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Wavelet estimation for hidden periodic components in spatial series.

Junichi Hirukawa
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Abstract. An overlapped wavelet method is proposed to detect the number and
locations of the hidden periodicities in two dimensionally indexed random fields, by
checking if the empirical wavelet coefficients of periodogram have significantly large
absolute values across fine scale levels. The magnitudes of the amplitudes are also
estimated using wavelet coefficients of smaller scale levels than that for the detection of
periodicities. The strong consistency of the estimators is established. Some numerical
examples are given to test the performance of our method.

1 Introduction. Two dimensional hidden periodic model is an important model in ran-

dom fields. In this model, the observation consists of two parts; Yn,m = Gn,m + Xn,m,

(n, m) ∈ N2. The signal part

Gn,m =
q∑

r=1

Ar exp(inλr + imµr)(1)

is a sum of the q sinusoidal signals where λr, µr ∈ (−π, π], r = 1, . . . , q are the horizon-

tal and vertical frequencies, respectively and Ar, r = 1, . . . , q are the amplitudes. The

noise part {Xn,m} is a two dimensionally indexed stationary random field with absolutely

continuous spectral function FX(λ, µ) and whose spectral density fX(λ, µ). Our statistical

problem is how to estimate the parameters q, (λr, µr) and Ar of (1) based on an observation

{Yn,m : 1 ≤ n ≤ N, 1 ≤ m ≤ M}. Suppose that Ar, r = 1, . . . , q are zero mean complex

random variables with P(Ar 6= 0) = 1, σr = E|Ar|2 < ∞ and uncorrelated with each

other. If Ar, r = 1, . . . , q are also uncorrelated with noise {Xn,m}, then {Yn,m} is a weakly

stationary random field with spectral function FY (λ, µ) =
∑q

r=1 σrI[λr, µr] + FX(λ, µ),

where I[λr, µr] denotes the indicator function of the interval [λr,∞) × [µr,∞). Since

FX(λ, µ) is absolutely continuous, FY (λ, µ) has precisely q jump points with jump heights

σr at (λr, µr). Hidden periodic model has been considered by many authors including
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Hannan (1970). He (1987) gave the strong consistent estimators of the parameters in

one dimensional hidden periodic model by checking the magnitudes of the periodogram

JYN (λ) := (2πN)−1
∣∣∣∑N

n=1 Yn exp(inλ)
∣∣∣2 and extended his results to two dimensional case

(He (1999)).

Wavelets have been successfully applied to many fields such as data compression, signal

analysis and image processing. The recently developed mathematical theory of wavelets has

drawn much attention from both statisticians and engineers. In the context of time series,

Wang (1995) considered the detection of jumps and sharp cusps by wavelets in a function

which is observed contaminated with noise. Luan and Xie (2001) proposed a method to

detect the number, locations and heights of jump points of the derivative in the regression

model by wavelets. In regard to one dimensional hidden periodic model, Li and Xie (1997)

gave the strong consistent estimators of the number and locations of hidden periodicities

by following Wang’s wavelet method for the identification of jumps and cusps. However,

it will be seen that their method does not work in many cases. They proposed to use the

empirical wavelet coefficients

αJYN
(j, k) =

∫ π

−π

ψper
j,k (λ)JYN

(λ)dλ

for detection of hidden periodicities, where ψ(x) is so-called mother wavelets (See e.g.,

Daubechies (1992), Meyer (1992)) and

ψper
j,k (x) =

∑
n∈N

√
2πψj,k

(
x + π

2π
+ n

)
=

∑
n∈N

√
2π

2
j
2

ψ

{
2j

(
x + π

2π
+ n

)
− k

}
is the 2π-extension of wavelets (See Wojtaszczyk (1997)). This coefficient has significantly

large absolute value if k is in the set I(λr, 2−2j) = {k : |λ̃k − λr| < 2−2j , or |λ̃k − λr| >

2π − 2−2j , k ∈ Ij}, where λ̃k = (k/2j)2π − π and Ij = {0, 1, . . . , 2j − 1}. But this set will

be empty set as N → ∞ (so j → ∞) in many cases, since the sampling interval of k is too

wide. For instance, when λr = −π
3 this set is an empty set for sufficiently large j, hence

their method does not work. So, we have to modify their method.

Let j, j, J be natural numbers which tend to infinity with the order j ¿ j ¿ J as

N → ∞. We take a nonnegative integer τ = 2J−jζj+ηj from the set IJ =
{
0, 1, . . . , 2J − 1

}
,

where ζj and ηj are the quotient and the remainder of τ divided by 2J−j . We replace λ̃k,

k ∈ Ij and I(λr, 2−2j) by λ̃τ = (τ/2J)2π − π, τ ∈ IJ and I(λr, 2−j) = {τ : |λ̃τ − λr| < 2−j ,
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or |λ̃τ − λr| > 2π − 2−j , τ ∈ IJ}, respectively, then I(λr, 2−j) is not an empty set even for

large j. This suggests that we employ the following empirical wavelet coefficient

α
(ηj)
JYN

(j, k) =
∫ π

−π

ψ
(ηj)
j,k

per
(λ)JYN

(λ)dλ, ψ
(ηj)
j,k

per
(λ) ≡ ψper

j,k

(
λ − 2π

2J
ηj

)
,

as a tool for detection of the hidden periodicities. That is, we take an alternative overlapped

wavelet method to detect the hidden periodicities. This method is essentially the same as

the so-called maximal overlap discrete wavelet transform (MODWT) (See e.g. Percival and

Walden (2000), Nason and Silverman (1995)).

