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Abstract. In the present paper, a sequential decision problem on a Markov process
is set up which takes into account a partial maintenance, and observe some mono-
tonic properties of an optimal policy. We develop an optimal maintenance policy for
products. During their life cycle, a condition of this item deteriorates, and a state of
an item goes from state to state according to a Markovian transition rule based on
the stochastic convexity. The decision-maker decides a level of repair with cost which
varies with this level. This problem is how much to expend to maintain this item
to minimize the total expected cost. A dynamic programming formulation implies a
recursive equation about expected cost obtainable under optimal policy.

1 Introduction A sequential decision problem on a Markov process in which states are
closely related to outcome is treated in Nakai [6]. In [6], expending an additional amount
within a range of the budget improves a state, and the process goes from this state to
new state according to a Markovian transition rule based on the total positivity of order
two (TP2). In the present paper, a sequential decision problem on a Markov process is
set up which takes into account a partial maintenance to minimize the total expected cost.
Especially, the decision-maker selects a level of repair to maintain a condition of this item.

We develop an optimal maintenance policy for products such as electrical devices, cars
and so on. During their life cycle, a condition of this item deteriorates, and this condition
is represented as an element of a state space (0,∞). The process goes from a state to a new
state according to a Markovian transition rule based on stochastic convexity. For s ∈ (0,∞),
as s becomes larger, this item complied with user, and it is not sufficiently complied with
their demands as s approaches to 0. On the other hand, the decision-maker decides to select
a level of repair with cost which varies with this level. This problem is how much to expend
to maintain this item to minimize the total expected cost. In this paper, a selection of a
level improves a state as a multiplicative manner which is a difference to [6]. A dynamic
programming formulation implies a recursive equation about total expected cost obtainable
under optimal policy. The purpose of this paper is to observe some monotonic properties of
an optimal policy. This is one of a partially observable Markov decision processes such as
Monahan[5], Grosfeld-Nir[2], Albright[1], White[10], Itoh and Nakamura[3], Ohnishi, Kawai
and Mine[8] for example.

As for a total expected cost obtainable under optimal policy, some monotonic properties
are obtained in Nakai [7]. Monotonic properties about an optimal policy are treated in this
paper. In Section 2, some essential properties are considered for a case when a decision
only makes a transition among states as a preparation. By using this result, monotonic
properties concerning an optimal policy are considered in Section 3 under assumptions
based on stochastic convexity.
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2 Sequential Decision Problem with Partial Maintenance Consider a product
such as electrical devices, cars, etc. During their life cycle, a condition of this item deteri-
orates. Let (0,∞) be a state space which represents this condition. A condition becomes
better as s increases, and this condition becomes worse as s approaches to 0. Let u(s) be
a terminal cost when a problem is in state s, and assume u(s) to be a decreasing function
of s. If the process is in state s and a level α is selected to maintain this item (1 ≤ α), this
decision makes a transition from state s to a new state αs with cost C(α). C(α) is assumed
to be a non-decreasing and non-negative function of α with C(1) = 0. This is a problem to
select a level α to maintain this item to minimize the total expected cost.

Initially, we will consider a problem where a decision α only makes a transition from a
state in order to prepare for analyzing this problem as a Markov decision process. When the
process is in state s at time n, let wn(s) be a total expected cost obtainable under optimal
policy. The principle of the optimality implies recursive equation (1).

(1) wn(s) = min
1≤α

{C(α) + wn−1(αs)},

where w1(s) = min1≤α{C(α) + u(αs)}.
Consider a function u(s) defined on s ∈ (0,∞) which satisfies an inequality

(2) u(sλt1−λ) ≥ λu(s) + (1 − λ)u(t)

for any s < t and λ where 0 < λ < 1. Throughout this paper, this function u(s) is termed as
P-concave function. In order to observe some monotonic properties concerning an optimal
policy, two properties (Lemmas 1 and 2) are obtained concerning P-concave function.

In subsequent discussions, a terminal cost u(s) is assumed to be a P-concave function. It
is also assumed that C(α) is an increasing and P-concave function of α, and C(α) = log α
and u(s) = −s satisfy these properties. Since λx + (1 − λ)y ≥ xλy1−λ for x < y and
0 ≤ λ ≤ 1, if a function u(s) defined on s ∈ (0,∞) is a decreasing concave function, then
this u(s) is a P-concave function.

