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ABSTRACT. Consider a smootl—periodic differential system iR x R", sayS.,, of ordinary
differential equations, and It be an equilibrium foiS,,. Preliminarily it is shown that the total
stability of E' is equivalent to the existence of a fundamental family of asymptotically stable
neighborhoods of. Thus a known theorem of Seibert [8] concerning autonomous systems is
extended to periodic systems. Let us assume now the existence of a smooth invariant manifold
@ in R x R", containingR x {E}, w—periodic int, and asymptotically stable “nea®. By

using the above extension of Seibert’'s theorem and some previous results in our paper [6], [7],
we prove here that iff is totally stable on® (that is with respect to the solutions lying @),

thenE is unconditionally totally stable.

1 Introduction. We have been concerned in [6], [7] with the stability problem of time dependent
sets under a differential systein= f(t, z), (t,z) € R x R", and f smooth. More specifically,
let M be a positively invariants—compact subset @& x R™ contained in a smooth invariant—
dimensional manifoldd € R x R"™, m < n. We recall that a sefl in R x R" is said to be
s—compact if for any in R the sectionA(t) = {z € R™ : (t,x) € A} is nonempty, compact and
there exists a compact s&tin R™ such thatA(t) C K for all ¢t in R. Moreover the se# is said
to be periodic ot—independent if the map— A(t) is periodic or time independent respectively.
Under the assumption thaf is uniformly asymptotically stable o# (that is with respect to initial
data lying on®) we have analyzed in [6], [7] the unconditional stable behaviat/fofThe results
involve the stability properties b “near” M.

Assume now that(a) f isw—periodic int, for somew > 0 and M is time independent, that is
M =R x N, N being a compact subset Bf"; (b) ® isw—periodic int, precisely® = {(¢,y, 2) :
teR,ye Rz = g(ty)} where(y,z) = x andg is w—periodic int and smoothjc) ® is
asymptotically stable nea¥!. In terms of the variablegy, ) with u = z — g(¢, y) we may write
® = R x ¥ with ¥ an invariant subset dR™. The stability properties of any s€ C ¥ (in
particular forQ = N or Q = W) may be then viewed as stability propertiesRfx @ and vice
versa. LetP be a given stability property aV. We will say thatP is transferable froml to the
whole space if the occurrence Bfon ¥ implies its unconditional occurrence. On the basis of the
results in [6],[7] recalled before we have that the asymptotic stability is one of these property. It
seems very natural to conjecture that under conditiengb), (c) such transferability holds even if
the asymptotic stability is replaced by the weaker property of total stability, that is the stability with
respect to both the perturbations of the initial data and the perturbations of the differential system.
As a first step we will prove here the conjecture in the case dh& an equilibriumE and then
M = R x E. In other words we prove that # is totally stable onl, then F is unconditionally
totally stable. The notion of total stability will be intended in the sequel always in a uniform sense.
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Preliminarly on the basis of the results in [5] we prove that the total stability of an equilib-
rium of a periodic system is equivalent to the existence of a fundamental family of asymptotically
stable compact neighborhoods of the equilibrium. Thus a known statement due to Seibert [8] for
autonomous systems is integrally extended to periodic systems. Our result is at last obtained by
using this equivalence and the transferability fréno the whole space of the asymptotic stability
of compact subsets df.

We conclude the paper by observing that the assumptionsb), (c) are not sufficient to guar-
antee the transferability of the non—asymptotic stability of the origin fiorio the whole space,
even in the autonomous case (SectipnWe notice at last that in a well known paper [3] , Kelley
proved this transferability under conditiofis), (b) but with (¢) replaced by the stronger assumption
that the asymptotic stability of near the origin is recognizable on the linear part of f, being then
of the exponential type.

