
Scientiae Mathematicae Japonicae Online,e-2011, 9–23 9

LINEAR REGRESSION WITH DETERMINISTIC REGRESSORS AND UNIT ROOT IN THE
VARIANCE

ALEXANDRE PETKOVIC∗

Received December 13, 2010; revised December 27, 2010

ABSTRACT. The first part of this paper derives the asymptotic distribution of the ordinary least squares
estimator in a linear regression model with deterministic regressors when the variance of the innova-
tions is a function of an integrated time series. In the second part of this paper we study the impact of
heteroscedasticity on the standard t-test for the slope coefficient in a linear trend model.

1 Introduction The tools for the study of a linear system of an integrated time series were introduced
by Phillips (1986,1987) and Phillips and Durlauf (1986). Their results relied on weak convergence in
functional spaces, the continuous mapping theorem and on weak convergence of stochastic integrals to
martingales. It is with the papers of Phillips and Park (1999, 2001) that the study of the asymptotic behavior
of nonlinear functions of an integrated time series started. Phillips and Park (1999, 2001) derived the
asymptotic distribution of the average of a nonlinear function of integrated time series. These results where
further extended by Chang and Park (2003), Jong and Wang (2005) and Shi and Phillips (2010).

The results obtained by Park and Phillips (1999, 2001) have been applied to various nonlinear econo-
metric models. For example, Park and Phillips (2001) and Shi and Phillips (2010) used them to derive the
distribution of the least squares estimator in a nonlinear regression model. Chang and all (2001) considered
nonlinear regressions with separably additive regression functions. Park (2002) studied the possibility of
modeling assets variance using a nonlinear function of an integrated time series. Studying the USD/DM
exchange rate he found out that the conditional variance of the spread can be accurately modeled using the
spot rate. Chung and Park (2003) considered nonstationary index models. Hu and Phillips (2004) worked
on discrete choice models. Chang and Park (2007) studied the distribution of the ordinary least squares es-
timator of a linear regression model with integrated or stationary regressors when the error term volatility is
a nonlinear function of an integrated time series. They showed that, when the volatility of the error term is a
function of an integrated time series, the asymptotic distribution of the ordinary least squares is nonstandard
and involves an integral with respect to the local time of a Brownian motion at the origin. Note also that an
earl study of the linear regression model where the variance of the innovation is a function of an integrated
time series can be found in Hansen (1995).

The objective of this paper is twofold. Firstly, we extend some results of Phillips and Park (1999,2001)
by deriving the asymptotic distribution of a temporally weighted average of a function of an integrated time
series. Secondly, we use our results to study the distribution of the ordinary least squares estimator of linear
regression model when the regressors are time-deterministic and the variance of the error term is a function
of an integrated time series. Using these results we also study the asymptotic distribution of the standard
t-stat. In this sense our results can be seen as an extension of those derived by Chung and Park (2007). As
explained bellow potential applications of our results can be found in macroeconometrics and finance.

The paper is organized as follows: Section 2 presents the model and the assumptions, Section 3 studies
the asymptotic distribution of the ordinary least squares estimator, in Section 4 we consider an application
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of our theory and study the impact of heteroscedasticity on the level of the standard t-test, finally Section 5
concludes. All the proofs can be found in the appendix. Throughout this paper we will use the following
notations:→d and→p will mean convergence in distribution and in probability, respectively.N∗ andN
will denote the integer and the non-negative integer, respectively.

2 The model and AssumptionsConsider the regression model given by

yn,t = α + g1,n(t)β1 + · · · + gk,n(t)βk + εn,t, t = 0, 1, . . . , n(1)

whereyn,t is the depend variable and thegi,n(t)’s are deterministic regressors. The error term,εn,t, is
modeled as

εn,t = σ(zt)un,t,

whereun,t is a martingale difference sequence with mean zero and unit variance with respect to a filtration
Fn,t, zt is an integrated time series andσ a function whose properties will be specified bellow. We assume
thatzt is measurable with respect toFn,t−1 implying that(εn,t,Fn,t) is a martingale difference sequence
satisfying

E(ε2n,t|Fn,t−1) = σ2(zt).

Let [s] be the larger integer smaller thans. Through this paper we will assume that each deterministic
regressorgi,n(t) satisfies the following assumption.

