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ABSTRACT. The first part of this paper derives the asymptotic distribution of the ordinary least squares
estimator in a linear regression model with deterministic regressors when the variance of the innova-
tions is a function of an integrated time series. In the second part of this paper we study the impact of
heteroscedasticity on the standard t-test for the slope coefficient in a linear trend model.

1 Introduction The tools for the study of a linear system of an integrated time series were introduced
by Phillips (1986,1987) and Phillips and Durlauf (1986). Their results relied on weak convergence in
functional spaces, the continuous mapping theorem and on weak convergence of stochastic integrals to
martingales. It is with the papers of Phillips and Park (1999, 2001) that the study of the asymptotic behavior
of nonlinear functions of an integrated time series started. Phillips and Park (1999, 2001) derived the
asymptotic distribution of the average of a nonlinear function of integrated time series. These results where
further extended by Chang and Park (2003), Jong and Wang (2005) and Shi and Phillips (2010).

The results obtained by Park and Phillips (1999, 2001) have been applied to various nonlinear econo-
metric models. For example, Park and Phillips (2001) and Shi and Phillips (2010) used them to derive the
distribution of the least squares estimator in a nonlinear regression model. Chang and all (2001) considered
nonlinear regressions with separably additive regression functions. Park (2002) studied the possibility of
modeling assets variance using a nonlinear function of an integrated time series. Studying the USD/DM
exchange rate he found out that the conditional variance of the spread can be accurately modeled using the
spot rate. Chung and Park (2003) considered nonstationary index models. Hu and Phillips (2004) worked
on discrete choice models. Chang and Park (2007) studied the distribution of the ordinary least squares es-
timator of a linear regression model with integrated or stationary regressors when the error term volatility is
a nonlinear function of an integrated time series. They showed that, when the volatility of the error termis a
function of an integrated time series, the asymptotic distribution of the ordinary least squares is nonstandard
and involves an integral with respect to the local time of a Brownian motion at the origin. Note also that an
earl study of the linear regression model where the variance of the innovation is a function of an integrated
time series can be found in Hansen (1995).

The objective of this paper is twofold. Firstly, we extend some results of Phillips and Park (1999,2001)
by deriving the asymptotic distribution of a temporally weighted average of a function of an integrated time
series. Secondly, we use our results to study the distribution of the ordinary least squares estimator of linear
regression model when the regressors are time-deterministic and the variance of the error term is a function
of an integrated time series. Using these results we also study the asymptotic distribution of the standard
t-stat. In this sense our results can be seen as an extension of those derived by Chung and Park (2007). As
explained bellow potential applications of our results can be found in macroeconometrics and finance.

The paper is organized as follows: Section 2 presents the model and the assumptions, Section 3 studies
the asymptotic distribution of the ordinary least squares estimator, in Section 4 we consider an application
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of our theory and study the impact of heteroscedasticity on the level of the standard t-test, finally Section 5
concludes. All the proofs can be found in the appendix. Throughout this paper we will use the following
notations: —, and —,, will mean convergence in distribution and in probability, respectiv&ly.andN

will denote the integer and the non-negative integer, respectively.

2 The model and AssumptionsConsider the regression model given by
1) Ynt =+ gin(t)Br 4+ grn(t)Br + €nt, t=0,1,...,n

wherey, , is the depend variable and tlge,,(¢)’s are deterministic regressors. The error teepy, is
modeled as

€nt = 0(2t)Un,t,

whereu,, ; is a martingale difference sequence with mean zero and unit variance with respect to a filtration
Fnt, z¢ IS @an integrated time series amd function whose properties will be specified bellow. We assume
that z, is measurable with respect 8, .1 implying that(e,, ., F,) is a martingale difference sequence
satisfying

E(e 1| Fni1) = 0 (z0).

Let [s] be the larger integer smaller thanThrough this paper we will assume that each deterministic
regressoy; ,, (t) satisfies the following assumption.