In the first of this paper, we give the always working modification of Li and Xie’s

method and extend it to two dimensionally indexed random fields. We give the estimators

of the number and locations of periodicities. Next, we propose the consistent estimators of

the amplitudes. We employ different scale parameters of wavelets for detection of hidden

periodicities and for estimation of amplitudes. This method is motivated by Wu and Chu

(1993) which employed the kernel-type estimators with different bandwidths for locations

of jump points and for corresponding jump heights.

This paper is organised as follows. Section 2 interprets our modified overlap wavelet

methods. In Section 3 we describe the model and list several assumptions on two dimen-

sionally indexed noise random fields. Section 4 gives main theoretical results and Section 5

gives numerical examples. All the proofs of the theorems are arranged in Section 6.

2 The overlapped wavelets on L2[−π, π)2. Li and Xie (1997) proposed an (usual)

wavelet method to detect the hidden periodicities, but their procedure does not work in

many cases because sampling interval of k is too wide. Therefore, in this section we intro-

duce the overlapped wavelets on L2[−π, π)2 which enable us to always detect the hidden

periodicities. In the context of this paper, the following results in Theorem 1 are true if

the MODWT is replaced by the standard DWT as done in Li and Xie (1997), but those in

Theorem 2 and 3 are not true, so the modifications are essential.

2.1 The ε-decimated wavelet transform. Suppose the data x0, . . . , xT−1 is given.

To simplify, let T = 2J for some integer J . The standard discrete wavelet transform is

based on scaling and wavelets filters G and H, and on ‘binary decimation’ operator D0.
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The filter G (H) is a low (high) pass filter defined by a sequence conventionally denoted

as {gt} ({ht}). The action of the low pass filter is defined by (Gx)k =
∑T−1

t=0 g◦k−txt,

where g◦t =
∑

m∈Z gt+mT , t = 0, . . . , T − 1. The scaling filter should satisfy the internal

orthogonality
∑

t gtgt+2k = 0 for all integers k 6= 0 and
∑

t g2
t = 1. The wavelet filter

H is defined by ht = (−1)tg1−t, for all t, where {·} denotes complex conjugate of {·}.

The binary decimation operator D0 is simply defined as choosing every even member of a

sequence, so (D0x)k = x2k. Then, the mapping of a sequence x to the pair of sequences

(D0Hx,D0Gx) is an orthogonal transformation (See Nason and Silverman (1995)). Let xJ

be the original data at level J , that is, vJ
t = xt, t = 0, . . . , T − 1. Now, for j = J − 1, . . . , 0,

recursively define the smooth vj at level j and the detail wj at level j by vj = D0Gvj+1

and wj = D0Hvj+1, then we have vj = (D0G)J−jvJ and wj = D0H(D0G)J−j−1vJ .

Define other binary decimation operator D1 by (D1x)k = x2k+1, then it is not difficult

to show that the mapping (D1H,D1G) is still an orthogonal transform. Suppose that

εJ−1, εJ−2, . . . , ε0 is a binary sequence of 0, 1, then we can apply operator Dεj at level j.

For each choice of the sequence ε = (εJ−1, εJ−2, . . . , ε0), this will give a different orthogonal

transformation of the original sequence. We shall refer to this transformation as the ε-

decimated discrete wavelet transform. Let S be the shift operator (Sx)t = xt+1 and τ be the

integer which have binary representation ε0ε1 . . . εJ−1, namely for example 31 = {11111}.

For any fixed j, let ζj and ηj be the integers with binary representations ε0ε1 . . . εj−1 and

εjεj+1 . . . εJ−1, therefore ζj and ηj are the quotient and the remainder of τ divided by 2J−j ,

respectively, that is. τ = 2J−jζj + ηj . Then, in the ε-decimated case, we have the smooth

vj
ε = (D0G)J−jSηj vJ and the detail wj

ε = D0H(D0G)J−j−1Sηj vJ .

2.2 The continuous form of overlapped discrete wavelet transform. Wavelets are

based on so-called scaling functions φ which have two key properties. Firstly, φ(t) and all

its integer translates φ(t + k) form an orthonormal set in L2, so that
∫

φ(t)φ(t + k)dt = 0

for all integers k 6= 0, and
∫

φ(t)2dt = 1. Secondly, φ satisfy the two scale relationship

φ(t) =
√

2
∑

k g̃kφ(2t − k), where g̃k ≡ g−k. Then, the mother wavelet ψ is defined by

ψ(t) =
√

2
∑

k h̃kφ(2t − k), where h̃k ≡ (−1)kgk+1 = h−k (See e.g. Daubechies (1992),
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Meyer (1992)). Now, let φper
j,k (·) and ψper

j,k (·) be the periodic scaling functions and wavelets

φper
j,k (t) =

∑
n∈Z

1√
2π

φj,k

(
t + π

2π
+ n

)
, ψper

j,k (t) =
∑
n∈Z

1√
2π

ψj,k

(
t + π

2π
+ n

)
(See Wojtaszczyk (1997)) and associate with a sequence vJ to the function f(t) ∈ L2[−π, π)

by 〈f(t), φper
J,l (t)〉L2[−π,π) = vJ

l and f(t) ≡
∑

k vJ
k φper

J,k (t). Then, it is seen that

vj
k =

(
(D0G)J−jvJ

)
k

= 〈f(t), φper
j,k (t)〉L2[−π,π)

wj
k =

(
D0H(D0G)J−j−1vJ

)
k

= 〈f(t), ψper
j,k (t)〉L2[−π,π).

