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Abstract.In this paper, we first consider a broad class of nonlinear mappings con-
taining the class of contractive mappings in a metric space. Let (X, d) be a metric
space. A mapping T : X → X is called contractively generalized hybrid if there are
α, β ∈ R and r ∈ [0, 1) such that

αd(Tx, Ty) + (1 − α)d(x, Ty) ≤ r{βd(Tx, y) + (1 − β)d(x, y)}

for all x, y ∈ X. Then, we deal with fixed point theorems for these nonlinear mappings
in a complete metric space. Using the results, we prove well-known fixed point theorems
in a complete metric space. Furthermore, we obtain an estimating expression for
contractively generalized hybrid mappings in a Banach space.

1 Introduction Let H be a real Hilbert space and let C be a nonempty closed convex
subset of H. A mapping T : C → C is said to be nonexpansive [10], nonspreading [8], and
hybrid [11] if

‖Tx − Ty‖ ≤ ‖x − y‖ ,

2‖Tx − Ty‖2 ≤ ‖Tx − y‖2 + ‖Ty − x‖2

and
3‖Tx − Ty‖2 ≤ ‖x − y‖2 + ‖Tx − y‖2 + ‖Ty − x‖2

for all x, y ∈ C, respectively. These mappings are deduced from a firmly nonexpansive
mapping in a Hilbert space; see [11]. A mapping F : C → C is said to be firmly nonexpansive
if

‖Fx − Fy‖2 ≤ 〈x − y, Fx − Fy〉

for all x, y ∈ C; see, for instance, Browder [1], Goebel and Kirk [3], and Kohsaka and
Takahashi [7]. Motivated by these nonlinear mappings, Kocourek, Takahashi and Yao [6]
introduced a broad class of mappings T : C → C called generalized hybrid such that for
some α, β ∈ R,

α‖Tx − Ty‖2 + (1 − α)‖x − Ty‖2 ≤ β‖Tx − y‖2 + (1 − β)‖x − y‖2

for all x, y ∈ C. Such a mapping is also called (α, β)-generalized hybrid. We observe that
the class of the mappings above covers several classes of well-known mappings. An (α, β)-
generalized hybrid mapping is nonexpansive for α = 1 and β = 0, nonspreading for α = 2
and β = 1, and hybrid for α = 3

2 and β = 1
2 . On the other hand, we know important

classes of mappings in a metric space. Let X be a metric space with metric d. A mapping
T : X → X is said to be contractive if there exists r ∈ [0, 1) such that d(Tx, Ty) ≤ rd(x, y)
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for all x, y ∈ X. Such a mapping is also called r-contractive. A mapping T : X → X is said
to be Kannan [5] if there exists α ∈ [0, 1

2 ) such that d(Tx, Ty) ≤ α(d(x, Tx) + d(y, Ty)) for
all x, y ∈ X. A mapping T : X → X is said to be contractively nonspreading [2], [4] and
[13] if there exists β ∈ [0, 1

2 ) such that d(Tx, Ty) ≤ β(d(x, Ty) + d(y, Tx)) for all x, y ∈ X.
A mapping T : X → X is said to be contractively hybrid [11] if there exists a real number
γ with 0 ≤ γ < 1

3 and

d(Tx, Ty) ≤ γ{d(Tx, y) + d(Ty, x) + d(x, y)}

for all x, y ∈ X.
In this paper, we first consider a broad class of nonlinear mappings containing the

classes of contractive mappings and contractively nonspreading mappings in a metric space.
Then, we deal with fixed point theorems for these nonlinear mappings in a complete metric
space. Using the results, we prove well-known fixed point theorems in a complete metric
space. Furthermore, we obtain an estimating expression for contractively generalized hybrid
mappings in a Banach space.