Assumption 1. Let gi,n(t), t = 0, 1, . . . , n, be a sequence of finite valued deterministic regressors. Then
there exists a positive functionci(n), whose limit asn → ∞ exists inR̄, such that

supr∈[0,1]|
gi,n([rn])

ci(n)
− ği(r)| → 0,

whereği(r) is piecewise continuous on[0, 1] and satisfies
∫ 1

0
|ği(r)|dr 6= 0.

Assumption 1 is not restrictive since several standard regressors satisfy it. Consider for example the linear
trend model in whichgn(i) = i, in this case we can setc(n) = n with ğ(r) = r. Another example is when
the regressors are givengn(i) = cos((2πi)/n). In this case we can setc(n) = 1 andğ(r) = cos(2πr).

We assume that the processzt is of the form

zt = zt−1 + wt,(2)

wherewt follows the linear process

wt = ψ(L)et =
+∞∑
k=0

ψket−k,

whereet is an iid sequence of random variables with mean zero. In this paper we setz0 = 0.

In the proofs we will write

Un(r) =
1√
n

[rn]∑
t=1

un,t Wn(r) =
1√
n

z[rn] =
1√
n

[nr]∑
t=1

wt.

We make the following assumptions on the error term.
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Assumption 2. (a) (Un,Wn) →d (U,W ) asn → ∞, where(U,W ) is a vector Brownian motion.
(b)

∑+∞
k=0 k|ψk| < ∞, ψ(1) 6= 1 andE(ep

t ) < ∞ for somep > 2.
(c) The distribution ofet is absolutely continuous with respect to the Lebesgue measure and has character-
istic functionφ(t) for whichlimt→∞ trφ(t) = 0 for somer > 0.
Moreover for eachn, there exists a filtration(Fn,t), t = 0, 1, . . . , n, such that
(d) (un,t,Fn,t) is a martingale difference sequence withE(u2

n,t|Fn,t) = 1 a.s. for all,t = 1, 2, ..., n, and
sup1≤t≤nE(|un,t|q|Fn,t−1) < ∞ a.s. forq > 2.
(e)zt is Fn,t−1 measurable.

Assumptions2(a)(d) are standard in the literature. Assumption2(b) is a summability condition on the
moving average coefficient ofwt and a moment condition on the innovationet, finally 2(c) is a technical
assumption.

We will consider two kinds of volatility functionsσ, more specifically:

Definition 1. We letσ ∈ I if σ is Riemann integrable,
∫ ∞
∞ σ2(s)ds < ∞, |σ(x) − σ(y)| ≤ c|x − y|l, for

some constantc andl > 6/(p − 2), wherep is defined in Assumption 2(b).
On the other hand, we writeσ ∈ H if

σ(λs) = ν(λ)τ(s) + o(ν(λ)),

for large λ uniformly overs and over any compact interval, whereτ is locally Riemann integrable. For
σ ∈ H, we callν andτ the asymptotic order and the limit homogenous function ofσ, respectively.

The limit distribution of the ordinary least squares estimator involves the Brownian local time ofW at
the origin, which is defined as

L(t, 0) = limε→0
1
2ε

∫ t

0

1{|W (r)|<ε}dr,

Intuitively 2εL(t, 0) measures the time spent byW in an infinitesimal neighborhood of0 during the time
interval [0, t]. L(t, 0) is monotone increasing and almost surely continuous int, see Revuz and Yor (1990)
for a discussion.

3 The Ordinary Least Squares Estimator

3.1 I regular function In this section we will derive the distribution of the ordinary least squares esti-
mator ofθ = (α, β1, . . . , βK). To do so we first need to generalize Theorem 3.2 from Phillips and Park
(2001).

Theorem 1. If Assumptions 1 and 2 are satisfied withp > 4 andσ ∈ I then

1
n1/4

n∑
t=1

gn(t)
c(n)

σ(zt)un,t →d

((∫ +∞

−∞
σ(s)ds

)(∫ 1

0

ğ2(s)dL(s, 0)
))1/2

B(1),

asn → ∞, whereB(1) is a Brownian motion independent ofW .

Settinggn(t) = c(n) = 1 Theorem 1 we recover the original result of Phillips and Park (2001). In
the appendix we give a proof of Theorem 1 that is based on the proof of Theorem 3.2 in Phillips and Park
(2001). However, the difference in our proof with the one of Phillips and Park (2001) is that we define
ρn(r) using the quadratic variation of the processM̃n(r) instead ofMn(r). This modification is necessary
since if we had defined the stopping timeρn(r) using the processMn(r) there may be a set of sample path
with positive probability for whichρn(r) is not well defined for somer ∈ [0, 1].
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Now we can derive the asymptotic distribution of the ordinary least squares estimator of model (1).
Consider

α̂ − α

β̂1 − β1

. . .