Lemma 1 Let u(s) be a P-concave function. If s < t, s′ < t′ where s/t = s′/t′, then

(3) u(t′) − u(s′) ≤ u(t) − u(s).

Proof: Assume s < t < s′ < t′ (s, t, s′, t′ ≥ 0). Let s ≤ s = sλt1−λ ≤ t for any
0 < λ < 1, then λu(s) + (1 − λ)u(t) ≤ u(sλt1−λ) = λu(s) + (1 − λ)u(s), and, therefore,
(u(s)−u(s))/(1−λ) ≥ (u(t)−u(s))/λ. Since log t−log s > 0, s/s = (t/s)1−λ and t/s = (t/s)λ

yield (u(s) − u(s))/(log s − log s) ≥ (u(t) − u(s))/(log t − log s). This inequality implies

u(t) − u(s)
log t − log s

≥ u(s′) − u(t)
log s′ − log t

≥ u(t′) − u(s′)
log t′ − log s′

for any s, t, s′, t′ where s < t < s′ < t′ by simple calculations.
Since s/t = s′/t′ for s < t < s′ < t′, an inequality (u(t) − u(s))/(log t − log s) ≥

(u(t′) − u(s′))/(log t′ − log s′) implies Equation (3) since log t − log s = log t′ − log s′ > 0.
On the other hand, when s < s′ < t < t′ (s, t, s′, t′ ≥ 0), it is also possible to show

inequalities u(t′) − u(t) ≤ u(s′) − u(s) since s/s′ = t/t′ by a method similar to one used
above, i.e. Equation (3), and this completes the proof. 2

Lemma 2 Let v(s) be a function defined by v(s) = minα≥1{C(α) + u(αs)}. If u(s) is a
P-concave function, then v(s) is also a P-concave function.
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Proof: Let v(s) = C(α̂) + u(α̂s) and v(t) = C(α) + u(α̂t). Since α̂λα1−λ ≥ 1 and
u(sλt1−λ) ≥ λu(s) + (1 − λ)u(t) for any λ (0 < λ < 1) and s < t,

v(sλt1−λ) = min
α≥1

{C(α) + u(αsλt1−λ)}

= C(α̂λα1−λ) + u(α̂λα1−λsλt1−λ)
≥ −(λC(α̂) + (1 − λ)C(α)) + λu(α̂s) + (1 − λ)u(αt)
= λv(s) + (1 − λ)v(t)

by an assumption for C(α). This inequality implies v(sλt1−λ) ≥ λv(s)+ (1−λ)v(t) for any
0 < λ < 1 and s < t. 2

If wn−1(s) is a decreasing and P-concave function of s as an induction assumption, then
Lemma 2 yields that wn(s) is also a P-concave function of s. By employing an induction
principle on n, wn(s) is a decreasing function of s as Lemma 3.

Lemma 3 wn(s) is a decreasing and P-concave function of s.

When this problem is in state s at time n, let αn(s) be an optimal decision of this
problem. An optimal decision αn(s) has following monotonic properties related to a state
s and time n as Properties 1 and 2.

Property 1 αn(s) increases as s increases.

Proof: For s < t, put α∗ = αn(s) for n ≥ 1. Since α∗ is an optimal solution for s,
C(α∗) + wn−1(α∗s) ≤ C(α) + wn−1(αs) for any α ≥ 1. For any α < α∗, if

(4) C(α∗) + wn−1(α∗t) ≤ C(α) + wn−1(αt),

then αn(t) ≥ α∗.
For any α (≥ 1), an inequality C(α∗) + wn−1(α∗s) ≤ C(α) + wn−1(αs) implies C(α∗)−

C(α) ≤ wn−1(αs) − wn−1(α∗s). If α∗ > α, Lemma 1 yields wn−1(αt) − wn−1(α∗t) ≥
wn−1(αs) − wn−1(α∗s) since s < t and α∗s/αs = α∗t/αt. Combining these inequalities
implies C(α∗) − C(α) ≤ wn−1(αt) − wn−1(α∗t) for any α < α∗, and this yields Equation
(4).2

Property 2 αn(s) increases as n increases.