Assumption 1. Letg; ,(t),t = 0,1,...,n, be a sequence of finite valued deterministic regressors. Then
there exists a positive functief(n), whose limit as. — oo exists inR, such that

sug o,y 225 - i)~

whereg; (r) is piecewise continuous @6, 1] and satisfieg”o1 |G:(r)|dr # 0.

Assumption 1 is not restrictive since several standard regressors satisfy it. Consider for example the linear
trend model in whicly,, () = 4, in this case we can sefn) = n with §(r) = r. Another example is when
the regressors are given (i) = coq(2wi)/n). In this case we can setn) = 1 andg(r) = cog2nr).

We assume that the processs of the form
2 2t = Zt—1 T Wi,

wherew, follows the linear process

—+oo
wy = P(L)er = > Yrerx,
k=0

wheree, is an iid sequence of random variables with mean zero. In this paper wg sei.

In the proofs we will write

nr|

[
Un(r) = % 2 e Walr) = %Z[ml - % 2
t=1

We make the following assumptions on the error term.
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Assumption 2. (&) (U,, W,,) —4 (U, W) asn — oo, where(U, W) is a vector Brownian motion.

(b) 32728 ki | < 00, (1) # 1 and E(e?) < oo for somep > 2.

(c) The distribution o, is absolutely continuous with respect to the Lebesgue measure and has character-
istic functiong(t) for whichlim;_, ., t"¢(t) = 0 for somer > 0.

Moreover for each, there exists a filtratiot7,, ), ¢ = 0,1, ..., n, such that

(d) (tn,¢, Fn,t) is a martingale difference sequence wilu?. ;| 7, ;) = 1a.s. forall,t = 1,2,...,n, and
sup1<i<nE(|un, |9 Fni—1) < 0o a.s. forg > 2.

(€) z is Fp, t—1 measurable.

Assumption2(a)(d) are standard in the literature. Assumptidfd) is a summability condition on the
moving average coefficient ef; and a moment condition on the innovatien finally 2(¢) is a technical
assumption.

We will consider two kinds of volatility functions, more specifically:

Definition 1. We leto € Z if o is Riemann integrable| " o2(s)ds < oo, |o(z) — o(y)| < c|z — y/', for
some constantand! > 6/(p — 2), wherep is defined in Assumption 2(b).
On the other hand, we write € H if

a(As) = v(AN)7(s) + o(v(N)),

for large A\ uniformly overs and over any compact interval, whereis locally Riemann integrable. For
o € 'H, we callv andr the asymptotic order and the limit homogenous functios, séspectively.

The limit distribution of the ordinary least squares estimator involves the Brownian local tifeadf
the origin, which is defined as

. 1/t
L(t,0) = Ilme—>027/ Low )|<eydr,
€Jo

Intuitively 2eL(t,0) measures the time spent By in an infinitesimal neighborhood of during the time
interval [0, ¢]. L(t,0) is monotone increasing and almost surely continuous see Revuz and Yor (1990)
for a discussion.

3 The Ordinary Least Squares Estimator

3.1 7 regular function In this section we will derive the distribution of the ordinary least squares esti-
mator of0 = («, 51,...,0k). To do so we first need to generalize Theorem 3.2 from Phillips and Park
(2001).

Theorem 1. If Assumptions 1 and 2 are satisfied with- 4 ando € 7 then

1/2

L ; s o ([ o) ([ #orre0)) s,

asn — oo, whereB(1) is a Brownian motion independent Bf.

Settingg, (t) = ¢(n) = 1 Theorem 1 we recover the original result of Phillips and Park (2001). In
the appendix we give a proof of Theorem 1 that is based on the proof of Theorem 3.2 in Phillips and Park
(2001). However, the difference in our proof with the one of Phillips and Park (2001) is that we define
pn (1) using the quadratic variation of the proceds (r) instead ofM,, (). This modification is necessary
since if we had defined the stopping timg(r) using the procesa/, (r) there may be a set of sample path
with positive probability for whictp,, () is not well defined for some € [0, 1].