β̂k − βk

 =


n

∑n
t=1 g1,n(t) · · ·

∑n
t=1 gk,n(t)∑n

t=1 g1,n(t)
∑n

t=1 g2
1,n(t) · · ·

∑n
t=1 g1,n(t)gk,n(t)

...
. . .

...∑n
t=1 gk,n(t)

∑n
t=1 g1,n(t)gk,n(t) · · ·

∑n
t=1 g2

k,n(t)


−1 

∑n
t=1 εn,t∑n

t=1 g1,n(t)εn,t

...∑n
t=1 gk,n(t)εn,t

 .

If we let Da be the following diagonal normalization matrix

Da =


n3/4 0 . . . 0

0 n3/4c1(n) . . . 0
...

...
. . .

...
0 0 . . . n3/4ck(n)

 ,

then we have the following theorem

Theorem 2. Consider model(1) and assume that Assumptions 1, 2 are satisfied withp > 4 andσ ∈ I,
then the ordinary least squares estimator ofθ satisfies

Da


α̂ − α

β̂1 − β1

...
β̂k − βk

 →d A−1Ba,

where

A =


1

∫ 1

0
ğ1(s)ds . . .

∫ 1

0
ğk(s)ds∫ 1

0
ğ1(s)ds

∫ 1

0
ğ2
2(s)ds . . .

∫ 1

0
ğ1(s)ğk(s)ds

...
...

. ..
...∫ 1

0
ğk(s)ds

∫ 1

0
ğ1(s)ğk(s)ds . . .

∫ 1

0
ğ2

k(s)ds

 ,

and

Ba =



((∫ +∞
−∞ σ(s)ds

)
L(1, 0)

)1/2

B(1)((∫ +∞
−∞ σ(s)ds

)(∫ 1

0
ğ2
1(s)dL(s, 0)

))1/2

B(1)
...((∫ +∞

−∞ σ(s)ds
)(∫ 1

0
ğ2

k(s)dL(s, 0)
))1/2

B(1)


.

Note that the ordinary least squares estimator ofβi will be consistent ifn3/4ci(n) → ∞.

Assume now that we want to test an hypothesis of the form

H0 : βi = β0,i

H1 : βi 6= β0,i,(3)

wherei ∈ {1, . . . , k} andβ0,i is some constant. A usual test statistic for this problem is given by the t-stat
whose expression is

t =
β̂i − β0,i√

σ̂2
ε R (

∑n
t=1 Gn(t)Gn(t)′)−1

R′
,(4)
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whereGn(t) = (1, g1,n(t), . . . , gk,n(t))′ andR is a1 × (k + 1) vector whose only nonzero component is
located in the(i + 1)th column and̂σ2

ε is given by

σ̂2
ε =

1
n

 n∑
t=1

ε2n,t −

(
n∑

t=1

G′
n(t)εn,t

)(
n∑

t=1

Gn(t)G′
n(t)

)−1 (
n∑

t=1

Gn(t)εn,t

) .

The next proposition derives the asymptotic distribution oft

Proposition 1. Assume thatσ ∈ I and consider the test statistic(4) associated to the hypothesis(3). If
Assumption 1 and 2 are satisfied, then underH0

t →d
RA−1Ba√

C
,

where

C = L(1, 0)
(∫ ∞

−∞
σ2(s)ds

)
RA−1R′,

while underH1

t →d ∞, a.s.

if and only ifci(n)n3/4 → ∞.

In particular we see from the above proposition that the t-test is consistent if and only if the ordinary
least squares estimator is. In practice one is sometimes also interested in testing an hypothesis on a linear
combination of the vectorθ, i.e. Rθ = b for R ∈ R1×k+1. The usual test statistics in this case is the
Wald test statistics. However in our case we could not derive the distribution of the Wald test statistics, the
problem stems from the fact that the different componentsθ̂ do not converge at the same rate. This situation
is similar to the testing problem in the homoskedastic linear trend model described in Hamilton (1994). In
such a case the hypothesisRθ = b can be tested using the standard t-test, provided thatR ∈ R1×k+1. The
derivation of the asymptotic distribution of this test can easily be carried along the lines of Hamilton (1994)
and thus will be omitted here.

