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ABSTRACT. Consider a smoothω–periodic differential system inR × Rn, saySω, of ordinary
differential equations, and letE be an equilibrium forSω. Preliminarily it is shown that the total
stability of E is equivalent to the existence of a fundamental family of asymptotically stable
neighborhoods ofE. Thus a known theorem of Seibert [8] concerning autonomous systems is
extended to periodic systems. Let us assume now the existence of a smooth invariant manifold
Φ in R × Rn, containingR × {E}, ω–periodic int, and asymptotically stable “near”E. By
using the above extension of Seibert’s theorem and some previous results in our paper [6], [7],
we prove here that ifE is totally stable onΦ (that is with respect to the solutions lying onΦ),
thenE is unconditionally totally stable.

1. Introduction. We have been concerned in [6], [7] with the stability problem of time dependent
sets under a differential systeṁx = f(t, x), (t, x) ∈ R × Rn, andf smooth. More specifically,
let M be a positively invariant,s–compact subset ofR × Rn contained in a smooth invariantm–
dimensional manifoldΦ ⊆ R × Rn, m < n. We recall that a setA in R × Rn is said to be
s–compact if for anyt in R the sectionA(t) = {x ∈ Rn : (t, x) ∈ A} is nonempty, compact and
there exists a compact setK in Rn such thatA(t) ⊆ K for all t in R. Moreover the setA is said
to be periodic ort–independent if the mapt → A(t) is periodic or time independent respectively.
Under the assumption thatM is uniformly asymptotically stable onΦ (that is with respect to initial
data lying onΦ) we have analyzed in [6], [7] the unconditional stable behavior ofM . The results
involve the stability properties ofΦ “near” M .

Assume now that:(a) f is ω–periodic int, for someω > 0 andM is time independent, that is
M = R×N , N being a compact subset ofRn; (b) Φ is ω–periodic int, preciselyΦ = {(t, y, z) :
t ∈ R, y ∈ Rm, z = g(t, y)} where(y, z) = x andg is ω–periodic int and smooth;(c) Φ is
asymptotically stable nearM . In terms of the variables(y, u) with u = z − g(t, y) we may write
Φ = R × Ψ with Ψ an invariant subset ofRn. The stability properties of any setQ ⊆ Ψ (in
particular forQ = N or Q = Ψ) may be then viewed as stability properties ofR × Q and vice
versa. LetP be a given stability property ofN . We will say thatP is transferable fromΨ to the
whole space if the occurrence ofP on Ψ implies its unconditional occurrence. On the basis of the
results in [6],[7] recalled before we have that the asymptotic stability is one of these property. It
seems very natural to conjecture that under conditions(a), (b), (c) such transferability holds even if
the asymptotic stability is replaced by the weaker property of total stability, that is the stability with
respect to both the perturbations of the initial data and the perturbations of the differential system.
As a first step we will prove here the conjecture in the case thatN is an equilibriumE and then
M = R × E. In other words we prove that ifE is totally stable onΨ, thenE is unconditionally
totally stable. The notion of total stability will be intended in the sequel always in a uniform sense.
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Preliminarly on the basis of the results in [5] we prove that the total stability of an equilib-
rium of a periodic system is equivalent to the existence of a fundamental family of asymptotically
stable compact neighborhoods of the equilibrium. Thus a known statement due to Seibert [8] for
autonomous systems is integrally extended to periodic systems. Our result is at last obtained by
using this equivalence and the transferability fromΨ to the whole space of the asymptotic stability
of compact subsets ofΨ.

We conclude the paper by observing that the assumptions(a), (b), (c) are not sufficient to guar-
antee the transferability of the non–asymptotic stability of the origin fromΨ to the whole space,
even in the autonomous case (Section5). We notice at last that in a well known paper [3] , Kelley
proved this transferability under conditions(a), (b) but with(c) replaced by the stronger assumption
that the asymptotic stability ofΨ near the origin is recognizable on the linear part of f, being then
of the exponential type.

2. Preliminaries. Although our interest is mainly devoted to periodic differential systems, the
results in this section (needed for our successive treatment) concern the more general system:

(2.1) ẋ = f(t, x), (̇) =
d

dt
,

wheref ∈ C(R×Rn,Rn) is continuous, locally Lipschitzian inx uniformly in t, that is for every
compact setK ⊂ Rn there exists a constantL(K) > 0 such that‖f(t, x)−f(t, y)‖ ≤ L(K)‖x−y‖
for all t in R andx, y in K, Moreover we assume thatf(t, 0) ≡ 0, so that (2.1) admits the solution
x ≡ 0. By a suitable modification off outside of a neighborhood of the origin we will assume
without any restriction for our stability problems, that the solutions of (2.1) exists for any timet
in R . The solution of (2.1) passing through(t0, x0) ∈ R × Rn will be denoted byx(t, t0, x0) .
Givenµ > 0, any functionψ : [t0, t1] → Rn, t0 < t1, will be called aµ–solution of (2.1) if ψ
is absolutely continuous and sup‖ψ(t) − f(t, ψ(t))‖ < µ. Fora > 0 we denote byBn(a) and by
Bn[a] the sets{x ∈ Rn : ‖x‖ < a} and{x ∈ Rn : ‖x‖ ≤ a} respectively. We will assume as
known the stability concepts of sets with respect to perturbations of the initial conditions(t0, x0).
For the stability concepts under constantly acting perturbations, we fix our attention on the total
stability of the null solution. Precisely we assume the following definition:

Definition 2.1 The solutionx ≡ 0 of (2.1) is said to be totally stable (in a uniform sense) if given
anyε > 0, there existδ1 = δ1(ε) > 0, δ2 = δ2(ε) > 0 such that ift0 ∈ R andψ : [t0, t1] → Rn is
anyδ2–solution of (2.1) with ‖ψ(t0)‖ < δ1, then‖ψ(t)‖ < ε for all t ∈ [t0, t1].

This definition is stronger than the usual definition of uniform total stability of equilibrium due
to Dubosin [1] , which involves differentiable perturbations. The two definitions coincide if the
δ2–solutions are all solutions of differential equations.

The property of total stability of the origin as in Definition2.1 may be related to the existence
of a suitable family of compact sets all contained in a bounded neighborhood of the origin. To do
this we need the following definition.

Definition 2.2 LetU ⊂ Rn be a compact set.U is said to be:

(i) contracting if (1) x(t, t0, x0) ∈ int(U); for all (t0, x0) ∈ R × U and t > t0, (2) there
exists a compact setV andT > 0 such thatx(t, t0, x0) ∈ V for all (t0, x0) ∈ R × U and
t ≥ t0 + T (in the autonomous case(1) implies(2));

(ii) quasi-contracting, if there exists a compact setV and a divergent sequence{θk} ⊂ R, θk+1 >
θk, k = 0, 1, 2, ..., such that

(a) sup(θk+1 − θk) < +∞
(b) x(θk+1, θk, x0) ∈ V for all x0 ∈ U andk = 0, 1, 2, ....
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In [5] the following theorem was proven.

Theorem 2.1 Assume that the solutionx ≡ 0 of (2.1) is stable and that the origin admits a funda-
mental familyF of quasi-contracting compact neighborhoods. Then the solutionx ≡ 0 of (2.1) is
totally stable.

As a consequence of this theorem we may prove that the well known theorem of Malkin [4] and
Gorsin [2] that the uniform asymptotic stability of the origin implies its total stability in the sense
of Dubosin’s definition [1] is still valid also in the sense of Definition2.1. Precisely Theorem2.1
admits the following corollary.

Corollary 2.1 If the null solution of (2.1) is uniformly asymptotically stable, then it is (uniformly)
totally stable.

Proof. Since the null solution is uniformly asymptotically stable, there existsσ > 0 such that for
everyν ∈ (0, σ) we can findT > 0 such that

t0 ∈ R and‖x0‖ < σ imply ‖x(t, t0, x0)‖ <
ν

2
for all t ≥ t0 + T.

HenceBn[ν] is contracting and consequently quasi-contracting. The result follows by applying
Theorem2.1.

3. Total stability for periodic differential systems. Assume now that system (2.1) is periodic:

(3.1) ẋ = f(t, x), f(t, 0) ≡ 0,

wheref ∈ C(R×Rn,Rn) is continuous, locally Lipschitzian inx, and periodic int for a constant
ω > 0. Moreover as in Section2 we assume that the solutionx(t, t0, x0) through(t0, x0) exists for
all t in R.

We emphasize that because of the periodicity off , the stability and the asymptotic stability of
any compact set inRn are always uniform. Moreover we wish to emphasize that if the conditions for
the occurrence of the stability properties with respect to the perturbation of the initial data(t0, x0)
are satisfied for one fixedt0, they are satisfied for any othert0.

In [5] it was proven that for such a system Theorem2.1 is invertible. More precisely the follow-
ing theorem holds:

Theorem 3.1 The solutionx ≡ 0 of (3.1) is totally stable if and only if:

(i) the solutionx ≡ 0 is stable;

(ii) there exists a fundamental familyF of quasi-contracting compact neighborhoods of the origin.

Moreover ifx ≡ 0 is totally stable, then for anyU ∈ F one may choose

(3.2) V = {x(ω, 0, x0) : x0 ∈ U}andθ0 = 0, θk = kω for anyk ∈ N ≡ {1, 2, ...}.