12 ALEXANDRE PETKOVIC

Now we can derive the asymptotic distribution of the ordinary least squares estimator of model (1).
Consider

a—« . n ZZ:l Gin(t)- Zt 1 9k (t) Do Ent
Bl -6 | _ e Ginl(t) iy g%_’n(t) Zt 1 91.0(8)gk.n(t) Z?:1 g1.n(t)ent

-1

B — By S GO g1 (®) - Sy 50 (0 S Gk (e

If we let D, be the following diagonal normalization matrix

n3/4 0 0
0 n3/%ey(n) 0
Dll = . )
0 0 . n¥le(n)

then we have the following theorem

Theorem 2. Consider mode(1) and assume that Assumptions 1, 2 are satisfied with4 ando € Z,
then the ordinary least squares estimato¥cfatisfies

G —«
Br— By »
Da . —d A Ba,

Br. — By

where -
1 f01 g1(s)ds fo gk
Ao Jo 91(s)ds Jo 93(s)ds . fo ag1(s ds
Jyau(s)ds [y g1(s)ge(s)ds ... f01 g,‘g‘(s)ds

and

B ff;"a<s>ds X AEL(60) " B
B =

a

2

()22 o(as) (fo $)dL(s,0))) " By

Note that the ordinary least squares estimatg#;ofill be consistent iflzg/‘lci(n) — 00.

Assume now that we want to test an hypothesis of the form

Ho : Bi= 0o
) Hy : Bi # Bois
wherei € {1,...,k} andf, ; is some constant. A usual test statistic for this problem is given by the t-stat
whose expression is
Bi — Bo,i

@ , i
VoRR (S, Gu()Galt)y) " R
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whereG,,(t) = (1,g1..(t),...,grn(t)) andRis al x (k + 1) vector whose only nonzero component is
located in thei + 1)*" column ands? is given by

52 :% S, - (Z G;(t)em> (Z Gn(t)Gw)) (Z Gn(t)%t)
t=1 t=1 t=1 =1

The next proposition derives the asymptotic distribution of

Proposition 1. Assume that € 7 and consider the test statist{d) associated to the hypothegB). If
Assumption 1 and 2 are satisfied, then unéigr

RA7'B,
toy —

where

while underH;

if and only ifc; (n)n/* — oo.

In particular we see from the above proposition that the t-test is consistent if and only if the ordinary
least squares estimator is. In practice one is sometimes also interested in testing an hypothesis on a linear
combination of the vectof, i.e. R§ = b for R € R'*¥+1, The usual test statistics in this case is the

Wald test statistics. However in our case we could not derive the distribution of the Wald test statistics, the
problem stems from the fact that the different componémﬁs not converge at the same rate. This situation

is similar to the testing problem in the homoskedastic linear trend model described in Hamilton (1994). In
such a case the hypothegt = b can be tested using the standard t-test, providedRhatR' ***+1. The
derivation of the asymptotic distribution of this test can easily be carried along the lines of Hamilton (1994)
and thus will be omitted here.

3.2 H Regular Function The next theorem will allow us to study the asymptotic least squares when the
volatility function belongs td+.

Theorem 3. If Assumptions 1 and 2 are satisfied and H then

n -1

! gn(?) — Gg(s)T s s
ST 2 iy e = [ GOV EAU)

asn — oo.
Define
1 0 0
nl/2 0 c1(n) 0
Db = 7 . )
v(n) : " :
0 0 e cx(n)

then computations similar to those of the previous subsection and the previous theorem leads to the follow-
ing result.
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Theorem 4. Consider mode(1) and assume that Assumptions 1 and 2 are satisfiedovith, then the
ordinary least squares estimator satisfies

Ad —«
B — B .
Dy : —q A7 By,
Br — B
where
[ (W (s))dU((s)

JO
B, — Jo §1(s)T(W(s))dU(s)

Ji gu(s)T(W (s))dU (s)

Note that in this case the consistency of the ordinary least squares estimator depends on the behav-
ior of the ratioc;(n)n'/?/v(n). In particular the ordinary least squares estimatop,ofs consistent if
ci(n)n'/? Jv(n) — oco.

Consider now the hypothesis testing problem described in (3). As in the previous subsection consider
the testing statistic given by (4), we can prove the following proposition.