3.2 H Regular Function The next theorem will allow us to study the asymptotic least squares when the
volatility function belongs toH.

Theorem 3. If Assumptions 1 and 2 are satisfied andσ ∈ H then

1
n1/2ν(

√
n)

n∑
t=1

gn(t)
c(n)

σ(zt)un,t →d

∫ 1

0

ğ(s)τ(W (s))dU(s),

asn → ∞.

Define

Db =
n1/2

ν(n)


1 0 . . . 0
0 c1(n) . . . 0
...

...
. . .

...
0 0 . . . ck(n)

 ,

then computations similar to those of the previous subsection and the previous theorem leads to the follow-
ing result.
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Theorem 4. Consider model(1) and assume that Assumptions 1 and 2 are satisfied withσ ∈ H, then the
ordinary least squares estimator satisfies

Db


α̂ − α

β̂1 − β1

...
β̂k − βk

 →d A−1Bb,

where

Bb =


∫ 1

0
τ(W (s))dU(s)∫ 1

0
ğ1(s)τ(W (s))dU(s)

...∫ 1

0
ğk(s)τ(W (s))dU(s)

 .

Note that in this case the consistency of the ordinary least squares estimator depends on the behav-
ior of the ratioci(n)n1/2/ν(n). In particular the ordinary least squares estimator ofβi is consistent if
ci(n)n1/2/ν(n) → ∞.

Consider now the hypothesis testing problem described in (3). As in the previous subsection consider
the testing statistic given by (4), we can prove the following proposition.

Proposition 2. Consider the test statistic(4) associated to the hypothesis(3). If σ ∈ H then underH0

t →d
RA−1Bb√

C
,

where

C =
(∫ 1

0

τ2(W (s))ds

)
RA−1R′,

while underH1

t →d ∞, a.s.

if and only ifci(n)n1/2/ν(n) → ∞.

From the above proposition we can see that t-test is consistent if and only if the ordinary least squares
estimator is. Finally the Wald test whenσ ∈ H has exactly the same behavior as whenσ ∈ I, thus our
previous discussion holds words for words and will not be repeated here.

4 Application: The Linear Trend Model As an application of our previous results consider the linear
trend model given by

yt = α + tβ + εt t = 0, 1, . . . , n.(5)

εt = σ(zt)ut.

In this case it is easy to see that Assumption 1 is satisfied withgn(i) = i, c(n) = n andğ(r) = r. Such
model could be used in macroeconometrics whereyt is the logarithm of the gdp,β its linear trend andzt

could be, for example, the exchange rate. The asymptotic distribution of the ordinary least squares estimator
whenσ ∈ I is given by
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Da

(
α̂ − α

β̂ − β

)
→d

(
4 −6
−6 12

) 
((∫ +∞

−∞ σ(s)ds
)

L(1, 0)
)1/2

B(1)((∫ +∞
−∞ σ(s)ds

)(∫ 1

0
s2dL(s, 0)

))1/2

B(1)

 ,

where

Da =
(

n3/4 0
0 n7/4

)
.

When the volatility functionσ ∈ H the asymptotic distribution of the ordinary least squares estimator
is given by

Db

(
α̂ − α

β̂ − β

)
→d

(
4 −6
−6 12

) ( ∫ 1

0
τ(W (s))dU(s)∫ 1

0
sτ(W (s))dU(s)

)
,

where

Db =
1

ν(
√

n)

(
n1/2 0

0 n3/2

)
.

In comparison if there was no heteroscedasticity in the data, i.e.σ(zt) = σ, then we would have (see
Hamilton, 1994, pp 458)

(6) D

(
α̂ − α

β̂ − β

)
→d N(0, σ

(
4 −6
−6 12

)
),

where

D =
( √

n 0
0 n3/2

)
.

Note that this implies that in the homoscedasticity case the t-stat follows a standard normal distribution.

We now study the impact of heteroscedasticity on the size of the t-test. To do so we consider four
volatility functions

σ1(x) = e−
x2
2

σ2(x) = e−|x|

σ3(x) =
ex

1 + ex

σ4(x) = |x|,

the first two functions belong toI while the last two belong toH. It can be checked that forσ3 we have
ν(λ) = 1 andτ(s) = 1{s ≥ 0}, while for σ4 we haveν(λ) = |λ| andτ(s) = |s|. Furthermore since
n3/2/ν(

√
n) → ∞ asn → ∞, the ordinary least squares estimator is consistent. In our simulations we

generate thewt andun,t as iid normal with mean0 and variance1 and the serieszt is generated according
to (2). We set the sample sizen = 1000 and run100000 repetitions.