2 Preliminaries Throughout this paper, we denote by N the set of positive integers and
by R the set of real numbers. Let X be a metric space with metric d. We denote the
convergence of {xn} to x ∈ X by xn → x. A sequence {xn} in X is said to be Cauchy
[10] if there exists a sequence {αn} of real numbers such that for m,n ∈ N with m ≥ n,
d(xm, xn) ≤ αn and αn → 0. A metric space X is called complete if every Cauchy sequence
{xn} is convergent, i.e., {xn} → u for some u ∈ X. In 1972, Zamfirescu [13] proved the
following theorem which is one of generalizations of the Banach contraction principle.

Theorem 2.1. Let X be a complete metric space with metric d and let T : X → X be a
mapping which satisfies one of the following:

(i) T is contractive;

(ii) T is Kannan;

(iii) T is contractively nonspreading.

Then T has a unique fixed point in X.

Let l∞ be the Banach space of bounded sequences with supremum norm. Let µ be
an element of (l∞)∗ (the dual space of l∞). Then, we denote by µ(f) the value of µ at
f = (x1, x2, x3, . . . ) ∈ l∞. Sometimes, we denote by µn(xn) the value µ(f). A linear
functional µ on l∞ is called a mean if µ(e) = ‖µ‖ = 1, where e = (1, 1, 1, . . . ). A mean µ
is called a Banach limit on l∞ if µn(xn+1) = µn(xn). We know that there exists a Banach
limit on l∞. If µ is a Banach limit on l∞, then for f = (x1, x2, x3, . . . ) ∈ l∞,

lim inf
n→∞

xn ≤ µn(xn) ≤ lim sup
n→∞

xn.

In particular, if f = (x1, x2, x3, . . . ) ∈ l∞ and xn → a ∈ R, then we have µ(f) = µn(xn) = a.
For the proof of existence of a Banach limit and its other elementary properties, see [9]. We
also know a fixed point theorem for generalized hybrid mappings in a Hilbert space which
was proved by using Banach limits; see also [12].

Theorem 2.2 (Kocourek, Takahashi and Yao [6]). Let H be a Hilbert space and let C be
a nonempty closed convex subset of H. Let T : C → C be a generalized hybrid mapping.
Then T has a fixed point in C if and only if {Tnx} is bounded for some x ∈ C.
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3 Fixed Point Theorems In this section, we start with defining a broad class of map-
pings in a metric space. Let (X, d) be a metric space. A mapping T : X → X is called
contractively generalized hybrid if there are α, β ∈ R and r ∈ [0, 1) such that

(3.1) αd(Tx, Ty) + (1 − α)d(x, Ty) ≤ r{βd(Tx, y) + (1 − β)d(x, y)}

for all x, y ∈ X. We call such a mapping an (α,β,r)-contractively generalized hybrid mapping.
We observe that the class of the mappings above covers classes of well-known mappings in
a metric space. For example, an (α,β,r)-contractively generalized hybrid mapping T is
r-contractive for α = 1 and β = 0, i.e.,

d(Tx, Ty) ≤ rd(x, y), ∀x, y ∈ X.

Now, we prove fixed point theorems in a metric space. Before proving the fixed point
theorems, we show the following lemma.

Lemma 3.1. Let (X, d) be a metric space, let {xn} be a bounded sequence in X and let µ
be a mean on l∞. If g : X → R is defined by

g(z) = µnd(xn, z), ∀z ∈ X,

then g is a continuous function on X.

Proof. Since {xn} is bounded, we have that for any y ∈ X, {d(xn, y)} is an element of l∞.
So, using a mean µ on l∞, we can define a function g : X → R as follows:

g(y) = µnd(xn, y), ∀y ∈ X.

Let z, y ∈ X. Then, we have that for any n ∈ N,

d(xn, z) ≤ d(xn, y) + d(y, z).

Since µ is a mean on l∞, we have

(3.2) g(z) = µnd(xn, z) ≤ µnd(xn, y) + µnd(y, z) = g(y) + d(y, z).

Similarly, we have

(3.3) g(y) ≤ g(z) + d(z, y) = g(z) + d(y, z).

Therefore, we have from (3.2) and (3.3) that

|g(y) − g(z)| ≤ d(y, z).