2 Preliminaries. Although our interest is mainly devoted to periodic differential systems, the
results in this section (needed for our successive treatment) concern the more general system:

(2.1) i=f(t,x), 0=
wheref € C(R x R™,R") is continuous, locally Lipschitzian in uniformly in ¢, that is for every
compactsefl’ C R” there exists a constab{ K') > 0 such that| f (¢, z)— f(t,y)|| < L(K)||z—yl|

forall t in R andz,y in K, Moreover we assume thgtt, 0) = 0, so that £.1) admits the solution

x = 0. By a suitable modification of outside of a neighborhood of the origin we will assume
without any restriction for our stability problems, that the solutions2of)(exists for any timet

in R . The solution of .1) passing througlfty, o) € R x R™ will be denoted by (¢, to, zo) -
Givenp > 0, any functiomy : [tg,t;] — R™, to < t1, will be called au—solution of @.1) if

is absolutely continuous and gif(t) — f(¢,%(t))|| < p. Fora > 0 we denote byB"(a) and by

B"[a] the sets{z € R™ : ||z]| < a} and{z € R" : ||z| < a} respectively. We will assume as
known the stability concepts of sets with respect to perturbations of the initial conditions)).

For the stability concepts under constantly acting perturbations, we fix our attention on the total
stability of the null solution. Precisely we assume the following definition:

Definition 2.1 The solutionz = 0 of (2.1) is said to be totally stable (in a uniform sense) if given
anye > 0, there exist; = d1(e) > 0, d2 = d2(¢) > O such thatifty € R andv : [tg,t1] — R™ is
any dp—solution of £.1) with ||1)(t0)|| < 01, then||1p(t)| < e for all t € [to, t1].

This definition is stronger than the usual definition of uniform total stability of equilibrium due
to Dubosin [1] , which involves differentiable perturbations. The two definitions coincide if the
do—solutions are all solutions of differential equations.

The property of total stability of the origin as in Definiti@il may be related to the existence
of a suitable family of compact sets all contained in a bounded neighborhood of the origin. To do
this we need the following definition.

Definition 2.2 LetU C R™ be a compact sel/ is said to be:

(¢) contracting if (1) x(t,to,x0) € Iint(U); for all (tg,z9) € R x U andt > tq, (2) there
exists a compact séf and7 > 0 such thatz(¢,tg, xzg) € V for all (tg,z0) € R x U and
t > to + T (in the autonomous cage) implies(2));

(#) quasi-contracting, if there exists a compactBednd a divergent sequené,} C R, 01 >
0k, k=0,1,2,..., such that

(a) SUp(fx41 — Ox) < +o00
(b) $(0k+1, ek,Io) € Viorallzg € Uandk =0,1,2,....
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In [5] the following theorem was proven.

Theorem 2.1 Assume that the solution= 0 of (2.1) is stable and that the origin admits a funda-
mental familyF’” of quasi-contracting compact neighborhoods. Then the solutien0 of (2.1) is
totally stable.

As a consequence of this theorem we may prove that the well known theorem of Malkin [4] and
Gorsin [2] that the uniform asymptotic stability of the origin implies its total stability in the sense
of Dubosin’s definition [1] is still valid also in the sense of Definitidri. Precisely Theorerf.1
admits the following corollary.

Corollary 2.1 If the null solution of £.1) is uniformly asymptotically stable, then it is (uniformly)
totally stable.

Proof. Since the null solution is uniformly asymptotically stable, there exists 0 such that for
everyv € (0,0) we can findI" > 0 such that

to € Rand||zo| < aimply||z(t, to, zo)| < gfor allt > to +T.

Hence B"[v] is contracting and consequently quasi-contracting. The result follows by applying
Theoren®.1. [ ]

3 Total stability for periodic differential systems. Assume now that syster.() is periodic:

(3.1) z = f(t, x), f(t,0)=0,

wheref € C(R x R™ R™) is continuous, locally Lipschitzian in, and periodic irt for a constant
w > 0. Moreover as in Sectiol we assume that the solutiatit, ¢y, o) through(to, zo) exists for
alltin R.

We emphasize that because of the periodicity afhe stability and the asymptotic stability of
any compact setiR™ are always uniform. Moreover we wish to emphasize that if the conditions for
the occurrence of the stability properties with respect to the perturbation of the initialtglata)
are satisfied for one fixed, they are satisfied for any othgy.

In [5] it was proven that for such a system Theormis invertible. More precisely the follow-
ing theorem holds:

Theorem 3.1 The solutionz = 0 of (3.1) is totally stable if and only if:

(i) the solutionz = 0 is stable;
(it) there exists a fundamental fam#yof quasi-contracting compact neighborhoods of the origin.