To illustrate the impact of heteroscedasticity we compute the level of the test that consists in rejecting
H0 given by (3) whenevert is larger or lower than the1 − α/2 or α/2 quantile of the standard normal
distribution. The following table shows the level of this test for our four volatility functions.
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Volatility α=0.01 α=0.05 α=0.1
σ1 0.053 0.131 0.203
σ2 0.005 0.031 0.071
σ3 0.032 0.085 0 .141
σ4 0.014 0.053 0.096

It can be seen from the table that the impact of heteroscedasticity on the size of the test depends on the
functional form of the variance.

5 Conclusion This paper contributes to the litterature on nonlinear time series in two ways. Firstly, it
extends some results of Phillips and Park (1999,2001) on nonlinear integrated time series. Secondly, it
shows how these results can be used to derive the distribution of the ordinary least squares estimator when
the regressors are deterministic and the volatility is a function of a unit root process. Future work should
focus on the estimation of the volatility functionσ.

Appendix

In what follows we will often use of the following lemma

Lemma 1. Letgn(t), t = 1, . . . , n, andc(n) satisfy Assumption 1, then

supr∈[0,1]|
gn([rn])

c(n)
| < M, ∀n

for someM ∈ R.

Proof of Lemma 1
The result follows from the boundness ofğ(r) and the assumption of uniform convergence. 2

Define the following random variable

V (s, r) =
n∑

t=1

gn(t)
c(n)

1{s≤zt<r} s < r,

wherezt is defined in (2) andgn(t), c(n) satisfy Assumption 1. Then we have the following lemma.

Lemma 2. If Assumptions 1, 2(b) and 2(c) are satisfied then there exists a constantC such that for any
δ ∈ (0,∞) and n such thatn ≥ 2, δ

√
n ≥ 1

(a) E(V (0, δ) − 1
K V (δ, (K + 1)δ))2 ≤ Cδ

√
n(1 + Kδ2log(n)).

(b) E(V (Kδ, (K + 1)δ) − 1
K V (δ, (K + 1)δ))2 ≤ Cδ

√
n(1 + Kδ2log(n)).

(c) E(V (0, δ) − V (Kδ, (K + 1)δ))2 ≤ Cδ
√

n(1 + Kδ2log(n)).
wherek = 1, . . . ,K with K ∈ N∗.

Proof of Lemma 2
(a) and (b) can be deduced from Akonom (1993) upon noticing that the sequencegn(t)/c(n) is bounded by
Lemma 1.
(c) This follows from (a), (b) and the triangular inequality.

2

To prove Theorem 1 we will also need the following result.
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Theorem 5. Suppose Assumption 2(b) and 2(c) hold withp > 4. If σ ∈ I, then

1
n1/2c(n)

n∑
t=1

gn(t)σ(zi) →d

(∫ +∞

−∞
σ(s)ds

) (∫ 1

0

ğ(s)dL(s, 0)
)

,

asn → ∞ for any sequencegn(i) satisfying Assumption 1 .

Proof of Theorem 5
Start by writing

1
n1/2

n∑
t=1

gn(t)
c(n)

σ(zt) = n1/2

∫ 1

0

gn([rn])
c(n)

σ(n1/2Wn(r))dr+
g(n)
c(n)

σ(n1/2Wn(1))√
n

− g(0)
c(n)

σ(n1/2Wn(0))√
n

,

in the right hand side of the above equality the second and third terms areop(1), thus we just need to study
the asymptotic distribution of the first term. Define then

(7) κn = na and δn = n−b,

with a, b > 0 and

σn(x) = σ(x)1{−κnδn≤x<κnδn}

σ′
n(x) = σ(x)1{κnδn≤x}

σ′′
n(x) = σ(x)1{x<−κnδn}.