We prove now another characterization of total stability for the origin which, as we said in Section
1, is an extension of a theorem due to Seibert [8] . Precisely the following theorem holds:

Theorem 3.2 The solutionx ≡ 0 of (3.1) is totally stable if and only if there exists a fundamental
familyG of compact neighborhoods of the origin which are asymptotically stable.
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Proof. (1) Necessity. By virtue of Theorem3.1, for any givenσ > 0 there exist two compact
neighborhoods of the originU = U(σ), V = V (σ), such thatU ∈ F , U ⊂ Bn(σ), andV ⊂ int(U)
is expressed by (3.2) with θk = kω for all k ∈ N. Thus

(3.3) x(kω, 0, x0) ∈ V for any x0 ∈ U and k ∈ N.

Indeed, along the solutionx(t, 0, x0) we havex1 = x(ω, 0, x0) ∈ V ⊂ U . Hencex(2ω, 0, x0) =
x(2ω, ω, x1) ∈ V and so on. Choose now anyε ∈ (0, ρ(∂U, V )). Since the function

(t, y) → ρ(x(t, 0, y), V ), t ∈ R, y ∈ Rn,

is uniformly continuous in[0, ω] × U , there existsδ ∈ (0, ε) such that

ρ(y, V ) < δ impliesρ(x(t, 0, y), V ) < ε for anyt ∈ [0, ω].

Then, taking into account thatx(t, t0, x0) = x(t + ω, t0 + ω, x0) for anyt0, x0, it follows

(3.4) ρ(y, V ) < δ impliesρ(x(t, kω, y), V ) < ε for anyt ∈ [kω, (k + 1)ω] andk ∈ N.

Given anyy in Bn(V, δ) let us consider now the motionx(t, 0, y) in the interval[0, +∞). Since
Bn(V, ε) ⊂ U andδ ∈ (0, ε), by virtue of (3.3), (3.4) it is immediate to recognize that

ρ(y, V ) < δ impliesρ(x(t, 0, y), V ) < ε for anyt ≥ 0.

ThusV is (uniformly) stable. On the other handV is weakly attracting by virtue of (3.3). ThenV
is asymptotically stable. Because of the arbitrariness ofσ > 0 , the familyG exists and one has
G = {V (σ)}.

(2) Sufficiency. For any givenσ > 0, let D = D(σ) be the compact set of the familyG
contained inBn(σ). SinceD is asymptotically stable, then there exists a compact neighborhood
U = U(σ) ⊂ Bn(σ) of D such that for any compact neighborhoodV ⊂ int(U) of D one may find
τ = τ(V ) > 0 for which x(t, t0, x0) ∈ V for all t0 ≥ 0, t ≥ t0 + τ andx0 ∈ U . For a fixedV ,
and for an integerj such thatjω ≥ τ we then havex(kjω, 0, x0) ∈ V for all x0 ∈ U andk ∈ N.
Thus the familyF exists withF = {U(σ)}. It remains to prove that the origin is stable for (3.1).
Consider anyε > 0 and a memberD of the familyG contained inBn(ε). Let ε1 ∈ (0, ε) such that
Bn(D, ε1) ⊂ Bn(ε). SinceD is stable, there existsδ ∈ (0, ε1) such that

x0 ∈ Bn(D, δ) impliesx(t, 0, x0) ∈ Bn(D, ε1) for anyt ≥ 0,

that is‖x(t, 0, x0)‖ < ε for anyt ≥ 0. SinceBn(D, δ) is a neighborhood of the origin, the stability
of x ≡ 0 follows. The proof is complete.

4. Conditional and unconditional total stability properties. Assume now that for an integer
m ∈ (0, n) system (3.1) admits a(m + 1)–invariant manifold

(4.1) Φ = {(t, y, z) : t ∈ R, y ∈ Rm, z = g(t, y)},

whereg ∈ C2(R × Rm,Rn−m) is ω–periodic int andg(t, 0) ≡ 0. Let u = z − g(t, y). In terms
of (y, u) system (3.1) may be written as

ẏ = Y (t, y, u)
(4.2)

u̇ = U(t, y, u),
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whereY,U are continuous, locally Lipschitzian in(y, u), ω–periodic in t, andY (t, 0, 0) ≡ 0,
U(t, y, 0) ≡ 0. Moreover in terms of(y, u) we may writeΦ = R × Ψ, where

(4.3) Ψ = {(y, u) : y ∈ Rm, u = 0},

is anm–invariant manifold inRn. They–part of the solutions of (4.2) lying onΨ are the solutions
of the system

(4.4) ẏ = Y (t, y, 0).

