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Abstract. This paper deals with a minimum spanning tree programming problem
involving fuzzy random weights. New decision making models are proposed to maxi-
mize the probability that the degree of possibility or necessity that the fuzzy goal for
the fuzzy random objective function is satisfied is greater than or equal to a satisfic-
ing level. It is shown that the original problems involving fuzzy random variables are
transformed into deterministic equivalent ones which are nonlinear maximum span-
ning tree problems through the proposed models. An efficient tabu search algorithm
is developed to solve the resulting nonlinear maximum spanning tree problems.

1 Introduction The Minimum Spanning Tree (MST) problem is to find a least cost
spanning tree in an edge weighted graph. The efficient polynomial-time algorithms to solve
MST problems have been developed [24, 27, 31]. In the real world, MST problems are usually
seen in network optimization. For instance, when designing a layout for telecommunication
systems, if a decision maker wishes to minimize the cost for connection between cities, such
a decision making situation is formulated as an MST problem.

Most research papers with respect to MST problems dealt with the case where each
weight is constant. However, we are often faced with the situation that one makes a decision
on the basis of uncertain data. For handling such MST problems under uncertainty, Ishii et
al. [13, 14, 15] considered stochastic MST problems in which the weights attached to edges
are expressed by random variables, and constructed polynomial-time algorithms for solving
deterministic equivalent problems obtained through the transformation of the original MST
problem involving randomness. However, in order to investigate more realistic cases, it is
important to deal with not only randomness but also fuzziness inherently involved in MST
problems in the real world. For instance, the cost for connection or construction often
depends on the economical environment which varies randomly, and experts often estimate
the cost not as a constant but as an ambiguous value. In order to take account of such
situations, we consider a minimum spanning tree problem where each edge weight is a fuzzy
random variable, called a Fuzzy Random Minimum Spanning Tree (FRMST) problem.

A fuzzy random variable was first defined by Kwakernaak [25], and its mathematical
basis was developed by Puri and Ralescu [29]. Recently, some researchers considered fuzzy
random linear programming problems [16, 22, 19, 26, 30, 32] and combinatorial optimization
problems such as 0-1 programming problems [21] and bottleneck spanning tree problems
[17, 20].

Although we could take various approaches to a FRMST problem according to the
different interpretations of the problem, in this paper, we take a possibilistic and stochastic
programming approach. As for fuzzy random MST problems, Katagiri et al. [18] considered
the possibility-based expectation model which is to maximize the expectation of degree of
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possibility or necessity with respect to the attainment level for the fuzzy goal given by
the decision maker. However, considering the diversification in individual value of decision
makers, the possibility-based expectation model is not always the best one, and it is useful
to propose other optimization models.

In this paper, we propose possibility-based probability maximization models for FRMST
problems. First we consider a degree of possibility or necessity that the total edge cost is
substantially smaller than or equal to some value. Realizing that the degree varies ran-
domly, we formulate the problem to maximize the probability that the degree is greater
than or equal to some satisficing level. As will be shown later, the formulated problem
is transformed into a deterministic equivalent nonlinear maximum spanning tree problem,
which is generally an NP-hard problem. For solving the nonlinear maximum spanning tree
problem, we construct an effective tabu search-based approximate algorithm. In order to
show the efficiency of the proposed algorithm, we compare the performance of the proposed
algorithm with those of the existing algorithms [35].

2 MST problem with fuzzy random edge costs Consider a connected undirected
graph G = (V, E), where V = {v1, v2, . . . , vn} is a finite set of vertices representing termi-
nals or telecommunication stations etc., and E = {e1, e2, . . . , em} is a finite set of edges
representing connections between these terminals or stations. Let x = (x1, x2, . . . , xm)t be
a vector defined by

xi =
{

1 if edge ei is selected
0 otherwise.