Similarly, we have in the ε-decimated case

(vj
ε )k =

(
(D0G)J−jSηj vJ

)
k

=
〈

f(t), φper
j,k

(
t − 2π

2J
ηj

)〉
L2[−π,π)

(wj
ε)k =

(
D0H(D0G)J−j−1Sηj vJ

)
k

=
〈

f(t), ψper
j,k

(
t − 2π

2J
ηj

)〉
L2[−π,π)

.

Motivated by the above fact, for wavelets and corresponding scaling functions ψ, φ ∈ L1(R)∩

L2(R), we define

φ
(ε)per
j,k (t) ≡ φper

j,k

(
t − 2π

2J
ηj

)
=

∑
n∈Z

1√
2π

φj,k

(
t + π

2π
+ n − ηj

2J

)
ψ

(ε)per
j,k (t) ≡ ψper

j,k

(
t − 2π

2J
ηj

)
=

∑
n∈Z

1√
2π

ψj,k

(
t + π

2π
+ n − ηj

2J

)
,

then for each τ ∈ {0, 1, . . . , 2J − 1}, {1, ψ
(ε)per
j,k }j≥0,k=0,...,2j−1 forms orthonormal basis

(ONB) in L2[−π, π). Since φ
(ε)per
j,k (t) and ψ

(ε)per
j,k (t) depends on τ only through ηj at level

j, we can represent them as φ
(ηj)per
j,k (t) and ψ

(ηj)per
j,k (t). Then, we have for f(t) ∈ L2[−π, π),

f(t) =
2j0−1∑
k=0

(vj0
ε )kφ

(ηj0 )per

j0,k (t) +
∑
j≥j0

2j−1∑
k=0

(wj
ε)kψ

(ηj)per
j,k (t).

If we retake τ1 = 2J−jk + ηj , then τ1 takes the value in the set IJ and we have the

maximal overlap wavelet coefficients

(wj
ε)k =

√
2π

2
j
2

∫ ∞

−∞
f

(
2π

2j
(x + k) +

2π

2J
ηj − π

)
ψ(x)dx

=
√

2π

2
j
2

∫ ∞

−∞
f

(
2π

2j
x +

2π

2J
τ1 − π

)
ψ(x)dx.

Usually, one needs boundary corrections at −π and π. However, since our objects are

2π-period functions, we need no boundary corrections.
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2.3 The extension of maximal overlap discrete wavelet transform to spatial

series. Let τ (i), i = 1, 2 be the integers whose binary representations are ε
(i)
0 ε

(i)
1 . . . ε

(i)
J−1.

Consider any fixed j and let ζ
(i)
j and η

(i)
j be the integers whose binary representations

ε
(i)
0 ε

(i)
1 . . . ε

(i)
j−1 and ε

(i)
j ε

(i)
j+1 . . . ε

(i)
J−1, namely τ (i) = 2J−jζ

(i)
j + η

(i)
j . For wavelets and corre-

sponding scaling functions ψ(i), φ(i) ∈ L1(R) ∩ L2(R), i = 1, 2, define

φ
(i,η

(i)
j )per

j,k (t) ≡ φ
(i)per
j,k

(
t − 2π

2J
η
(i)
j

)
, ψ

(i,η
(i)
j )per

j,k (t) ≡ ψ
(i)per
j,k

(
t − 2π

2J
η
(i)
j

)
and

f
(ηj)per

1 (j,k,l)(t1, t2) ≡ ψ
(1,η

(1)
j )per

j,k (t1)ψ
(2,η

(2)
j )per

j,l (t2),

f
(ηj)per

2 (j,k,l)(t1, t2) ≡ ψ
(1,η

(1)
j )per

j,k (t1)φ
(2,η

(2)
j )per

j,l (t2),

f
(ηj)per

3 (j,k,l)(t1, t2) ≡ φ
(1,η

(1)
j )per

j,k (t1)ψ
(2,η

(2)
j )per

j,l (t2),

φ
(ηj)per

(j,k,l) (t1, t2) ≡ φ
(1,η

(1)
j )per

j,k (t1)φ
(2,η

(2)
j )per

j,l (t2),

where (ηj) ≡ (η(1)
j , η

(2)
j ). Then, the system {1, f

(ηj)per

i (j,k,l) (t1, t2)}j≥0,k,l=0,...,2j−1,i=1,2,3 forms

ONB in L2[−π, π)2 for each (η(1)
j , η

(2)
j ). Therefore, for any g(x1, x2) ∈ L2[−π, π)2, we have

g(x1, x2) =
2j0−1∑
k=0

2j0−1∑
l=0

β(ηj0 )(j0, k, l)φ(ηj0 )per

(j0,k,l) (x1, x2)

+
∑
j≥j0

 ∑
i=1,2,3

2j−1∑
k=0

2j−1∑
l=0

α
(ηj)
i (j, k, l)f (ηj)per

i (j,k,l) (x1, x2)


with

α
(ηj)
i (j, k, l) =

∫ π

−π

∫ π

−π

f
(ηj)per

i (j,k,l) (t1, t2)g(t1, t2)dt1dt2,

β(ηj)(j, k, l) =
∫ π

−π

∫ π

−π

φ
(ηj)per

(j,k,l) (t1, t2)g(t1, t2)dt1dt2.