As in Phillips and Park (1999) we will assume that the following inequalities hold

a − (1 + l)b < 0(8)

(6b − 1)p + 2 < 0(9)

2a − 1 < 0(10)

4a − 4b − 1 < 0(11)

(a − b)p − 1 > 0,(12)

it can be checked that under our assumptions the above system defines a non empty set whenp > 4. The
theorem will be proved if we show that

n1/2

∫ 1

0

gn([rn])
c(n)

σn(n1/2Wn(r))dr =
(∫ +∞

−∞
σ(s)ds

)(∫ 1

0

ğ(s)dL(s, 0)
)

+ op(1)

n1/2

∫ 1

0

gn([rn])
c(n)

σ′
n(n1/2Wn(r))dr = op(1)

n1/2

∫ 1

0

gn([rn])
c(n)

σ′′
n(n1/2Wn(r))dr = op(1).

Define

σδn(x) =
κn−1∑

k=−κn

σ(kδn)1{kδn≤x<(k+1)δn},

then the Lipschitz condition onσ implies that sup|σn(x)− σδn(x)| ≤ cδl
n. This with Lemma 1, (7) and (8)

leads to

|n1/2

∫ 1

0

gn([rn])
c(n)

σn(n1/2Wn(r))dr − n1/2

∫ 1

0

gn([rn])
c(n)

σδn(n1/2Wn(r))dr| = op(1),
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Now

n1/2

∫ 1

0

gn([rn])
c(n)

σδn(n1/2Wn(r))dr = An + Bn,(13)

where

An = n1/2
κn−1∑

k=−κn

1
n

(
n∑

t=1

gn(t)
c(n)

σ(kδn)1{0≤n1/2Wn( t
n )<δn}

)

Bn = n1/2
κn−1∑

k=−κn

1
n

(
n∑

t=1

gn(t)
c(n)

σ(kδn)(1{kδn≤n1/2Wn( t
n )<(k+1)δn} − 1{0≤n1/2Wn( t

n )<δn})

)
.

Using the Cauchy-Schwartz inequality we can write

E(B2
n) ≤ n

(
κn−1∑

k=−κn

σ2(kδn)

)
κn−1∑

k=−κn

E

(
1
n

V (k, (k + 1)δn) − 1
n

V (0, δn)
)2

=
n

δn

(∫ +∞

−∞
σ2(s)ds + o(1)

) κn−1∑
k=−κn

E

(
1
n

V (k, (k + 1)δn) − 1
n

V (0, δn)
)2

= o(1),

where we used Lemma 2, (7), (10) and (11). This implies thatE(B2
n) = o(1), thus to determine the

asymptotic behavior of (13) we only need to studyAn.

An can be rewritten as

An =
n1/2

δn

(∫ +∞

−∞
σ(r)dr + o(1)

) (∫ 1

0

gn([rn])
c(n)

1{0≤n1/2Wn(r)<δn}dr

)
.

Definesm(r) = c01[0.a1)+
∑h−1

i=1 ci1[ai,ai+1)+ch1[ah−1,1] with ai ∈ (0, 1) and supr∈[0,1]|ğ(r)−sm(r)| <
1/m wherem ∈ N. The triangular inequality implies that limn→∞supr∈[0,1]|gn([rn])/c(n) − sm(r)| <
1/m. Consider now

C1(n) =
n1/2

δn

∫ 1

0

gn([rn])
c(n)

1{0≤n1/2Wn(r)<δn}dr

C2,m(n) =
n1/2

δn

∫ 1

0

sm(r)1{0≤n1/2Wn(r)<δn}dr

C3 =
∫ 1

0

ğ(r)dL(r, 0).

SinceL(r, 0) is almost surely monotone and̆g(r) piecewise continuousC3 is well defined with probability
one. The triangular inequality implies that

{ω : |C1(n) − C2,m(n)| >
η

2
} ∪ {ω : |C2,m(n) − C3| >

η

2
} ⊇ {ω : |C1(n) − C3| > η}.(14)

We will now show that the probability of the left hand size of the above expression goes to zero.

Firstly, for an large enough we can write

|C1(n) − C2,m(n)| ≤ 1
m

n1/2

δn

∫ 1

0

1{0≤n1/2Wn(r)<δn}dr.
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The left-hand side of the above inequality can be rewritten as

1
m

(L(1, 0) + op(1)),(15)

whereop(1) and thus goes to zero asn → ∞ by Lemma 2.5(b) of Phillips and Park (1999) and (9). Thus
another application of the triangular inequality yields

P

(
{ω :

1
m

L(1, 0) >
η

4
}
)

+ P

(
{ω :

1
m

op(1) >
η

4
}
)

≥ P
(
{ω : |C1(n) − C2,m(n)| >

η

2
}
)

,

taking first the limit forn → ∞ and then form → ∞ we obtain that

limm→∞limn→∞P
(
{ω : |C1(n) − C2,m(n)| >

η

2
}
)

= 0.