Proof: Let s < t and put α∗ = αn(s) for n ≥ 1, then wn(s) = C(α∗) + wn−1(α∗s) and
wn(t) ≤ C(α∗)+wn−1(α∗t). These equations yield wn(t)−wn(s) ≤ wn−1(α∗t)−wn−1(α∗s).
Since wn−1(s) is a P-concave function of s and α∗t

α∗s = t
s (s < t, α∗ > 1), Equation (3)

implies wn−1(α∗t) − wn−1(α∗s) ≤ wn−1(t) − wn−1(s). Combining these inequalities yields
an inequality

(5) wn(t) − wn(s) ≤ wn−1(t) − wn−1(s).

Since αn(s) = α∗, if α∗ > α ≥ 1, then C(α) + wn−1(αs) ≥ C(α∗) + wn−1(α∗s).
Inequality (5) yields wn(αs) − wn(α∗s) ≥ wn−1(αs) − wn−1(α∗s) since α∗ > α ≥ 1 and
s > 0, and, therefore, C(α) + wn(αs) ≥ C(α∗) + wn(α∗s). This yields α∗ ≤ αn+1(s), and
αn(s) ≤ αn+1(s) for any n ≥ 1 and s > 0. 2

When the process is in state s at time n, an optimal decision αn(s) becomes large as s
decreases by Property 1, i.e. it is necessary to repair adequately when the condition is good.
On the other hand, αn(s) becomes large as n increases by Property 2, i.e. it is optimal to
repair adequately when the residual time is long.
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3 Monotonic Properties of Markov Decision Process with Partial Maintenance

3.1 Stochastic Convexity and Concavity Initially, stochastic convexity and concavity
are introduced according to Shaked and Shanthikumar [9]. Let {X(s)}s∈(−∞,∞) be a set
of random variables with parameter s, and SICX(stochastically increasing and convex) and
SICV(stochastically increasing and concave) are defined as follows.

Definition 1 If E[u(X(s))] is increasing convex (concave) function of s for any increasing
convex (concave) function u(s), then {X(s)}s∈(−∞,∞) contains to SICX (SICV).

Consider a set of {X(s)}s∈(−∞,∞) of random variables with parameter s. Let s1, s2, s3, s4

be any four values with s1 ≤ s2 ≤ s3 ≤ s4 and s1 + s4 = s3 + s2. Let Xi = X(si) be four
random variable defined on a common probability space (i = 1, 2, 3, 4). Define sample path
convexity and concavity as following definitions.

Definition 2 If min{X2, X3} ≤ X4 (X1 ≤ min{X2, X3}) a.s. and X2 + X3 ≤ (≥)X1 + X4

a.s., then {X(s)}s∈(−∞,∞) contains to SICX(sp) (SICV(sp)).

Shaked and Shanthikumar [9] show Lemma 4 concerning SICX (SICV) and SICX(sp)
(SICV(sp)).

Lemma 4 If {X(s)}s∈(−∞,∞) contains to SICX(sp) (SICV(sp)), then {X(s)} contains to
SICX (SICV). If {X(s)}s∈(−∞,∞) contains to SICX(sp) (SICV(sp)) and u(·) is an increasing
and convex (concave) function, then {u(X(s))}s∈(−∞,∞) contains to SICX(sp) (SICV(sp)).

These Lemmas implies Example 1 which is useful for a problem treated in this paper.

Example 1 Let Y (µ) be a normal random variable N(µ, σ2) with common variance σ2,
then {Y (µ)}µ∈(−∞,∞) contains to SICX(sp) and SICV(sp).

When X(µ) = eY (µ), set {X(µ)}µ∈(−∞,∞) of random variables contains to SICX(sp)
since u(x) = ex is an increasing and convex function and, therefore, set {X(µ)}µ∈(−∞,∞)

of a log-normal random variable X(µ) contains to SICX(sp), and also SICX.