Let τ1 = 2J−jk + η
(1)
j , τ2 = 2J−j l + η

(2)
j , so τ1, τ2 ∈ IJ and write λ̃τ1 = 2π

2J τ1 − π, µ̃τ2 =

2π
2J τ2 − π. Then, it is easily shown that the maximal overlap wavelet coefficients become

γ(ηj)
g (j, k, l) ≡

∫ π

−π

∫ π

−π

ϕ
(ηj)per

(j,k,l) (t1, t2)g(t1, t2)dt1dt2(2)

=
2π

2j

∫ ∞

−∞

∫ ∞

−∞
ϕ(x1, x2)g

(
2π

2j
x1 +

2π

2J
τ1 − π,

2π

2j
x2 +

2π

2J
τ2 − π

)
dx1dx2

=
2π

2j

∫ ∞

−∞

∫ ∞

−∞
ϕ(x1, x2)g

(
2π

2j
x1 + λ̃τ1 ,

2π

2j
x2 + µ̃τ2

)
dx1dx2

≡ γg(j, λ̃τ1 , µ̃τ2),
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where ϕ = φ or fi, i = 1, 2, 3, and γ = β or αi, i = 1, 2, 3.

In the following, we use the mother wavelet and the scaling function introduced by Y.

Meyer (See e.g. Meyer (1992), Wojtaszczyk (1997)), which satisfies the following Assump-

tions 1 and 2:

Assumption 1. Let ϕ(i) = φ(i) or ψ(i) and ϕ(i) ∈ L1(R) ∩ L2(R), i = 1, 2.

(i) Fourier transform of ϕ(i) ϕ̂(i)(ωi) are compactly supported on finite interval [−C,C]

and Lipschitz continuous on R.

(ii) ϕ̂(i)(−ωi) = ϕ̂(i)(ωi) and
∫ C

−C
ϕ̂(i)(ωi)dωi 6= 0.

(iii) |ϕ(i)(xi)| ≤ C′

(1+|xi|)u for some u ≥ 3.

In the followings we employ the scaling function satisfying following Assumption 2, which

enables us to estimate the amplitudes.

Assumption 2. 0 ≤ φ̂(i)(ωi) ≤ 1√
2π

, i = 1, 2.

3 Hidden periodic model in two dimensionally indexed random field. In this

section we consider the two dimensional hidden periodic model

(3) Yn,m =
q∑

r=1

Ar exp(inλr + imµr) + Xn,m, (n,m) ∈ N2,

where (λr, µr) ∈ [−π, π), r = 1, . . . , q are constant vectors, called hidden periodicities, and

q is the number of hidden periodicities which is an unknown nonnegative integer.

In order to lead to the consistency of our estimators, we need some assumptions on the

noise {Xn,m}. For s = (s1, s2), t = (t1, t2) ∈ N2, we will assume the usual partial order, i.e.,

s ≤ t means si ≤ ti, i = 1, 2 and s < t means s ≤ t but s 6= t. For i = 1, 2, s ≤(i) t means

si < ti, or si = ti and s3−i ≤ t3−i.
{
Ft : t ∈ N2

}
is said to be an increasing array of σ-fields

under ≤, if s ≤ t implies Fs ⊆ Ft. For any increasing array of σ-fields
{
Ft : t ∈ N2

}
, define

Ft− = ∨s<tFs = max {Fs : s < t}, Fi(t1, t2) = ∨s≤(i)tFs = max
{
Fs : s ≤(i) t

}
, i = 1, 2,

and F1(t−) = F1(t1, t2 − 1), F2(t−) = F2(t1 − 1, t2). A random field
{
Wt : t ∈ N2

}
is said

adapted to
{
Ft : t ∈ N2

}
(or simply

{
Wt,Ft : t ∈ N2

}
is an adapted random field) if Wt is

Ft-measurable for each t ∈ N2. An adapted random field
{
Wt,Ft : t ∈ N2

}
is called a 1/4
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martingale difference (MD) if E (Wt|Ft−) = 0, a.s., a 1/2 leftward martingale difference

(LMD) if E (Wt|F1(t−)) = 0, a.s. and a 1/2 rightward martingale difference (RMD) if

E (Wt|F2(t−)) = 0, a.s., for any t ∈ N2. For any integrable random variable W if it is

true that E(E(W |Fs)|Ft) = E(W |Fs∧t), for any s, t ∈ N2, then we say that {Ft : t ∈ N2}

satisfies F4-condition, where s ∧ t = (min(s1, t1), min(s2, t2)). A 1/2 LMD (or RMD) with

finite identical variance will be a white noise. But F4-condition is required for a 1/4 MD

with finite identical variance to be a white noise.

Suppose that {Wt : t ∈ N2} is a real white noise random field; that is, E(Wt) = 0 ,

E(W 2
t ) = σ2 < ∞ and E(WsWt) = 0, for s 6= t, and let {Xn,m} be a linear random field

given by Xn,m =
∑∞

t1=0

∑∞
t2=0 d(t1, t2)Wn−t1,m−t2 , where d(t1, t2) are real constants with∑∞

t1=0

∑∞
t2=0(t1 + t2)|d(t1, t2)| < ∞. For a white noise random field W =

{
Wt : t ∈ N2

}
,

Ft = σ {Ws : s ≤ t} denotes the information obtained by observing
{
Wt : t ∈ N2

}
up to

time t and we write F(−∞,0) = ∩t1<0F(t1, 0) and F(0,−∞) = ∩t2<0F(0,t2). We introduce the

following five assumptions which are due to He (1995).

Assumption 3. Let W be white noise random field and satisfy one of the following con-

ditions;

(i) W is independent and there exists a nonnegative random variable Y such that E
(
Y 2 log Y

)
<

∞, and for all t ∈ N2
+, x ≥ 0, P (|Wt| ≥ x) ≤ CP (Y ≥ x).

(ii) W is a strictly stationary 1/4 MD white noise with

E (W0 log |W0|)2 < ∞, E
(
W 2

0 |F(−∞,0)

)
= E

(
W 2

0 |F(0,−∞)

)
= σ2.