Secondly, we have the following bound

|C2,m(n) − C3| ≤ |
∫ 1

0

sm(r)dL(r, 0) −
∫ 1

0

ğ(r)dL(r, 0)| + |op(1)|(16)

≤ 1
m

L(1, 0) + op(1),

whereop(1) goes to zero in probability ifn → ∞. In (16) we use Theorem 4 of Akanom (1993) and (9) to
write

C2,m(n) =
∫ 1

0

sm(r)dL(r, 0) + op(1),

with op(1) goes to zero asn → ∞. An argument similar to the one above leads to

limm→∞limn→∞P
(
{ω : |C2,m(n) − C3| >

η

2
}
)

= 0.

Using our previous results we can write

0 = limm→∞limn→∞

(
P

(
{ω : |C1(n) − C2,m(n)| >

η

2
}
)

+ P
(
{ω : |C2,m(n) − C3| >

η

2
}
))

≥ limn→∞P ({ω : |C1(n) − C3| > η}) ,

for every positiveη. Thus we have just proved that

An →p

(∫ +∞

−∞
σ(r)dr

)(∫ 1

0

ğ(r)dL(r, 0)
)

.

Finally to complete the proof note that as in Phillips and Park we can alway assume thatσ′
n andσ′′

n are
monotone decreasing. It then follows that

|n1/2

∫ 1

0

gn(brnc)
c(n)

σ′
n(n1/2Wn(r))dr| ≤ Kn1/2

∫ 1

0

|σ′
n(n1/2Wn(r))|dr = op(1)

|n1/2

∫ 1

0

gn(brnc)
c(n)

σ′′
n(n1/2Wn(r))dr| ≤ Kn1/2

∫ 1

0

|σ′′
n(n1/2Wn(r))|dr = op(1),

where for the first inequality we used Lemma 1 and theop(1) equality follows from Park and Phillips
(1999). The argument for negativeσ′

n andσ′′
n can be deduced in a similar way be noticing that−σ′

n and
−σ′′

n are positive. 2
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Lemma 3. Considergn(t), t = 1, . . . , n, andc(n) satisfy the Assumptions of Lemma 1 then

supr∈[0,1]|
g2

n([rn])
c2(n)

− ğ2(r)| → 0.

Proof of Lemma 3
Simply notice that forn large enough we can write

supr∈[0,1]|
g2

n([rn])
c2(n)

− ğ2(r)|

= supr∈[0,1]|
(

gn([rn])
c(n)

− ğ(r)
)(

gn([rn])
c(n)

+ ğ(r)
)
|

≤ supr∈[0,1]|
gn([rn])

c(n)
− ğ(r)|supr∈[0,1]|

gn([rn])
c(n)

+ ğ(r)|

≤ supr∈[0,1]|
gn([rn])

c(n)
− ğ(r)|M,

for some constantM . The last inequality is due to the assumption of uniform convergence. The lemma
follows by lettingn → ∞. 2

Proof of Theorem 1
Define the following martingale

Mn(r) = n1/4
k−1∑
t=1

gn(t)
c(n)

σ(
√

nWn(
t

n
))

(
U(

τn,t

n
) − U(

τn,t−1

n
)
)

+ n1/4 gn(k)
c(n)

σ(
√

nWn(
k

n
))

(
U(r) − U(

τn,k−1

n
)
)

,

whereτn,k−1/n < r ≤ τn,k/n. Theτn,k are stopping the times defined in Park and Phillips (2001).

Consider now the two following martingales

M̃n(r) =
{

Mn(r) r ∈ [0,
τn,n

n ]
Mn(r) + B1

(
r − τn,n

n

)
r >

τn,n

n .

and

W̃ (r) =
{

W (r) r ∈ [0, 1]
W (1) + B2(r − 1) r > 1.

whereB1(r) andB2(r) are two independent Brownian motions.

The quadratic variation of̃Mn is given by

[M̃n]r = n1/4

∫ min(r,
τn,n

n )

0

(
gn([sn])

c(n)

)2

σ2(
√

nWn(s))ds(1 + op(1)) +
(
r − τn,n

n

)
1{r>

τn,n
n },

therefore from our previous theorem and Lemma 3 we have that

[M̃n]r →d

(∫ +∞

−∞
σ2(s)ds

) (∫ min(r,1)

0

ğ2(s)dL(s, 0)

)
+ (r − 1)1{r>1}.
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Here we also used a result from Park and Phillips (2001) that ifσ ∈ I thenσ2 ∈ I.