Let u(x) be a P-convex function of x, then w(y) ≡ u(ey) is a convex function of y since
w(λ log a + (1 − λ) log b) = u(eλ log a+(1−λ) log b) ≤ λu(elog a) + (1 − λ)u(elog b) = λw(a) +
(1 − λ)w(b). On the other hand, let X(s) be a log-normal random variable with a density

function fs(t) = 1√
2πσt

e−
(log t−log s)2

2σ2 =
φlog s,σ2 (log t)

t , where φµ,σ2(x) is a density function
of a normal distribution N(µ, σ2), and Y (s) be a set of random variables N(s, σ2) with
common σ2. It is easy to show

E[u(X(aλb1−λ))] =
∫ ∞

0

faλb1−λ(t)u(t)dt

=
∫ ∞

0

φλ log a−(1−λ) log b,σ2(log t)
t

u(elog t)dt

=
∫ ∞

−∞
φλ log a−(1−λ) log b,σ2(x)w(x)dx.

By Example 1, since {Y (s)} contains to SICX, E[u(X(aλb1−λ))] = E[w(Y (λ log a − (1 −
λ) log b))] ≤ λE[w(Y (log a))] + (1 − λ)E[w(Y (log b))] because w(y) = u(ey) is a convex
function of y. Since E[w(Y (log a))] = E[u(X(a))] and E[w(Y (log b))] = E[u(X(b))],
E[u(X(aλb1−λ))] ≤ λE[u(X(a))] + (1 − λ)E[u(X(b))], and, therefore, E[u(X(s))] be a
P-convex function of x.



MONOTONIC PROPERTIES FOR A SEQUENTIAL DECISION PROBLEM 279

Definition 3 Let u(s) be an increasing and P-convex function. If E[u(X(s))] is an increas-
ing and P-convex function of s, then {X(s)}s∈(−∞,∞) contains to SIPCX (stochastically
increasing and P-convex).

3.2 Markov Decision Process with Partial Maintenance In this section, we treat
this sequential decision problem as a Markov decision process, i.e. a decision makes a
transition from current state to a new state, and after that, the process goes from this state
to a state at the next instant according to a Markovian transition rule P = (ps(t))s,t∈(0,∞).
Whenever a process is in state s, let T (s) be a random variable which represents a new
state after making a transition according to P = (ps(t))s,t∈(0,∞).

When a process is in state s, the decision-maker selects a level α to maintain this item
(α ≥ 1), which makes a transition from state s to a state αs with cost C(α). After that,
process goes from this state to a next state according to the Markovian transition rule P .
When the process is in state s, u(s) is a terminal cost at this state, which is decreasing
and P-concave function of s. This is a problem to select a level α to maintain this item to
minimize the total expected cost. A similar problem is treated in Nakai [6], in which states
are closely related to outcome and expending an additional amount makes a transition from
a current state.

If a process is in state s at time n, let vn(s) be a total expected cost obtainable by
employing an optimal policy. Since the decision-maker initially selects a level α to maintain
this item (α ≥ 1), this decision makes a transition from current state to a state αs, and
after that, this process goes from this state to new state according to P . A random variable
T (αs) represents this new state of the process. After making a transition from a state, if
a process is in state t at the next instant, a total expected cost obtainable under optimal
policy is vn−1(t), and, therefore, a total expected cost is

∫ ∞
0

ps(t)vn−1(t)dt = E[vn−1(T (s))],
when a process is in state s. The principle of the optimality implies the optimality equation

(6) vn(s) = min
α≥1

{C(α) + E[vn−1(T (αs))]},

where v1(s) =minα≥1{C(α) + E[u(T (αs))]}.

Assumption 1 E[u(T (s))] is an increasing and P-concave function of s for any increasing
and P-convex function u(t) of t, i.e. {T (s)|s ∈ (0,∞)} contains to SIPCX.

If {T (s)|s ∈ (0,∞)} contains to SIPCX and u(s) be a decreasing and P-concave function,
then E[−u(T (s))] is an increasing and P-convex function of s since −u(s) is an increasing
and P-convex function, and, therefore, E[u(T (s))] is a decreasing and P-concave function
of s. From this fact, for any decreasing and P-concave function u(t) of t, E[u(T (s))] is a
decreasing and P-concave function of s under Assumption 1.