Let N be a positively invariant compact set inRn. Since the setsM = R×N , Φ = R×Ψ are both
time independent, as we pointed out in Section1, the stability properties ofM , Φ may be viewed as
stability properties ofN , Ψ respectively and vice versa. Then the Definition2.1 and the Theorem
4.1 in [7] may be in the present case reformulated as follows:

Definition 4.1 LetN ⊂ Ψ be a compact set. We say thatΨ has a stability property nearN if there
exists a neighborhoodN of N in Rn such that the stability property is satisfied with respect to the
solutions((y(t, t0, y0, u0), u(t, t0, y0, u0)) of (4.2) for which(y0, u0) ∈ N .

Theorem 4.1 LetN ⊂ Ψ be a compact set. Then we have:

(u) the stability and the asymptotic stability ofΨ nearN when occurring are always uniform;

(v) if N is asymptotically stable onΨ, thenN is unconditionally stable (asymptotically stable) if
and only ifΨ is stable (asymptotically stable) nearN .

We are now in position to prove the following theorem.

Theorem 4.2 Assume that:

(i) Ψ is asymptotically stable near{(0, 0)};

(ii) {(0, 0)} is totally stable onΨ (i.e.y ≡ 0 is totally stable for (4.4)).

Then{(0, 0)} is unconditionally totally stable.

Proof. By virtue of Theorem3.2 applied to system (4.4), condition(ii) implies the stability of
{(0, 0)} on Ψ and the existence of a fundamental familyG of compact neighborhoods ofy = 0 in
they–space which are asymptotically stable onΨ. We choose the familyG such that each member of
the family is contained in the open setN associated as in Definition4.1 with the asymptotic stability
of Ψ near{(0, 0)}. Clearly thenΨ is asymptotically stable near eachD ∈ G. By using Theorem
4.1, we recognize that each member ofG is (unconditionally) asymptotically stable for system (4.2)
. Given anyσ ∈ (0, ρ({(0, 0)}, N)) let D = D(σ) be the member ofG contained inBn(σ). Since
D is asymptotically stable for (4.2), then there exists a compact neighborhoodU ⊂ Bn(σ) of D
such that for any compact neighborhoodV ⊂ int(U) of D one may findτ = τ(V ) > 0 for which
x(t, t0, x0) ∈ V for anyt0 ≥ 0, t ≥ t0 + τ andx0 ∈ U . HenceV is uniformly attracting and then
stable and then asymptotically stable for (4.2). Thus choosing for the givenσ one of the setsV , say
V (σ), we obtain a family{V (σ)} which satisfies for system (4.2) the conditions in Theorem3.2.
The proof is complete.
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5. Final considerations. Let us assume thatΨ is uniformly asymptotically stable nearx = 0.
Then from our results in [6], [7] it follows that the origin is asymptotically stable for (4.2) if the
origin is asymptotically stable onΨ. In other words the asymptotic stability is transferable fromΨ
to the whole space. It is natural to ask if this happens even for the non-asymptotic stability. The
answer is negative. This has been proved in [6] by the following simple counterexample that we
report here. Let us consider the system

ẏ = yz2

(5.1)

ż = −z3,

with y, z ∈ R. Clearly any solution of (5.1) exists for allt ≥ t0. Hence, by using (5.1)2, we see that
Ψ = {(y, z) : y ∈ R, z = 0} is an asymptotically stable manifold inR2. Moreover with respect
to the solutions lying onΨ the origin is stable but non-asymptotically. It is immediate to see that the
origin is unstable. Indeed (5.1)1 by means of (5.1)2 may be written as

ẏ =
yz2

0

1 + 2z2
0(t − t0)

from which it follows
y(t, t0, y0, z0) = y0[1 + 2z2

0(t − t0)]
1
2 .

Thusy(t, y0, z0) → +∞ ast → +∞ for any choice ofy0 6= 0, z0 6= 0. Hence our assert follows.
Then it is clear that in order to have the transferability fromΨ to the whole space of the non–
asymptotic stability of the origin, we have to enforce the property thatΨ is asymptotically stable
nearM . On this line it may be considered a well known result due to Kelley. In the case of au-
tonomous systems, by requiring that the asymptotic stability of the manifold is recognizable by the
first order term of ther.h.s. of the equation (i.e. the manifold is exponentially asymptotically sta-
ble), he proved that the stability on the manifold ensures the unconditional stability [3] . Instead
if we want to retain our assumption on the asymptotic behavior ofΨ, the non–asymptotic stability
is not a transferable property. Hence it is natural to search for transferable properties in between
non–asymptotic and asymptotic stability. The result on the transferability of the total stability of the
origin that we obtained in Theorem4.2 is exactly on this line.
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