(iii) W is a strictly stationary ergodic 1/4 MD white noise with

E
(
W 2

0 log |W0|
)

< ∞.(4)

(iv) W is a strictly stationary ergodic 1/2 LMD white noise satisfying (4).

(v) W is a strictly stationary ergodic 1/2 RMD white noise satisfying (4).

Now, we have the following lemma for a linear random field {Xn,m}.
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Lemma 1. Write SX(λ, µ,N,M) =
∑N

n=1

∑M
m=1 Xn,m exp(−inλ) exp(−imµ) and suppose

{Wt1,t2} satisfies one of the conditions of Assumption 3, then

lim sup
N,M→∞

(NM log(NM))−1/2 sup
λ,µ

|SX(λ, µ,N,M)| ≤ 4π(sup
λ,µ

fX(λ, µ))1/2 a.s.,

where fX(λ, µ) is the spectral density function of {Xn,m}.

The proof of Lemma 1 may be found in He (1995). Furthermore, We define the peri-

odogram of {Xn,m} as JX(λ, µ,N,M) = 1
4NMπ2 |SX(λ, µ,N,M)|2.

Corollary 1. With the same condition as that of Lemma 1, we have

lim sup
N,M→∞

1
log(NM)

sup
λ,µ

(JX(λ, µ,N,M)) ≤ 4(sup
λ,µ

fX(λ, µ)) a.s.

For convenience, we give an alphabetical order for the periodicities; that is, for r1 < r2,

we suppose either λr1 < λr2 , or λr1 = λr2 and µr1 < µr2 , and for q = 0 we define
∑0

r=1 = 0.

In the followings, we assume that all the amplitudes Ar, r = 1, . . . , q are positive constants,

which is required for simplifying the problem of estimation for the amplitudes, otherwise

σr = E |Ar|2 should be estimated. With regard to the estimation for the number and the

locations of hidden periodicities, we can show the same results even in the case that Ar,

r = 1, . . . , q are zero mean random variables uncorrelated with each other and {Xn,m}, and

|Ar|2 > A, r = 1, . . . q a.s. with a known constant A.

4 Main theoretical results. Assume the observation {Yn,m : 1 ≤ n ≤ N, 1 ≤ m ≤ M}

is obtained from the model (3) and write G(λ, µ,N,M) =
∑N

n=1

∑M
m=1

∑q
r=1 Ar exp(in(λr−

λ) + im(µr − µ)), then the periodogram of {Yn,m} is given by

JY (λ, µ,N,M) =
1

4NMπ2

∣∣∣ N∑
n=1

M∑
m=1

Yn,m exp(−inλ) exp(−imµ)
∣∣∣2(5)

=
1

4NMπ2

∣∣∣G(λ, µ,N,M)
∣∣∣2 +

1
2NMπ2

<
{(

G(λ, µ,N,M)
)
SX(λ, µ,N,M)

}
+ JX(λ, µ,N,M) ≡ G1 + G2 + JX (say),

where <{·} denotes the real part of {·}. The empirical maximal overlap wavelet coefficients

of the periodogram JY (λ, µ,N,M) using scaling function are given by equation (2) with
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γg = βJY
, namely

β
(ηj)
JY

(j, k, l) ≡
∫ π

−π

∫ π

−π

φ
(ηj)per

(j,k,l) (λ, µ)JY (λ, µ,N,M)dλdµ

=
2π

2j

∫ ∞

−∞

∫ ∞

−∞
φ(x1, x2)JY

(
2π

2j
x1 + λ̃τ1 ,

2π

2j
x2 + µ̃τ2 , N,M

)
dx1dx2

≡ βJY
(j, λ̃τ1 , µ̃τ2),

where τ1 = 2J−jk + η
(1)
j and τ2 = 2J−j l + η

(2)
j , which may be considered as a tool for

detection of the hidden periodicities. At first glance, the condition of orthogonality on

wavelet function seems to be restrictive. However, once one would like to separately detect

jumps and cusps in frequency domain, this condition will be required.

4.1 The magnitudes of empirical overlap wavelet coefficients. To lead to consis-

tency of our estimators, we first investigate the magnitudes of empirical overlap wavelet

coefficients taken on several sets of lattices. Let K > 0 and define the sets of lattices as

Ir,λ

(
2πK

2j

)
≡

{
τ1 : |λ̃τ1 − λr| ≤

2πK

2j
or |λ̃τ1 − λr| ≥ 2π − 2πK

2j
, τ1 ∈ IJ

}
,

Ir,µ

(
2πK

2j

)
≡

{
τ2 : |µ̃τ2 − µr| ≤

2πK

2j
or |µ̃τ2 − µr| ≥ 2π − 2πK

2j
, τ2 ∈ IJ

}
,

Ir

(
2πK

2j

)
= Ir

(
λr, µr,

2πK

2j

)
≡

{
(τ1, τ2) : τ1 ∈ Ir,λ

(
2πK

2j

)
and τ2 ∈ Ir,µ

(
2πK

2j

)
, τ1, τ2 ∈ IJ

}
,

E

(
2πK

2j

)
≡

q⋂
r=1


2πK
2j ≤ |λ̃τ1 − λr| ≤ 2π − 2πK

2j

(τ1, τ2) : or , τ1, τ2 ∈ IJ
2πK
2j ≤ |µ̃τ2 − µr| ≤ 2π − 2πK

2j

 .

We assume the sample size satisfies the following order.

