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ON THREE CLASSICAL RESULTS ABOUT COMPACT
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Abstract. In this paper we reprove three classical results on compact
groups from Hofmann - Mostert book [8] . Notably we get a very short
proof of Borel one point theorem [8, p.310].

In this paper we obtain three classical results from the book ”Elements of
compact semigroups” by Hofmann - Mostert [8]:
1. [8, p.302 ] If G is a compact connected n-dimensional topological group such
that Hn(G) = Z (Ćech cohomology), then G is a Lie group.
2. [8, p.303 ] If G is a compact connected group and H closed connected sub-
group of G such that dim G/H =1, then H is a normal subgroup of G.
3. Borel one point theorem [8,p.310]. If G is a compact group and H a closed
subgroup of G such that G/H is Q-acyclic and Z/2Z-acyclic (Ćech cohomol-
ogy), then H=G.

Throughout this paper we let G be a compact group. Then G=lim
←

Gj, Gj ’s,
finite dimentional Lie groups, j ∈ J. Let pj : G → Gj be the canonical map for
all j ∈ J. Hence G=lim

←
G/ker pj . We let G0 be the connected component of

1 ∈G.
The proof of the first result depends on Capel-Gordh - Mardešic charac-

terization of local connectedness in inverse limits [4,6].

Proposition 1: [8,p.302]

Let G be a compact connected n-dimensional topological group such that
Hn(G) = Z(Ćech cohomology) .Then G is a Lie group.

Proof:

We may assume that G/ker pj is an n-dimensional Lie group for all j ∈ J. By
the continuity property of Ćech cohomology [13, p.319] we have Hn(G) = lim

→
Hn(G/ker pj ). The hypothesis and the universal property of direct limits
show that we may further assume that for k ≥ j , the canonical map G/ker
pk → G/ker pj has degree 1, hence it induces a surjection on fundamen-
tal groups[10] . The homotopy exact sequence of this fibration shows that
π0(ker pj/ker pk) = 0 so that G is locally connected [4 or 6] (note that in
[6,Theorem 1] one must add the hypothesis that the bonding maps are sur-
jective). Since G is locally connected, Mostert’s Theorem [12, Theorem 13]
applied to the fiber bundle G → G/ker pj shows that the zero dimensional
group ker pj is discrete hence finite and G is a Lie group. //
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The proof of the second result depends on Scheffer’s results on maps be-
tween topological groups that are homotopic to homomorphisms[11].

Proposition 2: [8,p.303]

Let G be a compact connected group and H a closed connected subgroup
of G such that dim G/H =1. Then H is a normal subgroup of G.

Proof:
We may assume that dim G/H ker pj = 1 for all j ∈ J. Fix j ∈ J and

let ϕj :(G/H ker pj ,H ker pj) → (S1, 1) be a homeomorphism and qj :G/ker
pj → G/H ker pj the canonical map, so that by [11,Theorem 1], there exists f:
G/ker pj → R and g ∈ Hom(G/ker pj , S

1) such that ϕj ◦ qj = e2πifg.

Note that H ker pj/ker pj ⊆ ker g [11,Corollary 2] and g is onto [9,Corollary
1.9] so that H ker pj/ker pj is an open subgroup of (ker g)0 . Hence H ker
pj/ker pj = (ker g)0 , a normal subgroup of G/ker pj , and Hker pj is a normal
subgroup of G. It follows that H=∩{H ker pj : j ∈ J} is a normal subgroup of
G[2,TGIII.61]. //

Our new proof of Borel one-point theorem depends on observing that the
Q-acyclic assumption shows that the decomposition of G as inverse limit as
above gives rise to coset spaces that have non-zero Euler characteristic. The
Z/2Z -acyclic assumption then shows by virtue of the transfer theorem that
these successive coset spaces are also Z/2Z -acyclic. Therefore they are all
trivial. The known proofs of that theorem are very complicated [8].

Theorem 3 : Borel one point theorem [8,p.310]

Let G be a compact group and H a closed subgroup of G such that G/H is
Q-acyclic and Z/2Z-acyclic (Ćech cohomology). Then H=G.

Proof:

Since G/H is Q-acyclic, it is connected. By [3,TGIII.36] G/H= G0H/H .
Since G0 H/H ∼= G0/G0 ∩ H we may assume that G is connected . We have
G/H=lim

←
G/H ker pj .

Claim: χ (G/H ker pj) 6= 0 for all j ∈ J (χ=Euler Characteristic )

Proof of Claim: Let j ∈ J and let Tj be a maximal torus subgroup of
G/ker pj . By [8,p.299] there exists M compact connected normal subgroup of
G ,M ∩ker pj totally disconnected and M ker pj =G. Then for N=M ∩p−1

j (Tj)
we have pj |N0 : N0 → Tj is onto [3,TGIII.36] . Since ker(pj |N0) ≤N ∩ ker pj we
have dim N0=dim Tj . Note also that the commutator subgroup (N0, N0) is a
connected subgroup of ker (pj |N0) ≤ N∩ ker pj [3,TGIII.8], hence N0 is abelian.
Since G/H is Q-acyclic, the left action of N0 on G/H has a fixed point[8,p.332]
so H ⊇ some conjugate ofN0 and H ker pj /ker pj ⊇ some conjugate of Tj .
Therefore χ(G/H ker pj) 6= 0 [14]. //

Let j ∈ J, the continuity property of Ćech cohomology shows that there
exists k ≥ j such that the canonical map G/H ker pk → G/H ker pj induces
the zero map on reduced Z/2 Z cohomology. Since G/H ker pj are all homotopic
to finite CW complexes [15] ,the transfer theorem [5] and the above claim show
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that G/H ker pj must be Z/2Z-acyclic by virtue of [2,Lemma in Theorem 7] .
Hence G=H kerpj .Therefore G=

∩
j∈J H ker pj =H [2,TGIII.61]. //

Corollary 4: [1 and 7]

Let G be a compact group, H closed ≤ G such that G/H is contractible.
Then G=H.
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