Moreover ifx = 0 is totally stable, then for any/ € F' one may choose

(3.2) V ={x(w,0,20) : 290 € U}andby = 0, 6, = kw foranyk € N = {1,2,...}.

We prove now another characterization of total stability for the origin which, as we said in Section
1, is an extension of a theorem due to Seibert [8] . Precisely the following theorem holds:

Theorem 3.2 The solutionz = 0 of (3.1) is totally stable if and only if there exists a fundamental
family G of compact neighborhoods of the origin which are asymptotically stable.
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Proof. (1) Necessity By virtue of Theoren8.1, for any givenos > 0 there exist two compact
neighborhoods of the origiti = U (o), V = V(0), suchthall € F,U C B"(o),andV C int(U)
is expressed by3(2) with 8, = kw for all £k € N. Thus

(3.3) z(kw,0,z9) € V forany g € U and k € N.

Indeed, along the solution(t, 0, z) we haver; = z(w,0,z¢) € V C U. Hencez(2w, 0, z) =
z(2w,w, z1) € V and so on. Choose now any (0, p(0U, V')). Since the function

(t,y) — p(z(t,0,y),V),t € R,y € R”,
is uniformly continuous if0,w] x U, there exist$ € (0, ) such that
p(y, V) < ¢ impliesp(z(t,0,y), V) < e foranyt € [0, w].
Then, taking into account tha{t, ty, o) = z(t + w, tg + w, xg) for anyty, xo, it follows
(3.4 p(y, V) < d impliesp(z(t, kw,y),V) < e foranyt € [kw, (k + 1)w] andk € N.

Given anyy in B™(V,0) let us consider now the motian(t, 0, y) in the interval|0, +c0). Since
B™(V,e) c U andf € (0,¢), by virtue of 8.3), (3.4) it is immediate to recognize that

ply, V) < o6 impliesp(z(t,0,y),V) < e foranyt > 0.

ThusV is (uniformly) stable. On the other handis weakly attracting by virtue of3(3). ThenV
is asymptotically stable. Because of the arbitrariness of 0 , the family G exists and one has

G={V(o)}.

(2) Sufficiency ~ For any giveno > 0, let D = D(o) be the compact set of the family
contained inB™ (o). Since D is asymptotically stable, then there exists a compact neighborhood
U =U(o) C B™(o) of D such that for any compact neighborhdddc int(U) of D one may find

7 =7(V) > 0 for whichz(t,tg,z¢0) € V forallty > 0,t > to + 7 andz € U. For a fixedV,

and for an integej such thatjw > = we then have:(kjw,0,2¢) € V forall zg € U andk € N.
Thus the familyF' exists withF' = {U(c)}. It remains to prove that the origin is stable f8r1().
Consider any > 0 and a membeD of the family G contained inB™(¢). Lete; € (0, ) such that
B"™(D,e1) C B"(¢g). SinceD is stable, there exists€ (0,¢;) such that

xg € B"(D, ) impliesz(t,0,z0) € B"(D, ;) foranyt > 0,

that is||z(¢,0, z¢)|| < e foranyt > 0. SinceB™(D, §) is a neighborhood of the origin, the stability
of x = 0 follows. The proof is complete. ]

4. Conditional and unconditional total stability properties. Assume now that for an integer
m € (0,n) system §.1) admits a(m + 1)—invariant manifold

4.1) O ={(t,y,2) :teR,ye R™ 2=g(t,y)},

whereg € C?(R x R™, R"~™) is w—periodic int andg(t,0) = 0. Letu = z — g(t,). In terms
of (y,u) system 8.1) may be written as

y=Y(ty,u)
(4.2)
u=U(t,y,u),
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whereY, U are continuous, locally Lipschitzian iy, «), w—periodic int, andY (¢,0,0) = 0,
U(t,y,0) = 0. Moreover in terms ofy, «) we may writeb = R x ¥, where

(4.3) U ={(y,u) : y € R™ u=0},

is anm—invariant manifold inR™. They—part of the solutions of4(2) lying on ¥ are the solutions
of the system

(4.4) y=Y(t,y,0).