Proposition 2. Consider the test statisti@) associated to the hypothe$®). If o € H then underH

RA_le
Ve

t —q

where )
C= </ T2(W(S))d8) RAT'R,
0

while underH;
t —q 00, a.s.

if and only ifc;(n)n'/? /v(n) — co.

From the above proposition we can see that t-test is consistent if and only if the ordinary least squares
estimator is. Finally the Wald test whenc H has exactly the same behavior as whegr Z, thus our
previous discussion holds words for words and will not be repeated here.

4 Application: The Linear Trend Model As an application of our previous results consider the linear
trend model given by

(%) w = a+tb+e t=0,1,...,n.

€ = O'(Zt )'LLt .

In this case it is easy to see that Assumption 1 is satisfied gith = ¢, ¢(n) = n andg(r) = r. Such

model could be used in macroeconometrics whers the logarithm of the gdp3 its linear trend and;

could be, for example, the exchange rate. The asymptotic distribution of the ordinary least squares estimator
wheno € 7 is given by
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)

oo\ (4 - (£ oto)as) L.0)) " B)
2. (575) = ( ) @

j:: U(s)ds) (fol s2dL(s, 0))) v B(1)

where
n3/4 0
Da - < 0 n7/4> N

When the volatility functioro € H the asymptotic distribution of the ordinary least squares estimator
is given by
b —a 4 -6 [ 7 (W(s))dU{(s)
Dy | » )
' (6 - ﬁ) o ( 612 ) (J;? sT(W(5))dU (s)

Dy — 1 ﬂ1/2 0
" u(n) 0 n3/2 )"

In comparison if there was no heteroscedasticity in the datag{.®.) = o, then we would have (see
Hamilton, 1994, pp 458)

© p(525)~avee( G )

where
_( Vn 0
D_< ! ).

Note that this implies that in the homoscedasticity case the t-stat follows a standard normal distribution.

where

We now study the impact of heteroscedasticity on the size of the t-test. To do so we consider four
volatility functions

N

i

o1(x) ez
oo(x) = e7I7l
ex
o3(r) = 1+ e
os(z) = |z,

the first two functions belong t6 while the last two belong t@{. It can be checked that fer; we have

v(A) = 1andr(s) = 1{s > 0}, while for o, we haver(\) = |A\| and7(s) = |s|. Furthermore since
n3/?/u(\/n) — oo asn — oo, the ordinary least squares estimator is consistent. In our simulations we
generate thev, andu,, ; as iid normal with meaf and variancd and the series; is generated according

to (2). We set the sample size= 1000 and run100000 repetitions.

To illustrate the impact of heteroscedasticity we compute the level of the test that consists in rejecting
H, given by (3) whenevet is larger or lower than thé — «/2 or «/2 quantile of the standard normal
distribution. The following table shows the level of this test for our four volatility functions.
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Volatility | «=0.01 «=0.05 «=0.1
01 0.053 0.131 0.203
02 0.005 0.031 0.071
03 0.032 0.085 0.141
04 0.014 0.053 0.096

It can be seen from the table that the impact of heteroscedasticity on the size of the test depends on the
functional form of the variance.

5 Conclusion This paper contributes to the litterature on nonlinear time series in two ways. Firstly, it
extends some results of Phillips and Park (1999,2001) on nonlinear integrated time series. Secondly, it
shows how these results can be used to derive the distribution of the ordinary least squares estimator when
the regressors are deterministic and the volatility is a function of a unit root process. Future work should
focus on the estimation of the volatility function

Appendix

In what follows we will often use of the following lemma

Lemmal. Letg,(t),t =1,...,n, andc(n) satisfy Assumption 1, then

sug.e[071]|g”c(([:§])| <M, Vn

for someM < R.

Proof of Lemma 1
The result follows from the boundnessdif-) and the assumption of uniform convergence. O

Define the following random variable

- gn(t)
V(S, T‘) = Z 1{s§zt<7'} s<r,
= <)

wherez; is defined in (2) and,, (t), c(n) satisfy Assumption 1. Then we have the following lemma.