This implies that g : X → R is a continuous function on X.

Theorem 3.2. Let X be a complete metric space and let T be a mapping of X into itself.
Suppose that there exist a real number r with 0 ≤ r < 1 and an element x ∈ X such that
{Tnx} is bounded and

µnd(Tnx, Ty) ≤ rµnd(Tnx, y), ∀y ∈ X

for some mean µ on l∞. Then, the following hold:

(i) T has a unique fixed point u in X;
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(ii) for every z ∈ X, the sequence {Tnz} converges to u in X.

Proof. Since {Tnx} is bounded, we have that for any y ∈ X, {d(Tnx, y)} is an element of
l∞. So, using a mean µ on l∞, we can define a function g : X → R as follows:

g(y) = µnd(Tnx, y), ∀y ∈ X.

From Lemma 3.1, g : X → R is a continuous function on X. For any z ∈ X, consider a
sequence {Tnz} in X. Then, we have that for any m, n ∈ N,

d(Tmz, Tm+1z) ≤ d(Tmz, Tnx) + d(Tnx, Tm+1z).

Since µ is a mean on l∞, we have that for any m ∈ N,

d(Tmz, Tm+1z) ≤ µnd(Tmz, Tnx) + µnd(Tnx, Tm+1z)

= µnd(Tnx, Tmz) + µnd(Tnx, Tm+1z)

≤ rµnd(Tnx, Tm−1z) + rµnd(Tnx, Tmz)
≤ . . .

≤ rmµnd(Tnx, z) + rmµnd(Tnx, Tz)

≤ rmµnd(Tnx, z) + rm+1µnd(Tnx, z)
= rm(1 + r)µnd(Tnx, z)
= rm(1 + r)g(z).

So, we have that for any l,m ∈ N with m ≥ l,

d(T lz, Tmz) ≤ d(T lz, T l+1z) + d(T l+1z, T l+2z) + · · · + d(Tm−1z, Tmz)

≤ rl(1 + r)g(z) + rl+1(1 + r)g(z) + · · · + rm−1(1 + r)g(z)

≤ rl(1 + r)g(z) + rl+1(1 + r)g(z) + · · · + rm−1(1 + r)g(z) + . . .

= rl(1 + r)g(z)(1 + r + r2 + r3 + . . . )

= rl(1 + r)g(z)
1

1 − r

and rl(1 + r)g(z) 1
1−r → 0 as l → ∞. So, {Tmz} is a Cauchy sequence in X. Since X is

complete, {Tmz} converges. Let Tmz → u. Since

g(Tm+1z) = µnd(Tnx, Tm+1z) ≤ rµnd(Tnx, Tmz) = rg(Tmz)

and g is continuous from Lemma 3.1, we obtain that g(u) ≤ rg(u). So, we have

µnd(Tnx, u) = g(u) ≤ rg(u) = rµnd(Tnx, u).

From 0 ≤ r < 1, we have µnd(Tnx, u) = 0. Since

d(Tu, u) ≤ d(Tu, Tnx) + d(Tnx, u)

for all n ∈ N, we have

d(Tu, u) ≤ µnd(Tnx, Tu) + µnd(Tnx, u)
≤ rµnd(Tnx, u) + µnd(Tnx, u)
= r0 + 0 = 0.
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So, we have d(Tu, u) = 0 and hence Tu = u. We show that such a fixed point is unique.
Let Tu = u and Tv = v. Since

µnd(Tnx, u) = µnd(Tnx, Tu) ≤ rµnd(Tnx, u),

we obtain µnd(Tnx, u) = 0. Similarly, we have µnd(Tnx, v) = 0. Since

d(u, v) ≤ d(u, Tnx) + d(Tnx, v)

for all n ∈ N, we have

d(u, v) ≤ µnd(Tnx, u) + µnd(Tnx, v)
= 0 + 0 = 0.

So, we have d(u, v) = 0 and hence u = v. This completes the proof.

Next, using Theorem 3.2, we prove a fixed point theorem for contractively generalized
hybrid mappings in a metric space.