Assumption 4.

lim
N,N→∞

2jN−1 = 0, lim
N,M→∞

2jM−1 = 0, lim
N,M→∞

2−j (NM log NM)
1
4 = 0.

Then, we have the following results for the magnitudes of empirical wavelet coefficients.

Theorem 1. Suppose that Assumptions 1-4 hold, then as N,M → ∞, we have the follow-

ings.



Estimation for periodic components 39

1 For all (τ1, τ2) ∈ E
(

2πK
2j

)
, where K → ∞, as N,M → ∞, we have

βJY
(j, λ̃τ1 , µ̃τ2) = O

(
2jK−1 + 22jN−1 + 22jM−1 + 2−j

√
NM log NM

)
= o(2j) a.s.

2 (a) If (|λ̃τ1 − λr| = 2π
2j K1 or |λ̃τ1 − λr| = 2π − 2π

2j K1), and (|µ̃τ2 − µr| = 2π
2j K2 or

|µ̃τ2 − µr| = 2π − 2π
2j K2), for some constants K1,K2 > 0, then

βJY
(j, λ̃τ1 , µ̃τ2) =

2j |Ar|2

(2π)2

∫ C

−C

∫ C

−C

cos K1ω1 cos K2ω2φ̂(ω1, ω2)dω1dω2

+ o(2j) a.s.

(b) If (|λ̃τ1 − λr| = 2π
2j K1 or |λ̃τ1 − λr| = 2π − 2π

2j K1), and τ2 ∈ Ir,µ

(
2πK
2j

)
,

(
or if

(|µ̃τ2 − µr| = 2π
2j K1 or |µ̃τ2 − µr| = 2π − 2π

2j K1), and τ1 ∈ Ir,λ

(
2πK
2j

)
,
)

where K1 is

some constant and K → 0, as N,M → ∞, then

βJY
(j, λ̃τ1 , µ̃τ2) =

2j |Ar|2

(2π)2

∫ C

−C

∫ C

−C

cos K1ωaφ̂(a)(ωa)φ̂(b)(ωb)dωadωb

+ o(2j) a.s.,

where (a, b) = (1, 2) or (2, 1).

3 For all (τ1, τ2) ∈ Ir

(
2πK
2j

)
where K → 0, as N,M → ∞, we have

(a)

βJY (j, λ̃τ1 , µ̃τ2) =
2j |Ar|2

(2π)2

∫ C

−C

∫ C

−C

φ̂(ω1, ω2)dω1dω2 + o(2j) a.s.

(b)

βJY (j, λ̃τ1 , µ̃τ2) ≤
2j |Ar|2

(2π)2

∫ C

−C

∫ C

−C

φ̂(ω1, ω2)dω1dω2

+ O
(
1 + 22jN−1 + 22jM−1 + 2−j

√
NM log NM

)
a.s.

(c)

βJY (j, λ̃τ1 , µ̃τ2) ≥
2j |Ar|2

(2π)2

{∫ C

−C

∫ C

−C

φ̂(ω1, ω2)dω1dω2

− K2

∫ C

−C

∫ C

−C

ω2
1 + ω2

2

2
φ̂(ω1, ω2)dω1dω2

}
+ O

(
1 + 22jN−1 + 22jM−1 + 2−j

√
NM log NM + 2jK4

)
a.s.
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4.2 Estimation for the number and locations of hidden periodicities. Now, we

construct the estimators for the number and the locations of hidden periodicities. For fixed

j, we define the set Σ(j) as

Σ(j) ≡ {(τ1, τ2) : 2−j |βJY (j, λ̃τ1 , µ̃τ2)| ≥ T0, τ1, τ2 ∈ IJ},

where T0 = A(2π)−2
∫ C

−C

∫ C

−C
φ̂(ω1, ω2)dω1dω2 with 0 < A < |Ar|2, r = 1, . . . , q. The

threshold level T0 depends on the parameter A which is usually unknown. However, we can

change scale parameter j across several levels. Then, the magnitude of 2−j |βJY (j, λ̃τ1 , µ̃τ2)|

is kept constant if (λ̃τ1 , µ̃τ2) is in the neighborhood of hidden periodicities, on the other

hand decreases otherwise. So, we do not have preliminarily to know the parameter A.

If Σ(j) is empty, put q̂ = 0. If Σ(j) is not empty, take an arbitrary small constant

0 < θ1 < 1/2 and decompose the set Σ(j) into subsets Σd, in which two lattices (τ1, τ2) and

(τ ′
1, τ

′
2) are said to be in the same subset if and only if

|λ̃τ1 − λ̃τ ′
1
| ≤ 1

2j(1−θ1)
or |λ̃τ1 − λ̃τ ′

1
| ≥ 2π − 1

2j(1−θ1)

and

|µ̃τ2 − µ̃τ ′
2
| ≤ 1

2j(1−θ1)
or |µ̃τ2 − µ̃τ ′

2
| ≥ 2π − 1

2j(1−θ1)
.

According to the following proof of this paper, we can see that for sufficiently large j, Σ(j)

is uniquely denoted by disjoint union of q̃(N,M) subsets Σ(j) = Σ1 ⊕ · · · ⊕ Σ
eq(N,M). Put

q̂ = q̃(N,M), and let (τ1,d, τ2,d) be one of the maximum points of |βJY
(j, λ̃τ1 , µ̃τ2)| within

the subset Σd, d = 1, . . . , q̂. Denote (λ̃τ1,d
, µ̃τ2,d

) = (λd, µd), then rearranging the (λd, µd)

according to the following order leads to (λ̂r, µ̂r), r = 1, . . . , q̂.