Lemma 2. If Assumptions 1, 2(b) and 2(c) are satisfied then there exists a corstanth that for any
§ € (0,00) and n such that > 2, 6/n > 1

(@) E(V(0,0) — £V (8, (K +1)68))? < Cdy/n(1 + Ké%log(n)).

(b) E(V(KS, (K 4+ 1)8) — £V (6, (K + 1)0))? < Céy/n(1 + K&%log(n)).

(©) E(V(0,8) — V(K0 (K +1)68))? < C5y/n(1 + K§%log(n)).

wherek = 1,..., K with K € N*,

Proof of Lemma 2

(a) and (b) can be deduced from Akonom (1993) upon noticing that the sequgingé:(n) is bounded by
Lemma 1.

(c) This follows from (a), (b) and the triangular inequality.

To prove Theorem 1 we will also need the following result.
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Theorem 5. Suppose Assumption 2(b) and 2(c) hold witk 4. If o € Z, then

iy ooz = ([ atoas) ([ aonanism).

asn — oo for any sequence,, (i) satisfying Assumption 1 .

Proof of Theorem 5
Start by writing

gl g o) sy () o WD) g(0) (/AW (0))
WZ S L e e R

in the right hand side of the above equality the second and third ternag @re thus we just need to study
the asymptotic distribution of the first term. Define then

@) kn =n® and §, =n",

with a,b > 0 and

on(z) = 0(T)1 k6, <e<rndn}
oo () = o(@)lik,s,<a)
on(x) = 0(¥)lfac—r,s,}-

As in Phillips and Park (1999) we will assume that the following inequalities hold

(8) a—(1+0)b < 0
9 6b—1Lp+2 < 0
(10) 20—1 < O
(11) da—4b—-1 < O
(12) (a —b)p— > 0,

it can be checked that under our assumptions the above system defines a non empty get-wherhe
theorem will be proved if we show that

n1/2/01 gnc(([:;;Dan(nl/QWn(r))dr (/:O U(s)ds) (/Olg(s)dL(s,O)) +0,(1)

nl/2 19n([7"”})0/ nl/2 Mdr = o
/0 D (2, () (1)

c(n

nl/2 1gn([7"”])0// nl/2 Mdr = o
| 2 et W = o)

c(n)

Define

Kn—1

s, (z) = Z U(kén)l{ksngz<(k+1)5n},

k=—kKn

then the Lipschitz condition om implies that sufp,, () — o5, (z)| < ¢6l,. This with Lemma 1, (7) and (8)
leads to

/2 /O gnllrn) o 2y () — /2 /0 9ullrml) o (2 ()| = o,(1),

c(n) c(n
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Now
(13) 1/2/ (n**W,,(r))dr = A, + By,
where
Knp—1 1
An — nl/? Z g <Z k‘(s 1{0<n]/2W( )<5n}>
k=—FkKn

Kn—1

B, = n'/? Z

k=—kn

3=

YA ks, <n1/2W, (£)<(k41)5,) — 1{o<n1/2wn(§)<5n})> :

< gn(t)
<; o) © )

Using the Cauchy-Schwartz inequality we can write

BB < ”(KZ_ 02(k5n)> Ni_: E(iv(k, (k+1)6n);V(0,5n)>2
k=—rn k——r,,
n +oo Kn—1 1 . )
= < a2(s)ds + o - 4
0 </oo (s)ds + (1)) k2nE<nV(k, (k+1)dn) nv(o,én)>

- 0(1)7
where we used Lemma 2, (7), (10) and (11). This implies fi@B2) = o(1), thus to determine the
asymptotic behavior of (13) we only need to studly.

A,, can be rewritten as

4, = ";:2 ( / :o a(r)erro(l)) ( / 1 9"6%4) | {Ognl,zwn(”d"}dr) .