Example 2 Let ps(t) = 1√
2πσt

e−
(log t−log s)2

2σ2 =
φlog s,σ2 (log t)

t , where φ(x) is a density func-
tion of a normal distribution N(µ, σ2), then ps(t) is a density function of a log-normal
distribution, and, therefore, {T (s)|s ∈ (0,∞)} contains to SIPCX for these ps(t).

Lemma 5 vn(s) is a decreasing and P-concave function.

Proof: We employ an induction principle on n. Since v0(s) = u(s), v0(s) is a decreasing and
P-concave function. If we assume vn−1(s) to be a decreasing and P-concave function, then
E[vn−1(T (αs))] is also a decreasing and P-concave function of s by Assumption 1. Because
E[vn−1(T (αs))] is a decreasing function of s, vn(s) = minα≥1{C(α) + E[vn−1(T (αs))]} is
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also a decreasing function of s. On the other hand, Lemma 2 yields that vn(s) is a P-concave
function, and this completes the proof. 2

Lemma 5 yields that vn(s) is a decreasing and P-concave function of s. By Assumption
1, E[vn(T (s))] is a decreasing and P-concave function of s. By Lemma 1 this function is
P-concave function.

When the process is in state s at time n, let α∗
n(s) be an optimal decision for this

problem, then it has monotonic properties by Lemma 5.

Proposition 1 If s ≤ t, then α∗
n(s) ≤ α∗

n(t), i.e. α∗
n(s) increases as s increases.

Proof: We employ an induction principle on n. A proof of a case for n = 1 is derived
by a method similar to one used in the general case. For n(> 1), let α∗

n(s) = α∗, then
Equation (6) yields

vn(s) = min
α≥1

{C(α) + E[vn−1(T (αs))]} = C(α∗) + E[vn−1(T (α∗s))],(7)

For any α where α∗ ≥ α ≥ 1, if an inequality

(8) C(α) + E[vn−1(T (αt))] ≥ C(α∗) + E[vn−1(T (α∗t))]

is obtained, then α∗
n(s) = α∗ ≤ α∗

n(t), and this completes a proof.
By Equation (7),

C(α) + E[vn−1(T (αs))] ≥ C(α∗) + E[vn−1(T (α∗s))]

for any α ≥ 1, and, therefore,

(9) C(α) − C(α∗) ≥ E[vn−1(T (α∗s))] − E[vn−1(T (αs))].

On the other hand, E[vn−1(T (αs))] is a decreasing and P-concave function of s by Assump-
tion 1. Since α∗t/α∗s = αt/αs and α∗ ≥ α ≥ 1,

E[vn−1(T (αt))] − E[vn−1(T (αs)) ≥ E[vn−1(T (α∗t))] − E[vn−1(T (α∗s))]

as Equation (3). Combining Inequality (9) and this inequality implies Inequality (8), and
this completes the proof. 2

In order to consider a monotonic property for an optimal policy concerning n, Assump-
tion 2 is prepared.

Assumption 2 If s ≤ t, then E[u(T (t))]−E[u(T (s))] ≤ u(t)−u(s) for any decreasing and
P-concave function u(s) of s.

Since vn(s) is a decreasing and P-concave function, Assumption 2 yields E[vn(T (t))] −
E[vn(T (s))] ≤ vn(t) − vn(s) for s < t, and if E[u(T (s))] − u(s) decreases as s increases for
a increasing and P-concave function u(t), then Assumption 2 is satisfied.

First observe a relationship between E[vn(T (t))] − E[vn(T (s))] and E[vn−1(T (t))] −
E[vn−1(T (s))] for s < t and n ≥ 1. Put α∗ = α∗

n(s), then

vn(t) − vn(s) = min
α≥1

{C(α) + E[vn−1(T (αt))]} − {C(α∗) + E[vn−1(T (αs∗))]}

≤ E[vn−1(T (α∗t))] − E[vn−1(T (α∗s))].

On the other hand, Lemma 5 yields that E[vn−1(T (s))] is a decreasing and P-concave
function of s by Assumption 1. Since α∗t/α∗s = t/s and s < t, 1 ≤ α∗, Equation (3)
implies

E[vn−1(T (α∗t))] − E[vn−1(T (α∗s))] ≤ E[vn−1(T (t))] − E[vn−1(T (s))].
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Combining these inequalities yields an inequality

vn(t) − vn(s) ≤ E[vn−1(T (t))] − E[vn−1(T (s))].

