 0, it follows from (10) and (16) that

|g(2)‘ < CeTﬁ{A(Sinﬂ"/Qﬁ)ﬁf’U} =c.
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Hence, by Lemma 5, g is bounded on () for each 0 € (0,7/23). Thus we proved

(17) Sup{‘f(rew)‘erﬁ(bcosﬁa—vsin[30)} < 00
>0
for each 6 € (0,7/203). -
Applying the same argument with f (%) in place of f (z), we also have

f —1 B s 30 —v sin
(18) sg}g{‘f(re 19)‘67" (beosBO—vs 59)} < 00
T

for each 6 € (0,7/203).
Take a 6y satisfying 0 < 6y < 7/203 and set

b =b—vtan 36,.

Consider the function h(z) = f(z)eblzﬁ on Dy = D(—6y,6). For z = reT 1 >0, we
have

f(?,,eztwo ) ‘eb'rﬁ cos 30¢

|
_ |f(reiﬂ90)‘erﬁ(b cos 30p—wv sin /390).

Thus, by (17) and (18), the function h(z) is bounded on I(£6p). By (10), h(z) satisfies the
global estimate |h(z)| < ceB'1” on Dy. Since 26y < /8, we can use Lemma 6 to see that
h(z) is bounded on Dy. Thus, in particular, f(y)eblyﬁ is bounded for y > 0.

Applying the same argument to f(—z), we see that f(—y)eb/?/j is also bounded for y > 0.
Thus we conclude that f (y)eb/‘y‘ﬁ is bounded for y € R.

Now the conditions (6) and (7) are satisfied with f,a, 3, a,b replaced by f.3,a,b,a.
Notice that & — b as 6y — 0. Hence if we take 6y sufficiently small the condition (4) is
satisfied with «, 3, a, b replaced by 3, a,b’,a. Therefore, applying the result of Case I, we
conclude that f = 0. This completes the proof of Theorem 1. [ |

4 Proof of Theorem 2 By dilation of variables, we may assume that a = b = 1/2. We
define f(z) by (9). From (6) with a = 1/2 and «a = 2, it follows that, for z = 2 + iy € C,

1f(2)] < /_Oo |f(t)|evdt

(19) = e¥’/2 /OO 1f(£)]e!/2e= (=9 /2qt < cev®/2,

where c is a constant independent of z. It is also easy to see that f is an entire holomorphic
function. We consider g(z) = f (z)ezz/ 2. which is also an entire function. We shall prove
that g(z) is bounded.

For € € (0,7/2), we set

ve = (tane)/4 = (sin€)?/2sin2¢, . =7/2 —¢

and

9e(2) = f(2)et /2w,
By (19), there exists a constant B, such that

l9e(2)] < Pl e
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For z € R, |ge(z)| = |f(x)e“’2/2| satisfies (14) for some sufficiently large C’ which is inde-
pendent of e. For z = re< » > 0, (19) implies

|gs(z)| < Ce(r2/2)((sin95)2+cos 20 —2v, sin 26.)

— Ce(T2/2)((Cos 0:)? —2v, sin 20.)

_ 66(7’2/2)((sine)272v5 sin2e) _ c.

If 0 < 6 < 6, then using Lemma 5 we have

sup |g€(rei9)| < (6, ¢€),
r>0

where the constant ¢(6,€) remains bounded if § € (0,7/2) is fixed and ¢ — 0. Since, as
e — 0, ve — 0 and g.(z) — g(z), we conclude that g(z) is bounded on each half line I(6)
with 0 < 0 < /2.

Applying the same argument to g(—z), g(—z), g(z), we see that g is also bounded on
the half lines I(6) for 7/2 < 6 < 7, # < § < 37/2, and 37/2 < § < 27. Thus we can find,
say, 5 half lines that divide the complex plane into 5 sectors each of which has angle less
than 7/2 and g(z) is bounded on each half line. Thus, using Lemma 6, we can conclude
that g is bounded on the whole complex plane. Since g is entire, it must be constant and
thus f(z) is a constant multiple of e~/
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