Theorem 3.3. Let (X, d) be a complete metric space and let T : X → X be a contractively
generalized hybrid mapping. Then T has a fixed point in X if and only if {Tnx} is bounded
for some x ∈ X. In this case, the following hold:

(i) T has a unique fixed point u in X;

(ii) for every z ∈ X, the sequence {Tnz} converges to u in X.

Proof. Since T : X → X is a contractively generalized hybrid mapping, there are α, β ∈ R
and r ∈ [0, 1) such that

(3.4) αd(Tx, Ty) + (1 − α)d(x, Ty) ≤ r{βd(Tx, y) + (1 − β)d(x, y)}

for all x, y ∈ X. If F (T ) 6= ∅, then {Tnu} = {u} for u ∈ F (T ). So, {Tnu} is bounded. We
show the reverse. Take x ∈ X such that {Tnx} is bounded. Then we have from (3.4) that
for any y ∈ X and n ∈ N,

αd(Tn+1x, Ty)+(1 − α)d(Tnx, Ty)

≤ r{βd(Tn+1x, y) + (1 − β)d(Tnx, y)}.

Since {Tnx} is bounded, we can apply a Banach limit µ to both sides of the inequality.
Then, we have

µn(αd(Tn+1x, Ty) + (1 − α)d(Tnx, Ty))

≤ µn(r{βd(Tn+1x, y) + (1 − β)d(Tnx, y)}).

So, we obtain

αµnd(Tn+1x, Ty)+(1 − α)µnd(Tnx, Ty)

≤ βrµnd(Tn+1x, y) + r(1 − β)µnd(Tnx, y)

and hence

αµnd(Tnx, Ty)+(1 − α)µnd(Tnx, Ty)
≤ βrµnd(Tnx, y) + r(1 − β)µnd(Tnx, y).

This implies
µnd(Tnx, Ty) ≤ rµnd(Tnx, y)

for all y ∈ X. By Theorem 3.2, T has a unique fixed point u in X. Furthermore, for any
z ∈ X, the sequence {Tnz} converges to u in X.
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Using Theorem 3.3, we have the following fixed point theorem.

Theorem 3.4. Let (X, d) be a complete metric space and let T : X → X be an (α,β,r)-
contractively generalized hybrid mapping such that

β ≥ 0, α − rβ > 0 and r <
α

1 + β
.

Then, the following hold:

(i) T has a unique fixed point u in X;

(ii) for every z ∈ X, the sequence {Tnz} converges to u in X.

Proof. Since T : X → X is an (α,β,r)-contractively generalized hybrid mapping, we have
that

(3.5) αd(Tx, Ty) + (1 − α)d(x, Ty) ≤ r{βd(Tx, y) + (1 − β)d(x, y)}

for all x, y ∈ X. We note that 0 ≤ r < 1. Fix x ∈ X and n ∈ N. Replacing x by Tnx and
y by Tn−1x in (3.5), we have

αd(Tn+1x, Tnx) + (1 − α)d(Tnx, Tnx)(3.6)

≤ r{βd(Tn+1x, Tn−1x) + (1 − β)d(Tnx, Tn−1x)}.

From β ≥ 0 and (3.6), we have

αd(Tn+1x, Tnx) ≤ r{β(d(Tn+1x, Tnx)(3.7)

+ d(Tnx, Tn−1x)) + (1 − β)d(Tnx, Tn−1x)}

and hence

(3.8) (α − rβ)d(Tn+1x, Tnx) ≤ rd(Tnx, Tn−1x).

From α − rβ > 0 we have

(3.9) d(Tn+1x, Tnx) ≤ r

α − rβ
d(Tnx, Tn−1x).

From r < α
1+β , we have r < α − rβ and

0 ≤ r

α − rβ
< 1.