In this paper, we consider a minimum spanning tree problem involving fuzzy random weights
as follows:

minimize ˜̄Cx
subsect to x ∈ X,

}
(1)

where ˜̄C = ( ˜̄C1, . . . , ˜̄Cm) is a coefficient vector and X stands for the set of a 0-1 m-
dimensional vectors representing all possible spanning trees of the given graph G. Each ˜̄Cj

is a fuzzy random variable taking a fuzzy number ˜̄Cj(ω) as a realization for each ω, where ω
is an elementary event of the universal event Ω. The following is the membership function
characterizing ˜̄Cj(ω):

µ ˜̄Cj(ω)
(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

L

(
d̄j(ω) − t

αj

)
(t ≤ d̄j(ω))

R

(
t − d̄j(ω)

βj

)
(t > d̄j(ω)),

where L(t) is a strictly non-increasing function on [0, +∞), satisfying

(i) L(0) = 1

(ii) There exists a tL0 such as L(t) = 0 for any t ≥ tL0 .

Function R also satisfies the same condition as L. Parameters d̄j , j = 1, · · · , m, denote
normal random variables with mean Md

j , and parameters αj and βj , j = 1, · · · , m, are real
numbers denoting the left and right spread, respectively. The variance-covariance matrix
of the vector d̄ = (d̄1, d̄2, · · · , d̄m) is denoted by V .
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By applying the calculation formula [7] with respect to L - R fuzzy numbers based on
the extension principle [34] to the fuzzy number ˜̄Y (ω) for each ω, it is easily shown that C̄x

is a fuzzy random variable ˜̄Y with the following membership function for each elementary
event ω:

µ ˜̄Y (ω)
(y) =

⎧⎪⎪⎨
⎪⎪⎩

L

(
d̄(ω)x − y

αx

)
(y ≤ d̄(ω)x)

R

(
y − d̄(ω)x

βx

)
(y > d̄(ω)x).

3 Possibility-based probability maximization model In problem (1), the total edge
weight represented by a fuzzy random variable cannot be minimized in the deterministic
sense. Therefore, we construct an optimization criterion to take account of the uncer-
tainty included in the problem. For constructing an optimization criterion, we focus on
the concepts of vagueness and ambiguity. Vagueness is a concept representing the fuzziness
concerning the degree to which the element of a set belongs to the set. Ambiguity is related
to fuzziness of the value. From this point of view, fuzzy random variables are considered as
the concepts dealing with ambiguity of the realization of a random variable since the real-
ization of a random variable is fuzzy. On the other hand, fuzzy event, which was introduced
by Zadeh [33], is the concept related to vagueness of the realization of a random variable
since the realization is not fuzzy but crisp, and the degree to which an element belongs to
a fuzzy set is imprecise. Dubois et al. [7] considered possibilistic programming which is
based on the possibility theory introduced by Zadeh [34].

Katagiri et al. [16] considered a linear programming problem where the right-hand
side of a constraint is a fuzzy random variable. They first introduced a possibilistic and
stochastic programming approach to fuzzy random programming problems by noting that
the degree of possibility that the constraint is satisfied varies randomly.

In this paper, we shall develop the idea to the case where the coefficients of an objective
function are fuzzy random variables. Considering the vagueness of the decision maker’s
judgment, the fuzzy goal such that the objective function value is substantially smaller than
g1 is introduced. The fuzzy goal is characterized by the following membership function:

µG̃(y) =

⎧⎨
⎩

1, y ≤ g1

g(y), g1 ≤ y ≤ g0

0, g0 ≤ y,

where g is a strictly decreasing function. Then, a degree of possibility that the objective
function value attains the fuzzy goal G̃ is given as follows:

Π ˜̄Y (ω)
(G̃) = sup

y
min

{
µ ˜̄Y (ω)

(y), µG̃(y)
}

.(2)

It should be noted here that the value of ΠỸ (ω)(G̃) varies randomly due to the ran-
domness of µ ˜̄Y (ω)

(y). Assuming that the decision maker hopes to maximize the value of

ΠỸ (ω)(G̃), we take stochastic programming approaches in order to handle the randomness
of the degree of possibility.

3.1 Probability maximization model using a possibility measure In stochastic
programming, Beale [1] and Dantzig [6] introduced two-stage problems; Charnes et al. [4]
introduced several stochastic programming model such as the expected optimization model,
the variance minimization model and the probability maximization model. Kataoka [23]
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and Geoffrion [8] separately considered another stochastic programming model which is to
optimize a satisficing level under the condition that the objective function value is better
than the satisficing level.