The independence ofB1, B2, Lemma 1 and computations similar to those in Phillips and Park (2001)
yield

[M̃n, W̃ ]r →p 0,(17)

r ∈ [0,∞). Define nowρn(r) = inf{s ∈ [0,∞) : [M̃n]s > r}, note that since[M̃n]s → ∞ ass → ∞,
ρn(r) is well defined forr ∈ [0,∞). Define now the Dambis, Dubins-Schwarz Brownian motion

Bn(r) = M̃n(ρn(r)),

this is a well defined Brownian motion over[0,∞). It then follows that(Bn(r), W̃ (r)) converges to
(B(r), W̃ (r)), whereB(r) and W̃ (r) are two independent Brownian motions by (17) (see Revuz and
Yor (1994), Theorem 1.6, page 173). Therefore

M̃n

(τn,n

n

)
→d

((∫ ∞

−∞
σ2(s)ds

) ∫ 1

0

ğ2(s)dL(s, 0)
)1/2

B(1),

whereB is a brownian motion independent ofW . 2

Proof of Proposition 1
Note thatt can be rewritten as

n3/4ci(n)(β̂i − β0,i)√
σ̂2

ε RDa(
∑n

t=1 Gn(t)Gn(t)′)−1DaR′
.

UnderH0 it holds that

n3/4ci(n)(β̂i − β0,i) →d RA−1Ba.

From Chung and Park (2007) we have

n1/2σ̂2
ε →d L(1, 0)

(∫ ∞

−∞
σ2(s)ds

)
.

Finally it is straightforward to see that

√
nD−1

a

(
n∑

t=1

Gn(t)Gn(t)′
)

D−1
a → A.

The distribution underH1 can be derived in the same way. Note that underH1 the numerator can be written
as

√
nci(n)(β̂i − βi) +

√
nci(n)(βi − β̂i,0),

the above expression almost surely diverges to infinity if and only if
√

nci(n) → ∞. 2

Before proving Theorem 3 we first need to extend Lemma 2 of Phillips and Park (1999).

Lemma 4. Let τ be a locally Riemann integrable function. If Assumptions 2(a)(d) and (e) holds then

1√
n

n∑
t=1

gn(t)τ
(

zt√
n

)
un,t →d

∫ 1

0

ğ(s)τ(V (s))dU(s).
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Proof of Lemma 4
Since the proof of this lemma is very similar to the one of Lemma 2 of Phillips and Park we will just
highlight the necessary modifications. Fix a compact setK = [−c, c] with c defined in Phillips and Park
(1999). Then, we can find two continuous functionsτ ε and τ ε such thatτ ε ≤ τ ≤ τ ε on K. Since
τ ε is continuous then by the Skorokhod (see Billingsley (1968)) embeding theorem we can assume that
τ ε(Vn(r)) →p τ ε(V (r)). It then follows from theorem 4.6 of Kurtz and Protter (1991) or Theorem 2.1 of
Hansen (1992) that ∫ 1

0

gn([rn])
c(n)

τ ε(Vn(r))dUn(r) →d

∫ 1

0

ğ(r)τ ε(V (r))dU(r).

As in Phillips and Park (1999) to prove the lemma it is enough to show that

(18) |
∫ 1

0

gn([rn])
c(n)

τ(Vn(r))dUn(r) −
∫ 1

0

ğ(r)τ ε(Vn(r))dUn(r)| →p 0.

asε → 0. This however follows from Phillips and Park (2001) and the boundess of the arraygn(t)/c(n) 2

Proof of Theorem 4
Simply note that

1√
nν(

√
n)

n∑
t=1

gn(t)
c(n)

σ(zt)un,t =
1√
n

n∑
t=1

gn(t)
c(n)

τ(zt)un,t + o(1)

where the equality is due to the boundeness of the arraygn(t)/c(n) and Lemma A5(b) of Phillips and Park
(2001). 2

Proof of Proposition 2
¿From equation (12) of Chung and Park (2007) we have that

1
ν2(

√
n)n

n∑
t=1

ε2n,t →d

∫ 1

0

τ2(V (r))dr.

The rest of the proof is similar to the proof of Proposition 1 and thus will not be repeated here. 2
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