By Lemma 5, vn(s) is a P-concave function, and Assumption 2 yields E[vn(T (t))] −
E[vn(T (s))] ≤ vn(t) − vn(s). Combining these two inequalities implies

(10) E[vn(T (t))] − E[vn(T (s))] ≤ E[vn−1(T (t))] − E[vn−1(T (s))],

for any n ≥ 1.

Proposition 2 If s ≤ t, then α∗
n(s) ≤ α∗

n+1(s) for any n ≥ 1.

Proof: We employ an induction principle on n. Since it is possible to obtain a proof for a
case where n = 1 by employing a method similar to one used in the general case, consider
for n(> 2).

When s ≤ t, let α∗
n(s) = α∗ for n > 1, then

C(α) + E[vn−1(T (αs))] ≥ C(α∗) + E[vn−1(T (α∗s))]

for any α∗ ≥ α ≥ 1. On the other hand, Equation (10) implies

E[vn−1(T (α∗s))] − E[vn−1(T (αs))] ≥ E[vn(T (α∗s))] − E[vn(T (αs))],

and, therefore,

(11) C(α) + E[vn(T (αs))] ≥ C(α∗) + E[vn(T (α∗s))].

This implies α∗ ≤ α∗
n+1(s) by an induction principle on n, and α∗

n(s) ≤ α∗
n+1(s) for any

n ≥ 1. 2

By this proposition, a monotonic property of α∗
n(s) concerning n is obtained under

Assumption 2. When a process is in state s at time n, an optimal decision α∗
n(s) becomes

large as s increases, i.e. it is necessary to repair adequately when a condition is good. On
the other hand, α∗

n(s) becomes large as n increases, i.e. it is optimal to repair adequately
when a residual time becomes long. Section 3 concerns monotonic properties for an optimal
policy α∗

n(s) under a stochastic convexity when the process goes from a state to a new state
according to a Markovian transition rule. The stochastic convexity is defined for a set of
random variable with parameter as {T (s)|s ∈ (0,∞)}, which is different to a stochastic
convex order as Shaked and Shanthikumar [9], Kijima and Ohnishi [4] etc.

In this problem, optimal decision varies with a state, which makes a transition from a
state, and after that, the process goes from this state to new state according to a Markov
transition rule. This implies that an order of decision affects future states and decisions.
Let α and α′ be two different decisions (α 6= α′ ≥ 1), then T (α′T (αs)) is a random variable
representing a state after taking decisions initially α and secondary α′ when a process
is in state s. Whenever T (s) is a log-normal random variable with a density function
fs(t) =

φlog s,σ2 (log t)

t as Example 2, it is easy to show two random variables T (α′T (αs))
and T (αt(α′s)) are equivalent for any two decisions α and α′, but it is not true in general.
Moreover, an optimal decision α∗

n−1(t) at the next stage depends on a state t, and an
expected cost by this decision is E[C(α∗

n−1(T (s))].
When a terminal cost u(s) is assumed to be a decreasing and P-convex function, it is

also possible to obtain similar monotonic properties by a method similar to one used in this
paper. For this problem, {T (s)|s ∈ (0,∞)} is assumed to be contained to SIPCV instead
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of Assumption 1, which is defined by a manner similar to one used in Definition 3, but it is
not easy to find a simple example of a set of random variables with a property SIPCV.

By Lemma 5, vn(s) is a decreasing and P-concave function of s. Finally, consider a prop-
erty of vn(s) for n. If E[u(T (s))] ≤ u(s), then v1(s) ≤ u(s), since v1(s) = minα≥1{C(α) +
E[u(T (αs))]}. By employing an induction principle on n, it is easy to show a property that
vn(s) increases as n increases for this case.

Nakai [7] treats a similar problem for a partially observable Markov decision process, and
some monotonic properties are observed concerning a total expected cost obtainable under
optimal policy. In this paper, monotonic properties concerning optimal policy are obtained
as Propositions 1 and 2. But, for a problem on a partially observable Markov process,
similar monotonic properties are rest for future observations, since a property similar to
Equation (2) is not obtained for this case.
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