In this paper, we consider the following problem which is based on the probability
maximization model:

maximize Pr
(
ω
∣∣∣Π ˜̄Y (ω)

(G̃) ≥ h
)

subject to x ∈ X,

}
(3)

where h (0 < h < 1) is a satisficing level for the degree of possibility with respect to a fuzzy
goal. This problem is to maximize the probability that the degree of possibility is greater
than or equal to a satisficing level h.

For any elementary event ω, Π ˜̄Y (ω)
(G̃) ≥ h is transformed as

sup
y

min
{
µ ˜̄Y (ω)

(y), µG̃(y)
}
≥ h.(4)

By using the properties of functions µ ˜̄Y (ω)
and µG̃, it is easy to show that if an element y

satisfies the following in equation:

min
{
µ ˜̄Y (ω)

(y), µG̃(y)
}
≥ h,

then there exists an element y∗ ∈ [0, d̄(w)x] such that

min
{

µ ˜̄Y (ω)
(y∗), µG̃(y∗)

}
≥ min

{
µ ˜̄Y (ω)

(y), µG̃(y)
}
≥ h.

Hence, relation (4) becomes equivalent to

sup
y≤¯d(w)x

min
{

µ ˜̄Y (ω)
(y), µG̃(y)

}
≥ h

⇐⇒ ∃ y : µ ˜̄Y (ω)
(y) ≥ h, µG̃(y) ≥ h, y ≤ d̄(w)x

⇐⇒ ∃ y :

⎧⎨
⎩ L

(
d̄(ω)x − y

αx

)
≥ h, y ≤ d̄(w)x

µG̃(y) ≥ h.

Since L is a decreasing function on [0, 1], the above relations are equivalent to

∃ y ≤ d̄(w)x : {d̄(ω) − L∗(h)α}x ≤ y ≤ µ∗
G̃

(h)

⇐⇒ {d̄(ω) − L∗(h)α}x ≤ µ∗
G̃
(h),

(5)

where L∗(h) and µ∗
G̃

(h) are pseudo inverse functions defined as

L∗(h) = sup{r|L(r) > h, r ≥ 0},
µ∗

G̃
(h) = sup{r|µG̃(r) ≥ h}.

Subtracting the expectation value E
(
{d̄ − L∗(h)α}x

)
from both sides of the inequality (5)

and dividing all by this deviation
√

V ar
(
{d̄ − L∗(h)α}x

)
, where V ar denotes the variance

operator, we obtain

Pr
(
Π ˜̄Y

(G̃) ≥ h
)
⇐⇒ Pr

⎛
⎝

{
d̄ − Md

}
x

√
xtV x

≤
−

{
Md − L∗(h)α

}
x + µ∗

G̃
(h)

√
xtV x

⎞
⎠ .(6)
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By noting that the left-hand side of the above inequality becomes a standard normal random
variable, problem (3) is transformed into the following deterministic equivalent problem:

maximize zΠ(x) =
−

{
Md − L∗(h)α

}
x + µ∗

G̃
(h)

√
xtV x

subject to x ∈ X.

⎫⎪⎬
⎪⎭(7)

It should be noted here that this problem is a nonlinear maximum spanning tree problem.

3.2 Probability maximization model using a necessity measure In the preceding
section, we have considered a model using a possibility measure, which is useful in making
a decision from an optimistic viewpoint. This section is devoted to investigating a model
using a necessity measure, which is based on a risk aversion model:

maximize Pr
(
ω
∣∣∣N ˜̄Y (ω)

(G̃) ≥ h
)

subject to x ∈ X,

}
(8)

where N ˜̄Y (ω)
represents the degree of necessity that the objective function value satisfies

the fuzzy goal and is expressed as

NỸ (ω)(G̃) = inf
y

max
{
1 − µ ˜̄Y (ω)

(y), µG̃(y)
}

.(9)

Then, N ˜̄Y (ω)
(G̃) ≥ h implies

inf
y

max{1 − µ ˜̄Y (ω)
(y), µG̃(y)} ≥ h.(10)

By using the properties of functions µ ˜̄Y (ω)
and µG̃, it is easy to show that if an element y

satisfies
max{1 − µ ˜̄Y (ω)

(y), µG̃(y)} ≥ h,

then there exists an element y∗ ≥ d̄(ω)x such that

max
{

1 − µ ˜̄Y (ω)
(y∗), µG̃(y∗)

}
≤ max

{
1 − µ ˜̄Y (ω)

(y), µG̃(y)
}
≤ h.