1 If 1
2j(1−θ1) < |λr1 − λr2 | < 2π − 1

2j(1−θ1) and (a) λr1 ≥ π − 1
22j(1−θ1) , then r1 < r2, (b)

λr1 , λr2 < π − 1
22j(1−θ1) and λr1 + 1

2j(1−θ1) < λr2 , then r1 < r2.

2 If |λr1 − λr2 | ≤ 1
2j(1−θ1) or |λr1 − λr2 | ≥ 2π − 1

2j(1−θ1) and (a) µr1
≥ π − 1

22j(1−θ1) , then

r1 < r2, (b) µr1
, µr2

< π − 1
22j(1−θ1) and µr1

+ 1
2j(1−θ1) < µr2

, then r1 < r2.

Then, we have the following results of consistency.

Theorem 2. If the same Assumptions as that of Theorem 1 hold, then we have
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1 limN,M→∞ q̂ = q a.s.

2 |λ̂r − λr| ≤ 2πK
2j and |µ̂r − µr| ≤ 2πK

2j a.s.,

where in addition to Assumption 4, K > 0 satisfies K → 0, as N,M → ∞ and

lim
N,M→∞

2jK
2

= ∞, lim
N,M→∞

2−jNK
2

= ∞, lim
N,M→∞

2−jMK
2

= ∞,(6)

lim
N,M→∞

(
22jK

2
)−1 √

NM log NM = 0.

4.3 Estimation for the amplitudes. Next, we construct the estimators for the ampli-

tudes. Let (τ̂1,r, τ̂2,r) be the lattice {(τ1, τ2) : τ1, τ2 ∈ IJ} which gives the frequency (λ̂r, µ̂r).

That is,

λ̂r ≡ λ̃
bτ1,r

=
2π

2J
τ̂1,r − π, µ̂r ≡ µ̃

bτ2,r
=

2π

2J
τ̂2,r − π.

We propose rescaled βJY
(j′, λ̂r, µ̂r) for the estimators |Âr|2, r = 1, . . . , q̂ where j′ = j(1−θ′)

satisfies

lim
N,M→∞

23jθ′
(
2jK

2
)−1

= 0, lim
N,M→∞

2j(1+θ)′
(
NK

2
)−1

= 0,(7)

lim
N,M→∞

2j(1+θ)′
(
NK

2
)−1

= 0, lim
N,M→∞

24jθ′√
NM log NM

(
22jK

2
)−1

.

Define the estimators of the amplitudes as

Âr =

 (2π)2

2j′

(∫ C

−C

∫ C

−C

φ̂(ω1, ω2)dω1dω2

)−1

βJY (j′, λ̂r, µ̂r)

 1
2

, r = 1, . . . , q̂.

Note that for each (λ̃τ1 , µ̃τ2) in the neighborhood of (λr, µr), the magnitude of the difference

between 2−j′
βJY

(j′, λ̃τ1 , µ̃τ2) and 2−j′
βJY

(j′, λr, µr) is smaller than that of the difference

between 2−jβJY (j, λ̃τ1 , µ̃τ2) and 2−jβJY (j, λr, µr). Now, we have the following results.

Theorem 3. If the same Assumptions as that of Theorem 1 hold, then we have

lim
N,M→∞

Âr = Ar + O

((
K2−jθ′

)2
)

a.s.

5 Numerical simulations. To test the performances of proposed methods, we carry out

the simulation for the following examples. The selected model is Yn,m =
∑3

r=1 Ar exp (i(λrn + µrm))

+Xn,m, with Xn,m = 0.4Xn−1,m + 0.45Xn,m−1 + Wn,m and
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1. (A1, λ1, µ1) = (1.5,−1, 5,−0.5), (A2, λ2, µ2) = (1, 1, 2), (A3, λ3, µ3) = (0, 0, 0), Wn,m =

W1,n,m,

2. (A1, λ1, µ1) = (1.5,−1.5,−0.5), (A2, λ2, µ2) = (1, 1, 2), (A3, λ3, µ3) = (0, 0, 0), Wn,m =

W2,n,m,

3. (A1, λ1, µ1) = (1.5,−1.5,−0.5), (A2, λ2, µ2) = (1.2,−1.5, 2), (A3, λ3, µ3) = (1, 1, 2),

Wn,m = W1,n,m,

4. (A1, λ1, µ1) = (1.5,−1.5,−0.5), (A2, λ2, µ2) = (1.2,−1.5, 2), (A3, λ3, µ3) = (1, 1, 2),

Wn,m = W2,n,m,

where {W1,n,m} are i.i.d. N (0, 2) noise and W2,n,m = W1,n,mW1,n−1,m−1.

We employ the scaling function of the Meyer wavelet whose Fourier transform φ̂(i)(ωi) is

given by φ̂(i)(ωi) = (2π)−1/2 cos [(π/2) ν {(3/2π) |ωi| − 1}], where ν(x) =
(∫ ∞

−∞ f1(t)dt
)−1

∫ x

−∞ f1(t)dt, f1(x) = f(x)f(1−x), f(x) = e−1/x2
if x ≥ 0 and f(x) = 0 if x ≤ 0. The graph

of φ̂(ω1, ω2) = φ̂(1)(ω1)φ̂(2)(ω2) is plotted in Figure 1. Figure 2 is a observation of example

4 (signal+noise) with N=100 and M=98.

Figures 1 and 2 are about here.