Putting λ = r
α−rβ , we have that for any n ∈ N,

d(x, Tnx) ≤ d(x, Tx) + d(Tx, T 2x) + · · · + d(Tn−1x, Tnx)

≤ d(x, Tx) + λd(x, Tx) + · · · + λn−1d(x, Tx)

≤ d(x, Tx) + λd(x, Tx) + · · · + λn−1d(x, Tx) + . . .

= d(x, Tx)(1 + λ + · · · + λn−1 + . . . )

= d(x, Tx)
1

1 − λ
.

So, the sequence {Tnx} is bounded. We have from Theorem 3.3 that T has a unique fixed
point u in X and for every z ∈ X, the sequence {Tnz} converges to u in X.
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Using Theorem 3.4, we can also prove the following well-known fixed point theorems.
We first prove a fixed point theorem for contractive mappings in a complete metric space.

Theorem 3.5. Let (X, d) be a complete metric space and let T : X → X be a contractive
mapping, i.e., there exists a real number r with 0 ≤ r < 1 such that

d(Tx, Ty) ≤ rd(x, y)

for all x, y ∈ X. Then, the following hold:

(i) T has a unique fixed point u in X;

(ii) for every z ∈ X, the sequence {Tnz} converges to u in X.

Proof. Putting α = 1 and β = 0 in (3.1), we have that

d(Tx, Ty) ≤ rd(x, y)

for all x, y ∈ X. Furthermore, we have that

β = 0 ≥ 0, α − rβ = 1 > 0 and
α

1 + β
=

1
1

= 1 > r.

From Theorem 3.4, we have the desired result.

Theorem 3.6. Let (X, d) be a complete metric space and let T : X → X be contractively
nonspreading, i.e., there exists a real number γ with 0 ≤ γ < 1

2 such that

d(Tx, Ty) ≤ γ{d(Tx, y) + d(Ty, x)}

for all x, y ∈ X. Then, the following hold:

(i) T has a unique fixed point u in X;

(ii) for every z ∈ X, the sequence {Tnz} converges to u in X.

Proof. Setting r = γ
1−γ , we have r − rγ = γ and hence γ = r

1+r . From 0 ≤ γ < 1
2 , we have

0 ≤ r. We have also

r < 1 ⇔ r

1 + r
= γ <

1
2
.

So, we have 0 ≤ r < 1. Furthermore, we have

(1 + r)d(Tx, Ty) ≤ r{d(Tx, y) + d(Ty, x)}

for all x, y ∈ X. This implies that

(1 + r)d(Tx, Ty) − rd(x, Ty) ≤ rd(Tx, y)

for all x, y ∈ X. So, T is a (1 + r, 1, r)-contractively generalized hybrid mapping. Further-
more, we have that

β = 1 > 0, α − rβ = 1 > 0 and
α

1 + β
=

1 + r

2
> r.

From Theorem 3.4, we have the desired result.
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Theorem 3.7. Let (X, d) be a complete metric space and let T : X → X be contractively
hybrid, i.e., there exists a real number γ with 0 ≤ γ < 1

3 and

d(Tx, Ty) ≤ γ{d(Tx, y) + d(Ty, x) + d(x, y)}

for all x, y ∈ X. Then, the following hold:

(i) T has a unique fixed point u in X;

(ii) for every z ∈ X, the sequence {Tnz} converges to u in X.

Proof. Setting r = 2γ
1−γ , we have r− rγ = 2γ and hence γ = r

2+r . From 0 ≤ γ < 1
3 , we have

0 ≤ r. We have also

r < 1 ⇔ r

2 + r
= γ <

1
3
.

So, we have 0 ≤ r < 1. Furthermore, we have

(2 + r)d(Tx, Ty) ≤ r{d(Tx, y) + d(Ty, x) + d(x, y)}

for all x, y ∈ X. This implies that

(2 + r)d(Tx, Ty) − rd(x, Ty) ≤ r{d(Tx, y) + d(x, y)}

for all x, y ∈ X. So, we have that

(1 +
r

2
)d(Tx, Ty) − r

2
d(x, Ty) ≤ r{1

2
d(Tx, y) +

1
2
d(x, y)}

for all x, y ∈ X. This means that T is a (1 + r
2 , 1

2 , r)-contractively generalized hybrid
mapping. Furthermore, we have that

β =
1
2

> 0, α − rβ = 1 +
r

2
− r

1
2

= 1 > 0 and
α

1 + β
=

1 + r
2

1 + 1
2

> r.