Hence, relation (10) becomes equivalent to

inf
y≥¯d(w)x max

{
1 − µ ˜̄Y (ω)

(y), µG̃(y)
}
≥ h

⇐⇒ ∀y ≥ d̄(w)x : 1 − µ ˜̄Y (ω)
(y) < h ⇒ µG̃(y) ≥ h

⇐⇒ ∀y ≥ d̄(w)x : 1 − R

(
y − d̄(ω)x

βx

)
< h ⇒ µG̃(y) ≥ h.

Since R is a strictly decreasing function on [0, 1] and µG̃(y) is a decreasing function on
[0, +∞), the above relations are equivalent to

⇐⇒ ∀y ≥ d̄(w)x : y <
{
d̄(ω) + R∗(1 − h)β

}
x ⇒ y ≤ µ∗

G̃
(h)

⇐⇒
{
d̄(ω) + R∗(1 − h)β

}
x ≤ µ∗

G̃
(h),

where

R∗(h) = sup{r|R(r) > h, r ≥ 0}.
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Accordingly, it holds that

{
d̄ − Md

}
x

√
xtV x

≤
−

{
Md + R∗(1 − h)β

}
x + µ∗

G̃
(h)

√
xtV x

.

Then, since the left-hand side of the above inequality is the standard normal random vari-
able, problem (8) is equivalently transformed into

maximize zN(x)
�
=

−
{
Md + R∗(1 − h)β

}
x + µ∗

G̃
(h)

√
xtV x

subject to x ∈ X.

⎫⎪⎬
⎪⎭(11)

Here, it should be noted that problem (11) is a nonlinear maximum spanning tree
problem, and that this problem cannot be strictly solved by some polynomial-time algorithm
such as the Krukal method or the Prim method like linear cases.

4 GA-based solution algorithms As described in the previous section, the problem to
be solved is a nonlinear maximum spanning tree problem. Zhou and Gen [35] considered a
quadratic minimum spanning tree problem, in which the objective function is a quadratic
form. Although they originally proposed a genetic algorithm for solving the quadratic
minimum spanning tree problem, the proposed algorithm can be directly applicable for
solving nonlinear maximum spanning tree problems. In this section, we consider genetic
algorithm (GA) approaches inspired from the work of Zhou and Gen [35]. Their approach
uses Prüfer number for solution encoding, uniform crossover and mutation, and mixed
strategy with (µ + λ) selection and roulette wheel selection. First, we briefly describe this
genetic algorithm.

The choice of an encoding solution is one of the most important steps in the application
of genetic algorithm to a problem. One of the classical theorems in enumeration is Cayley’s
theorem [3], which says that in a complete undirected graph with n vertices there are nn−2

distinct labeled trees. Prüfer provided a constructive proof of Cayley’s theorem by establish-
ing a one to one correspondence between such spanning trees and the set of all permutations
of n− 2 digits [28]. Prüfer numbers are n− 2 digit sequences, P = [p1, p2, · · · , pn−2], where
the digits pi, 1 ≤ i ≤ n − 2, are numbers between 1 and n.