Defines,, () = coljo.ay) +Z?;11 Cilla;,ai41) FCh1{a,_,,1) Witha; € (0,1) and sup, 0.1] |G(r) = sm(r)] <
1/m wherem € N. The triangular inequality implies that Ii,mocsupre[m]|gn([rnﬁ)/c(n) —sm(r)] <
1/m. Consider now

1/2 o
gn([rn])
Ci(n) = 5n/0 c(n) 1{0§n1/2wn(r)<6"}d7"
nl/2
Cz’m(n) = 5 ; Sm(r)1{0§n1/2wﬂ,(r)<6n}d7"

1
Cy = /0 §(r)dL(r, 0).

SinceL(r, 0) is almost surely monotone aigdr) piecewise continuou§’s is well defined with probability
one. The triangular inequality implies that

(14) {w:|Ci(n) — Copm(n)| > g} U{w 1 |Com(n) — Cs| > g} 2 {w:|Ci(n) — C5] > n}.
We will now show that the probability of the left hand size of the above expression goes to zero.

Firstly, for an large enough we can write

1 n'/?
€10 = Cam(m)] < -2 [ Lgggmraw, oy,
m n 0
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The left-hand side of the above inequality can be rewritten as

(15 ~(L(1,0) + 0,(1),

whereo, (1) and thus goes to zero as— co by Lemma 2.5(b) of Phillips and Park (1999) and (9). Thus
another application of the triangular inequality yields

1 " 1 U : _ n
P ({w : EL(LO) > 4}) +P ({w : Eop(l) > 4}) >P ({w :|Ci(n) = Com(n)| > 2}) ,
taking first the limit forn — oo and then forn — oo we obtain that
iMoo liMyp o0 P <{w L |C1(n) — Com(n)] > g}) —0.
Secondly, we have the following bound
1 1
(16) [Com(n) —Cs| < I/ sm (r)dL(r,0) —/ g(r)dL(r,0)| +[op(1)]
0 0
1
< =
— mL(130)+0P(1)7

whereo, (1) goes to zero in probability i, — co. In (16) we use Theorem 4 of Akanom (1993) and (9) to
write

Com(n) = /01 Sm(r)dL(r,0) + 0,(1),
with o, (1) goes to zero as — oco. An argument similar to the one above leads to
iMoo iMoo P ({w  |Com(n) — O3 > g}) ~0.
Using our previous results we can write
0= iMpccliMy o (P ({03 1C1() = Com(m)| > 5}) + P ({5 [Com(n) = G5 > 1}))
2 limy, oo P ({w : [C1(n) = C3 > n}),

for every positive;). Thus we have just proved that

A, =, </:o o(r)dr> (/01 g(r)dL(r, O)) .

Finally to complete the proof note that as in Phillips and Park we can alway assuraé #iad o, are
monotone decreasing. It then follows that

nl/2 19n(L7”nJ)U/ nl/2 Ndr nl/2 101 nl/2 MNdr = o
2 [ 8Ll 2wy < et [ o2, )l = o,(1)

1 1

/2 [ ot 2w ) < Kont /2 [ ol 20, ) = 0,(0),
0 c(n) 0

where for the first inequality we used Lemma 1 and ¢hél) equality follows from Park and Phillips

(1999). The argument for negativé ando;, can be deduced in a similar way be noticing that, and

—o!! are positive. a
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Lemma 3. Considerg, (t),t = 1,...,n, ande(n) satisfy the Assumptions of Lemma 1 then

2
SR o | 25— () =0

Proof of Lemma 3
Simply notice that forn large enough we can write

suc 228 - )

U (gnc(([:)”b]) _ g(r)) (g”c(([;’;]) + é(r)> |

gn([rn]) gn([rn])

< SURE[O,lHW*!?(7')|5U9~e[0,1]| o(n) +g(r)|
< st gl

for some constand/. The last inequality is due to the assumption of uniform convergence. The lemma
follows by lettingn — oc. O

Proof of Theorem 1
Define the following martingale

Mar) = ”429” oW () (U - U(T))

n n

t
n 1/4gn( ) (\fW S (U U(Tnk 1)>7

e(n) n
wherer,, _1/n < r < 7, /n. Ther, ; are stopping the times defined in Park and Phillips (2001).