From Theorem 3.4, we have the desired result.

4 Estimating Expressions Let (X, d) be a metric space. Let T : X → X be a mapping.
We denote by F (T ) the set of fixed points of T . Let α, β, r be real numbers with 0 ≤ r < 1.
Let T : X → X be an (α,β,r)-contractively generalized hybrid mapping. Observe that if
F (T ) 6= ∅, then T is quasi-contractive, i.e.,

d(u, Ty) ≤ rd(u, y)

for all u ∈ F (T ) and y ∈ X. Indeed, putting x = u ∈ F (T ) in (3.1), we obtain

αd(u, Ty) + (1 − α)d(u, Ty) ≤ r{βd(u, y) + (1 − β)d(u, y)}.

So, we have that

(4.1) d(u, Ty) ≤ rd(u, y)

for all u ∈ F (T ) and y ∈ X. This fact is used in the proof of Theorem 4.2 below. Before
proving our main theorem in this section, we show the following basic lemma.
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Lemma 4.1. Let r and γ be real numbers with 0 < r < 1 and 0 < γ < 1, respectively. For
any P0, P1 ∈ R, define a sequence {Pn} of real numbers as follows:

Pn+2 = r(γPn+1 + (1 − γ)Pn), ∀n ∈ N.

Then,

(4.2) Pn =
P1 − P0v

u − v
un +

P0u − P1

u − v
vn, ∀n ∈ N,

where

u =
rγ +

√
r2γ2 + 4r(1 − γ)

2
, v =

rγ −
√

r2γ2 + 4r(1 − γ)
2

.

Proof. It is obvious that u > 0 and v < 0. We know also that u, v are two solutions of the
following quadratic equation of λ:

λ2 − rγλ − r(1 − γ) = 0.

So, we have

(4.3) u + v = rγ, uv = −r(1 − γ).

Putting f(λ) = λ2 − rγλ − r(1 − γ) for all λ ∈ R, we have f(1) > 0 and f(0) < 0. So, we
have 0 < u < 1. Next, if v ≤ −1, we have u + v < 0. This contadicts (4.3). So, we have
−1 < v < 0. Let us prove (4.2). In the case of n = 0, we have

P1 − P0v

u − v
u0 +

P0u − P1

u − v
v0 =

P0(u − v)
u − v

= P0.

Similarly, in the case of n = 1, we have

P1 − P0v

u − v
u1 +

P0u − P1

u − v
v1 =

P1(u − v)
u − v

= P1.

Suppose

Pn =
P1 − P0v

u − v
un +

P0u − P1

u − v
vn

for n = k, k + 1. Then, we have from (4.3) that

Pk+2 = r(γPk+1 + (1 − γ)Pk)

= r(γ(
P1 − P0v

u − v
uk+1 +

P0u − P1

u − v
vk+1)

+ (1 − γ)(
P1 − P0v

u − v
uk +

P0u − P1

u − v
vk))

= (u + v)(
P1 − P0v

u − v
uk+1 +

P0u − P1

u − v
vk+1)

+ r
P1 − P0v

u − v
uk + r

P0u − P1

u − v
vk − (u + v)(

P1 − P0v

u − v
uk +

P0u − P1

u − v
vk)

=
P1 − P0v

u − v
((u + v)uk+1 + ruk − (u + v)uk)

+
P0u − P1

u − v
((u + v)vk+1 + rvk − (u + v)vk)
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=
P1 − P0v

u − v
((u + v)uk+1 + (u + v − uv)uk − (u + v)uk)

+
P0u − P1

u − v
((u + v)vk+1 + (u + v − uv)vk − (u + v)vk)

=
P1 − P0v

u − v
uk((u + v)u − uv) +

P0u − P1

u − v
vk((u + v)v − uv)

=
P1 − P0v

u − v
uku2 +

P0u − P1

u − v
vkv2

=
P1 − P0v

u − v
uk+2 +

P0u − P1

u − v
vk+2.