Prüfer numbers are one of the most efficient encoding methods for spanning trees in
genetic algorithm search, in the sense that they are unbiased, cover the hall space of span-
ning trees and represent only spanning trees. However, this representation method has a
drawback that an offspring with a tree may not be in the neighborhood of the parent tree
for a small change in a parent P which is represented by a Prüfer number,

In the uniform crossover operation, individual bits in the strings of two parents are
swapped with a fixed probability pc. For each crossover operation, one generates a random
binary string with the same size as of chromosome, with respect to the probability pc of a
string being 1. Then, genes in two parents whose positions in the string mask take the digit
1 are swapped. In the mutation operation, each gene can be selected with a probability pm,
to be replaced with a random digit in the set of all possible digits. The mixed strategy with
(µ + λ) selection and roulette wheel selection selects µ best chromosomes from µ parents
and λ offspring. If there are no µ different chromosomes available, then the vacant pool of
population are filled up with roulette wheel selection. In order to vary the selection method
in this GA, we consider two other selection methods; sharing and scaling selection methods.
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5 Tabu search for solving FRMST problems Tabu search [9, 10] is a metaheuristic
method that has proven to be very effective for many combinatorial optimization problems
[5]. It has been illustrated that the computational results on benchmark problem were
quite positive and that TS-based methods improved the best known solution for the large
benchmark instances in the wide varieties of combinatorial optimization problems. As one
of the most effective TS algorithm, Hanafi [12] considered a TS algorithm based on strategic
oscillation. Although they showed that the proposed algorithm is well performed for the
0-1 multidimensional knapsack problems, it is not directly applicable for solving nonlinear
minimum (maximum) spanning tree problems.

In this section, in order to propose a more effective algorithm than existing GA-based
algorithms [35], we shall construct a solution algorithm based on TS incorporating strategic
oscillation. Starting from an initial spanning tree, the improvement strategy, which consists
of exchanging a pair of edges, generates the neighborhood of the current solution. In order
to prevent cycling between the same solutions, certain exchanges which are called “moves”
can be forbidden, earning them the status of “tabu move”. The set of tabu moves defines
the tabu list. Tabu moves are not permanent; a short-term memory function enables them
to leave the tabu list. The use of aspiration criterion permits certain moves on the tabu
list to overcome any tabu status. Strategic oscillation was originally introduced to provide
an effective interplay between intensification and diversification over the intermediate to
long term. In the proposed algorithm, we used strategic oscillation to intensively explore
the region around the current neighborhood. In addition to a short-term memory, we use a
residence frequency memory as a long-term memory. A diversification procedure, using the
residence frequency memory function, will lead to the exploration of region of the solution
space not previously visited. On the other hand, an intensification procedure undertakes
to create solutions aggressively encouraging the incorporating of solutions from an elite
solution set. The process goes on until the termination criterion is satisfied.

The essential features that have been considered in building a TS algorithm for solv-
ing a fuzzy random minimum spanning tree problem are: generating an initial solution,
the neighborhood structure, the improvement strategies, short-term and long-term memo-
ries, oscillation strategy, intensification by an elite solution set, diversification procedure,
termination criterion. The details of these concepts or procedures are as follows:

a. Initial solution Let SCC(i) denote a Set of Connected Component that consists of
i edges. In this paper, we indentify SSC(i) with an m-dimensional decision vector x
whose i elements are equal to 1s. To construct a spanning tree T , first, an edge e ∈ E
is chosen uniformly at random. With this edge, a subtree SCC(1) which consists of
only one edge is created. Then, in general, a SCC(k + 1) is constructed by adding an
edge e ∈ argmax{z(SCC(k)) + e′) − z(SCC(k))|e′ ∈ ENC(SCC(k))} to the current
SCC(k) under construction, where ENC(SCC(k)) is defined as follows:

ENC(SCC(k))
�
= {e ∈ E|SCC(k) + e has no cycle}.

b. Neighborhood structure Let T be a set of edges which forms a spanning tree, and
let T be a class of all possible spanning trees in a given graph. The neighborhood
N(T ) consists of all possible spanning trees which can be generated by removing an
edge e ∈ T and by adding an edge from the set ENH(T − e) \ {e}, where ENH(T − e)
is defined as follows:

ENH(T − e)
�
= {e′ ∈ E|T − e + e′ ∈ T }.
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c. Improvement strategy In order to improve the current solution xc corresponding
to the current spanning tree T c, there are two major improvement strategies. One
is a first improvement strategy, which scans the neighborhood N(T c) and chooses
the initially-discovered spanning tree T f corresponding to the solution xf such that
z(xf ) > z(xc). The other is a best improvement strategy, which exhaustively explores
the neighborhood and returns one of the solutions with the lowest objective function
value.