Consider now the two following martingales

- _ Mn(r) re [07 Ty;in,]
My (r) = { My (r) + By (r— ) p > T

and

< W(r) r €10,1]
wir) = { W(1)+ Ba(r—1) r>1.

whereB; (r) and By (r) are two independent Brownian motions.

The quadratic variation afZ,, is given by

0L,], = nl/ﬁ*/()mm(r’W) <!hc(([7‘iglb>202(\/ﬁwn(s))ds(1+op(1))+( Y 1y,

therefore from our previous theorem and Lemma 3 we have that

g, ([ :O (5t ( / T sy, 0>) (= Dy
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Here we also used a result from Park and Phillips (2001) thatgfZ theno? € 7.

The independence d#,, By, Lemma 1 and computations similar to those in Phillips and Park (2001)
yield

(17) [M,,, W], —, 0,

r € [0,00). Define nowp,, () = inf{s € [0,00) : [M,], > r}, note that sincéM,], — oo ass — oo,
pn () is well defined fon- € [0, o). Define now the Dambis, Dubins-Schwarz Brownian motion

By (r) = Myu(pn(r)),

this is a well defined Brownian motion ové, co). It then follows that(B,,(r), W(r)) converges to
(B(r),W(r)), where B(r) and W(r) are two independent Brownian motions by (17) (see Revuz and
Yor (1994), Theorem 1.6, page 173). Therefore

1/2

i, (T (( /- a2<s>ds) / 1§2<s>dL<s,o>) B(),

whereB is a brownian motion independent Bf. a

Proof of Proposition 1
Note thatt can be rewritten as

n3/40i(n)(ﬁi — Bo.i)
\/&ERD(L(Z?:1 Gn(t)Gn(t)/)_lDaR/'

UnderHj it holds that
n®e;(n)(B; — Bo.i) —d RA™B,.

From Chung and Park (2007) we have

n/?6% =4 L(1,0) (/OO 02(s)ds> .

— 00

Finally it is straightforward to see that

N <i Gn(t)Gn(t)’> D' — A

The distribution undef{; can be derived in the same way. Note that unfdethe numerator can be written
as

\/ﬁcl(n)(ﬁZ — i) + V/nei(n) (B — Bi,0)7

the above expression almost surely diverges to infinity if and onjyrit; (n) — oo. O

Before proving Theorem 3 we first need to extend Lemma 2 of Phillips and Park (1999).

Lemma 4. Letr be a locally Riemann integrable function. If Assumptions 2(a)(d) and (e) holds then

% égn@)r (ﬁ> i —a [ i)V ()dU(s).

0
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Proof of Lemma 4

Since the proof of this lemma is very similar to the one of Lemma 2 of Phillips and Park we will just
highlight the necessary modifications. Fix a compacti§et [—c, ¢] with ¢ defined in Phillips and Park
(1999). Then, we can find two continuous functiohsand r, such thatr. < 7 < 7, on K. Since

7. is continuous then by the Skorokhod (see Billingsley (1968)) embeding theorem we can assume that
7. (Vo (1)) —p z.(V(r)). It then follows from theorem 4.6 of Kurtz and Protter (1991) or Theorem 2.1 of
Hansen (1992) that

L gn([rn]) L
/0 WIE(Vn(r))dUn(r) —>d/0 g(r)T (V(r))dU(r).

As in Phillips and Park (1999) to prove the lemma it is enough to show that

(19) [ D e eav, ) - [ a0z W)av )] =, 0.

c

ase — 0. This however follows from Phillips and Park (2001) and the boundess of the@ytay'c(n) O

Proof of Theorem 4
Simply note that

L gn(t) 2¢)U :Lngn(t)Tzu 0
D Gy O = 7 3 T e+ ol)

n)

where the equality is due to the boundeness of the agrély /c(n) and Lemma A5(b) of Phillips and Park
(2001). 0

Proof of Proposition 2
¢From equation (12) of Chung and Park (2007) we have that

n

mzefm —q /O T2V (r))dr.

t=1

The rest of the proof is similar to the proof of Proposition 1 and thus will not be repeated here. O
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