By induction, we have

Pn =
P1 − P0v

u − v
un +

P0u − P1

u − v
vn

for all n ∈ N. This completes the proof.

Using Lemma 4.1, we obtain the following estimating expression for contractively gen-
eralized hybrid mappings in a Banach space.

Theorem 4.2. Let E be a Banach space and let C be a nonempty closed convex subset of
E. Let α, β, r be real numbers with 0 < r < 1 and let T : C → C be an (α,β,r)-contractively
generalized hybrid mapping such that F (T ) is nonempty. Let γ ∈ (0, 1) and define a sequence
{xn} of C as follows: x0, x1 ∈ C and

xn+2 = T (γxn+1 + (1 − γ)xn), ∀n ∈ N.

Then, {xn} converges a unique fixed point z of T . Furthermore,

‖xn − z‖ ≤ P1 − P0v

u − v
un +

P0u − P1

u − v
vn,

where P0 = ‖x0−z‖, P1 = ‖x1−z‖ and u, v ∈ R are two solutions of the quadratic equation
of λ:

λ2 − rγλ − r(1 − γ) = 0.

Proof. We know from Theorem 3.3 that T has a unique fixed point z in C. Let P0 = ‖x0−z‖
and P1 = ‖x1 − z‖. Define a sequence {Pn} of real numbers as follows:

Pn+2 = r(γPn+1 + (1 − γ)Pn), ∀n ∈ N.

Then, we know from Lemma 4.1 that

Pn =
P1 − P0v

u − v
un +

P0u − P1

u − v
vn, ∀n ∈ N.

So, for finishing the proof, it is sufficient to show that

‖xn − z‖ ≤ Pn, ∀n ∈ N.

From P0 = ‖x0− z‖ and P1 = ‖x1− z‖, we have ‖x0− z‖ ≤ P0 and ‖x1− z‖ ≤ P1. Suppose

‖xn − z‖ ≤ Pn

for n = k, k + 1. Then, we have from (4.1) that

‖xk+2 − z‖ = ‖T (γxk+1 + (1 − γ)xk) − z‖
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≤ r‖γxk+1 + (1 − γ)xk − z‖
= r‖γ(xk+1 − z) + (1 − γ)(xk − z)‖
≤ r(γ‖xk+1 − z‖ + (1 − γ)‖xk − z‖)
≤ r(γPk+1 + (1 − γ)Pk)
= Pk+2.

By induction, we have ‖xn − z‖ ≤ Pn for all n ∈ N. Since

Pn =
P1 − P0v

u − v
un +

P0u − P1

u − v
vn, ∀n ∈ N,

we have from 0 < u < 1 and −1 < v < 0 that Pn → 0 as n → ∞. This completes the
proof.

Using Theorem 4.2, we give estimating expressions for well-known mappings in a Banach
space.

Theorem 4.3. Let E be a Banach space and let C be a nonempty closed convex subset
of E. Let T : C → C be a r-contractive mapping with 0 < r < 1, i.e., there exists a real
number r with 0 < r < 1 such that

‖Tx − Ty‖ ≤ r‖x − y‖

for all x, y ∈ C. Let γ ∈ (0, 1) and define a sequence {xn} of C as follows:
x0, x1 ∈ C and

xn+2 = T (γxn+1 + (1 − γ)xn), ∀n ∈ N.

Then, {xn} converges a unique fixed point z of T . Furthermore,

‖xn − z‖ ≤ P1 − P0v

u − v
un +

P0u − P1

u − v
vn,

where P0 = ‖x0−z‖, P1 = ‖x1−z‖ and u, v ∈ R are two solutions of the quadratic equation
of λ:

λ2 − rγλ − r(1 − γ) = 0.