At the beginning, we use the first improvement strategy. If a better solution cannot
be found, we switch to the best improvement strategy.

d. Short-term memory TS uses a short-term memory to escape from local minima and
to avoid cycling. The short-term memory is implemented as a set of tabu lists that
store solution attributes. Attributes usually refer to components of solutions, moves,
or differences between two solutions. The use of tabu lists prevents the algorithm
from returning to recently visited solutions.

Our TS approach uses only one tabu list denoted by TabuList. The attribute the
tabu list stores is the index of the edges that were recently added or removed. Every
move consists of two steps: the first step is to remove one edge e ∈ T c from the current
spanning tree T c, and the second step is to add a different edge to T c − e. The status
of the forbidden moves are explained as: If an edge ej is in TabuList and xj = 0, then
adding the edge ej is forbidden. In addition, if an edge ei is in TabuList and xi = 1,
then removing the edge ei is forbidden.

e. Aspiration criterion An aspiration criterion is activated to overcome the tabu status
of a move whenever the solution produced is better than the best historical solution
achieved. This criterion will be effective only after a local optimum is reached.

f. Strategic oscillation procedure The strategic oscillation approaches to a boundary
by adding or removing edges, where a set of spanning trees is regarded as the boundary
in our problems. Instead of stopping in the boundary, it crosses over the boundary
by the modified evaluation criteria for selecting moves. In this paper, we use one
type of strategic oscillation approach for the problem, which recedes the boundary by
continuing to add edges to a spanning tree and then approaches to the boundary by
continuing to remove edges until a spanning tree is reformed. Adding edges proceeds
for a specified depth beyond the boundary, and turns around. At this point, the
boundary is again approached and is reached by removing edges. In order to explore
the search space efficiently, we use two kinds of depth: small depth and large depth.
First, the Oscillation Strategy with Small Depth (OSSD) is performed, and if OSSD
cannot find a better solution in NISmall iterations, then the Oscillation Strategy
with Large Depth (OSLD) begins to explore the search space. If the OSLD finds a
better solution, then the strategy is switched to the OSSD again. If the OSLD cannot
find a better solution in NILarge iterations, the strategic oscillation procedure is
terminated.

The rules of adding and removing edges are described as follows.

Edge addition rule The strategic oscillation procedure begins at adding an edge e ∈
argmax{z(T c + e′) − z(T c)|e′ ∈ E\Tabulist} to the current minimum spanning
tree T . Then, the constructed connected component can be expressed by SCC(n)
because any spanning tree T is represented with SSC(n − 1). In the same way,
several edges are added by using the rule that SCC(k + 1) is constructed by
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adding an edge e ∈ argmax{z(SCC(k) + e′) − z(SCC(k))|e′ ∈ E\Tabulist}
to SCC(k). It should be noted here that the resulting connected component
includes some cycles.

Edge removal rule The edge removal rule is applied to reform a spanning tree by
removing several edges of the connected component with some cycles. To be
more specific, by the edge removal rule, SCC(k − 1) is constructed by removing
an edge e ∈ argmax{z(SCC(k)−e′)−z(SCC(k))|e′ ∈ CY (k)} from a cycle in the
current SCC(k) under construction, where CY (k) denotes the set of elements
e′ ∈ SCC(k) which are parts of cycles in the component SCC(k). This procedure
is continued until a spanning tree, namely, SCC(n − 1) is reformed.

g. Long-term memory The roles of intensification and diversification in TS are espe-
cially relevant in longer term search processes. Frequency-based memory is one of the
long-term memories and consists of gathering pertinent information about the search
process so far. In our algorithm, we use a residence frequency memory, which keeps
track of the number of iterations where edges has been a part of the solution. By
using the residence frequency memory, we provide the following diversification and
intensification processes.