Let NV be a positively invariant compact setlti’. Since the setd8/ = R x N, ® = R x ¥ are both
time independent, as we pointed out in Sectipthe stability properties af/, ® may be viewed as
stability properties ofV, ¥ respectively and vice versa. Then the Definitibh and the Theorem
4.1in [7] may be in the present case reformulated as follows:

Definition 4.1 Let N C ¥ be a compact set. We say thiathas a stability property nealv if there
exists a neighborhood/ of V in R™ such that the stability property is satisfied with respect to the
solutions((y(t, to, Yo, uo), u(t, to, Yo, uo)) of (4.2) for which (yo, ug) € N.

Theorem 4.1 Let N C ¥ be a compact set. Then we have:

(u) the stability and the asymptotic stability fnear N when occurring are always uniform;

(v) if N is asymptotically stable o, then N is unconditionally stable (asymptotically stable) if
and only if¥ is stable (asymptotically stable) neaf.

We are now in position to prove the following theorem.
Theorem 4.2 Assume that:

(i) U is asymptotically stable nedr(0,0)};

(i) {(0,0)} is totally stable on¥ (i.e.y = 0 is totally stable for ¢.4)).

Then{(0,0)} is unconditionally totally stable.

Proof. By virtue of Theoren3.2 applied to system4(4), condition (i¢) implies the stability of
{(0,0)} on ¥ and the existence of a fundamental fantilyof compact neighborhoods gf= 0 in
they—space which are asymptotically stablelonVe choose the familg: such that each member of
the family is contained in the open s€tassociated as in Definitioh1 with the asymptotic stability
of ¥ near{(0,0)}. Clearly thenV is asymptotically stable near eaéh € G. By using Theorem
4.1, we recognize that each membel(dfs (unconditionally) asymptotically stable for systefr2)

. Given anyo € (0, p({(0,0)}, N)) let D = D(c) be the member off contained inB" (o). Since
D is asymptotically stable ford(2), then there exists a compact neighborhédd- B"(c) of D
such that for any compact neighborho@dc int(U) of D one may findr = 7(V) > 0 for which
x(t, to, xg) € V foranyty > 0,t > tg + 7 andzy € U. HenceV is uniformly attracting and then
stable and then asymptotically stable fér2). Thus choosing for the given one of the set¥’, say
V (o), we obtain a family{V (¢)} which satisfies for systemi ) the conditions in Theorers.2.
The proof is complete. ]
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5 Final considerations. Let us assume thak is uniformly asymptotically stable near = 0.

Then from our results in [6], [7] it follows that the origin is asymptotically stable foR) if the

origin is asymptotically stable ow. In other words the asymptotic stability is transferable fridm

to the whole space. It is natural to ask if this happens even for the non-asymptotic stability. The
answer is negative. This has been proved in [6] by the following simple counterexample that we
report here. Let us consider the system

(5.1)

with ¢, z € R.. Clearly any solution off.1) exists for allt > t,. Hence, by usingi(1),, we see that

U = {(y,2) : y € R, 2z =0} is an asymptotically stable manifold R?. Moreover with respect

to the solutions lying o the origin is stable but non-asymptotically. It is immediate to see that the
origin is unstable. Indeed (1); by means of§.1), may be written as

J= Y5
1+ 222(t — to)

from which it follows
1
y(t,t0, 90, 20) = Yol + 225(t — to)]2.

Thusy(t, yo, z0) — +00 ast — +oo for any choice ofyy # 0, 2o # 0. Hence our assert follows.

Then it is clear that in order to have the transferability frdmto the whole space of the non—
asymptotic stability of the origin, we have to enforce the property thi asymptotically stable

near M. On this line it may be considered a well known result due to Kelley. In the case of au-
tonomous systems, by requiring that the asymptotic stability of the manifold is recognizable by the
first order term of the-.h.s. of the equation (i.e. the manifold is exponentially asymptotically sta-
ble), he proved that the stability on the manifold ensures the unconditional stability [3] . Instead
if we want to retain our assumption on the asymptotic behavidr,dhe non—asymptotic stability

is not a transferable property. Hence it is natural to search for transferable properties in between
non—asymptotic and asymptotic stability. The result on the transferability of the total stability of the
origin that we obtained in Theoref? is exactly on this line.
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