Proof. Putting α = 1 and β = 0 in (3.1), we have that

‖Tx − Ty‖ ≤ r‖x − y‖

for all x, y ∈ C. Furthermore, as in the proof of Theorem 3.5, we have that

β ≥ 0, α − rβ > 0 and
α

1 + β
> r.

From Theorem 3.4, we have F (T ) 6= ∅. So, from Theorem 4.2, we have the desired result.

Theorem 4.4. Let E be a Banach space and let C be a nonempty closed convex subset of
E. Let T : C → C be contractively nonspreading with 0 < k < 1

2 , i.e., there exists a real
number k with 0 < k < 1

2 such that

‖Tx − Ty‖ ≤ k{‖Tx − y‖ + ‖Ty − x‖}

for all x, y ∈ C. Let γ ∈ (0, 1) and define a sequence {xn} of C as follows:
x0, x1 ∈ C and

xn+2 = T (γxn+1 + (1 − γ)xn), ∀n ∈ N.
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Then, {xn} converges a unique fixed point z of T . Furthermore,

‖xn − z‖ ≤ P1 − P0v

u − v
un +

P0u − P1

u − v
vn,

where P0 = ‖x0−z‖, P1 = ‖x1−z‖ and u, v ∈ R are two solutions of the quadratic equation
of λ:

(1 − k)λ2 − kγλ − k(1 − γ) = 0.

Proof. Setting r = k
1−k as in the proof of Theorem 3.6, we have r − rk = k and hence

k = r
1+r . From 0 < k < 1

2 , we have 0 < r. We have also

r < 1 ⇔ r

1 + r
= k <

1
2
.

So, we have 0 < r < 1. Furthermore, as in the proof of Theorem 3.6, we have that

(1 + r)‖Tx − Ty‖ − r‖x − Ty‖ ≤ r‖Tx − y‖

for all x, y ∈ C, that is, T is a (1+r, 1, r)-contractively generalized hybrid mapping. Finally,
we have that

β > 0, α − rβ > 0 and
α

1 + β
> r.

From Theorem 3.4, we have F (T ) 6= ∅. So, from Theorem 4.2, we have the desired result.

Theorem 4.5. Let E be a Banach space and let C be a nonempty closed convex subset of
E. Let T : C → C be contractively hybrid with 0 < s < 1

3 , i.e., there exists a real number s
with 0 < s < 1

3 and

‖Tx − Ty‖ ≤ s{‖Tx − y‖ + ‖Ty − x‖ + ‖x − y‖}

for all x, y ∈ C. Let γ ∈ (0, 1) and define a sequence {xn} of C as follows:
x0, x1 ∈ C and

xn+2 = T (γxn+1 + (1 − γ)xn), ∀n ∈ N.

Then, {xn} converges a unique fixed point z of T . Furthermore,

‖xn − z‖ ≤ P1 − P0v

u − v
un +

P0u − P1

u − v
vn,

where P0 = ‖x0−z‖, P1 = ‖x1−z‖ and u, v ∈ R are two solutions of the quadratic equation
of λ:

(1 − s)λ2 − 2sγλ − 2s(1 − γ) = 0.

Proof. Setting r = 2s
1−s as in the proof of Theorem 3.7, we have r − rs = 2s and hence

s = r
2+r . From 0 < s < 1

3 , we have 0 < r. We have also

r < 1 ⇔ r

2 + r
= s <

1
3
.

So, we have 0 < r < 1. Furthermore, as in the proof of Theorem 3.7, we have that

(1 +
r

2
)‖Tx − Ty‖ − r

2
‖x − Ty‖ ≤ r{1

2
‖Tx − y‖ +

1
2
‖x − y‖}

for all x, y ∈ C, that is, T is a (1+ r
2 , 1

2 , r)-contractively generalized hybrid mapping. Finally,
we have that

β > 0, α − rβ > 0 and
α

1 + β
> r.

From Theorem 3.4, we have F (T ) 6= ∅. So, from Theorem 4.2, we have the desired result.
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