i. Diversification procedure The diversification procedure begins at the situation
that some spanning tree is reformed. Then, several edges that constructs the
spanning tree, each of which have been a part of the explored solutions for a
long time, are removed from the spanning tree. Next, another spanning tree is
reformed by adding the edges which have not been involved in the explored solu-
tions so far through the edge addition rule. If the strategic oscillation procedure
is iterated in Max k times, then the intensification procedure is started.

ii. Intensification procedure using an elite solution set The intensification
procedure begins at the condition that no edge is selected. First, a connected
component is constructed by continuing to select the edges that occur frequently
in the elite solutions. The selected edges are never removed during the procedure.
After constructing a connected component, the process of adding edges, except
for ones that are not in most of elite solutions, are continued by the edge addition
rule until a spanning tree is reformed.

h. Termination criterion The counter UNRIter counts the iterations where the best
solution T b is not renewed. The proposed algorithm terminates if UNRIter is greater
than the threshold Max Iter. The quality of the final solution and the computer
running time are both influenced by the termination criterion.

Now, we are ready to describe the details of the proposed algorithm based on tabu
search. Let xc be the current solution and T c its corresponding spanning tree, and let
xb and T b be the best solution and its corresponding spanning tree, respectively. In the
proposed algorithm, we use the following parameters:

NISmall: Number of iterations in the small depth procedure.
MAX Small: Threshold of the counter NISmall.
NILarge: Number of iterations in the large depth procedure.
MAX Large: Threshold of the counter NISmall.
UNRIter: Counts the iterations where the best solution is not renewed.
MAX Iter: Threshold of the counter UNRIter.
Max k: Threshold of the counter, k, of the oscillation strategy.
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The proposed algorithm is described in the following steps, which are followed by the
description of each feature implemented in this algorithm.

Step 0 (Initial solution)
Set NISmall = NILarge = UNRIter = k = 0. Generate an initial solution x0

corresponding to an initial spanning tree T 0. Set xc := x0 and xb := x0. Set k = 0.

Step 1 (Improvement)
Improve the obtained solution by the improvement strategy. Set xb := xc.

Step 2 (Oscillation Strategy with Small Depth)
Set k := k + 1. If NISmall > MAX Small, then go to step 4. Otherwise, add a1

edges among N(T c) by using the edge addition rule and continue to remove one of
the edges in a cycle by using the edge removal rule until a spanning tree is reformed.

Step 3 If z(xc) > z(xb), then set xb := xc and NISmall = 0, and return to step 2.
Otherwise, set NISmall = NISmall + 1 and return to step 2.

Step 4 (Oscillation Strategy with Large Depth)
If NILarge > MAX Large, then go to step 6. Otherwise, add a2 (a1 < a2) edges
among N(T c) by the edge addition rule and continue to remove one of the edges in a
cycle by the edge remove rule until a spanning tree is reformed. Improve the current
solution by the improvement strategy.

Step 5 If z(xc) > z(xb), then set NILarge = NISmall = 0 and return to step 2.
Otherwise, set xb := xc, NILarge := NILarge + 1, and return to step 4.

Step 6 If k > Max k, then go to step 8. Otherwise, go to step 7.

Step 7 (Diversification)
Remove a3 edges in T c that are resident for a long time in spanning trees. Slap a long
tabu tenure to the removed edges. Add the edges whose resident time are short so as
not to make a cycle until a spanning tree is reformed. Return to step 1.

Step 8 (Intensification by elite solutions)
Set k = 0. Construct a set of connected components by adding edges that are in
most of elite solutions. Add edges, except for the edges that are not in most of elite
solutions, by the edge addition rule until a spanning tree is reformed. Improve the
obtained solution by the improvement strategy. If z(xc) > z(xb), then set xb := xc,
k = UNRIter = 0 and return to step 2. Otherwise, set UNRIter := UNRIter + 1
and go to step 9.

Step 9 If UNRIter > Max Iter, then terminate. Otherwise, return to step 1.

6 Numerical experiments Let G be a complete undirected graph with n vertices and
m edges, and let X be the set of all possible spanning trees of the graph G represented by
m-dimensional 0 − 1 decision vectors. In this section we apply the proposed TS method
and GAs described in this paper, to solve FRMST problem (7).

The experiments are conducted on complete undirected graphs with different number of
nodes, and the values of vectors Md and α are generated randomly. The parameter h is
set as 0.7.

In the GA approaches, the parameters are set as follows: crossover probability pc = 0.4,
mutation probability pm = 0.01, population size 120, and maximum number of generations
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1000. Iteration parameters in GA and TS algorithms are set so as to make their run times
close to each other, and therefore a comparison of their performances make sense.

We have run each experiment ten times. The following tables show the experimental
results of the above problem by using the TS method and GAs described in this paper. These
algorithms are coded in C++ programming language and implemented on a computer with
a CPU Celeron 1.7GHz and RAM 252MB. The expressions GA-Sc, GA-Sh and GA-(µ+ λ)
denote, respectively, the GA with scaling selection method, sharing selection method and
the mixed strategy with (µ+λ) selection and roulette wheel selection proposed in the study
by Zhou and Gen [35].

Table 1. Best objective function values.
Nodes TS GA-Sc GA-Sh GA-(µ + λ)

6 0.729 0.729 0.729 0.729
7 1.141 1.141 1.141 1.141
8 2.062 2.062 2.062 1.870
9 1.543 1.412 1.432 1.372

10 1.485 1.399 1.346 1.275
15 2.367 1.600 1.576 1.719
30 4.958 2.046 2.200 2.042
50 6.865 1.702 1.739 1.925

Table 2. Average objective function values.
Nodes TS GA-Sc GA-Sh GA-(µ + λ)

6 0.729 0.729 0.729 0.729
7 1.141 1.141 1.141 1.141
8 2.062 2.000 1.931 1.774
9 1.543 1.322 1.302 1.238

10 1.485 1.320 1.277 1.228
15 2.367 1.505 1.488 1.448
30 4.918 1.946 1.948 1.870
50 6.771 1.650 1.668 1.670

Table 3. Average computational time in second.
Nodes TS GA-Sc GA-Sh GA-(µ + λ)

6 – 0.3 1.2 0.6
7 – 0.5 1.5 0.9
8 0.1 0.7 1.8 1.1
9 0.13 1 2.2 1.5

10 0.5 1.3 2.7 2
15 4 5 7 7.2
30 82 85 92 120
50 1359 1095 1098 1374

The sign ”–” means a very short time.

From these computational results, we remark that GAs with the three selection methods
are quite uncompetitive with the TS method for solving the problem. In addition, the best
and average values obtained by TS are very close or the same for number of nodes less
than or equal to 15. It is observed that the proposed TS method has generally better
performances than the existing methods based on genetic algorithms.

As a more general problem than minimum spanning tree problem, there exists a k-
minimum spanning tree problem [11], which is to seek a subtree with exact k edges whose
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objective function is minimal. Blum and Blesa [2] proposed several approximate solution
methods and showed that a TS-based method is the best in case of large k. Realizing that
the minimum spanning tree corresponds to the largest k(= n − 1)-minimum spanning tree
problem, our observation that our TS algorithm is better than GA-based ones is consistent
with or supported by the experimental results shown by Blum and Blesa. Thus, we can
conclude that our TS algorithm is better than the existing GA-based algorithms.

7 Conclusion In this paper, we have considered fuzzy random minimum spanning tree
problem. Introducing a fuzzy goal, we have formulated the problem to maximize the prob-
ability that the degree of possibility or necessity that an objective function satisfies the
fuzzy goal. It has been shown that the problem can be transformed into a deterministic
equivalent nonlinear maximum spanning problem. In order to solve the problem, we have
constructed a TS algorithm based on oscillation strategy, intensification by elite solution
set and diversification by residence frequency and so on.

In the future, we will extend the proposed method to other decision making models
for fuzzy random minimum spanning tree problems. For instance, we will consider the
case where not only the probability but also the satisficing level (denoted by h) for the
degree of possibility or necessity. As another future work, we will try to solve the problem
of minimizing the variance of the degree of possibility or necessity. Since such a problem
includes the constraint with respect to the expected degree of possibility or necessity, we
need to extend our method in order to deal with the constraint by changing a part of the
oscillation strategy.
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