It is easy to seen that

βJY (j, λ̃τ1 , µ̃τ2) =
(
NM2j

)−1
L−1∑

n=1−L

L−1∑
m=1−L

min{N,N−n}∑
n′=max{1,1−n}

min{M,M−m}∑
m′=max{1,1−m}

Yn+n′,m+m′Y n′,m′ φ̂

(
n2π

2j
,
m2π

2j

)
e−ineλτ1 e−imeµτ2 ,

where supp{φ̂(i)(ω)} ⊂ [−C,C] and L =
[
2jC/ (2π)

]
+ 1.

Figures 3-6 are 2−j |βJY (j, λ̃τ1 , µ̃τ2)| of example 4 with (j, J) = (3, 7), (4, 7), (5, 7),

and (6, 7), respectively. It is seen that as j is increasing, the noise components will be

smaller. Tables 1 and 2 show the pair (τ1,d, τ2,d), r = 1, 2, 3 for each (j, J) in examples

2 and 4, which gives the maximum (second and third) peak value M1 (M2 and M3) of

2−j |βJY
(j, λ̃τ1 , µ̃τ2)|, respectively. It is also seen that for large j M3 of example 2 is small

enough, on the other hand M1 and M2 of example 2 and M1, M2 and M3 of example 4

are almost constant. Therefore, we employ (λ̂r, µ̂r), r = 1, . . . , q with (j, J) = (6, 8) for
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the detection of hidden periodicities. On the other hand we construct the estimators for

the amplitudes Âr, r = 1, . . . , q, using this (λ̂r, µ̂r) and j′ = 4. The performances of our

estimators (λ̂r, µ̂r, Âr), r = 1 . . . , q for 30 times experiments in examples 1-4 are listed in

Table 3.

Figures 3-6 are about here.

Tables 1-3 are about here.

6 Proofs of Theorems. Here, we give the proofs of results in Section 4.

6.1 Proof of Theorem 1. First, we observe that βJY (j, λ̃τ1 , µ̃τ2) = βG1(j, λ̃τ1 , µ̃τ2) +

βG2(j, λ̃τ1 , µ̃τ2) + βJX
(j, λ̃τ1 , µ̃τ2), where βG1 , βG2 and βJX

are overlap wavelet coefficients

of G1, G2 and JX in (5), respectively. For the signal component, we have

βG1(j, λ̃τ1 , µ̃τ2) =
(
2πNM2j

)−1
∫ ∞

−∞

∫ ∞

−∞
φ(x1, x2)∣∣∣∣G (

2π

2j
x1 + λ̃τ1 ,

2π

2j
x2 + µ̃τ2 , N,M

)∣∣∣∣2 dx1dx2

=
(
2πNM2j

)−1
∫ ∞

−∞

∫ ∞

−∞
φ(x1, x2)∣∣∣∣∣

N∑
n=1

M∑
m=1

q∑
r=1

Are
in(λr−eλτ1−

2π

2j x1)eim(µr−eµτ2−
2π

2j x2)

∣∣∣∣∣
2

dx1dx2

=
(
NM2j

)−1
q∑

r1,r2=1

Ar1Ar2

L−1∑
n=1−L

L−1∑
m=1−L

ein(λr1−eλτ1 )eim(µr1−eµτ2 )

φ̂

(
n2π

2j
,
m2π

2j

) min{N,N−n}∑
n′=max{1,1−n}

ein′(λr1−λr2 )

min{M,M−m}∑
m′=max{1,1−m}

eim′(µr1−µr2 ).

Put δ0 = min{|λs1 −λs2 |, |µt1 −µt2 | : λs1 6= λs2 , µt1 6= µt2 , s1, s2, t1, t2 = 0, 1, . . . , q}, where

λ0 = λq − 2π, µ0 = max1≤r≤q{µr} − 2π, then we have∣∣∣∣∣∣
min{N,N−n}∑

n′=max{1,1−n}

ein′(λr1−λr2 )

∣∣∣∣∣∣ ·
∣∣∣∣∣∣

min{M,M−m}∑
m′=max{1,1−m}

eim′(µr1−µr2 )

∣∣∣∣∣∣
=

∣∣BN−|n|(λr1 − λr2)
∣∣ · ∣∣BM−|m|(µr1 − µr2)

∣∣
=


(N − |n|)(M − |m|) for r1 = r2

≤ {sin(δ0/2)}−1 (N − |n|) = O(N) for λr1 = λr2 and µr1 6= µr2

≤ {sin(δ0/2)}−1 (M − |m|) = O(M) for λr1 6= λr2 and µr1 = µr2

≤ | sin(δ0/2)|−2 otherwise,
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where BT (θ) = sin {(Tθ)/2} / sin(θ/2). Since

(
NM2j

)−1 ∑
r1 6=r2

Ar1Ar2

L−1∑
n=1−L

L−1∑
m=1−L

ein(λr1−eλτ1 )eim(µr1−eµτ2 )φ̂

(
n2π

2j
,
m2π

2j

)
min{N,N−n}∑

n′=max{1,1−n}

ein′(λr1−λr2 )

min{M,M−m}∑
m′=max{1,1−m}

eim′(µr1−µr2 ) = O
(
2jN−1 + 2jM−1

)
,

we can see that

βG1(j, λ̃τ1 , µ̃τ2) = 2−j

q∑
r=1

|Ar|2
L−1∑

n=1−L

L−1∑
m=1−L

ein(λr−eλτ1 )eim(µr−eµτ2 )φ̂

(
n2π

2j
,
m2π

2j

)
(

1 − |n|
N

)(
1 − |m|

M

)
+ O

(
2jN−1 + 2jM−1

)
= 2−j

q∑
r=1

|Ar|2
L−1∑

n=1−L

L−1∑
m=1−L

ein(λr−eλτ1 )eim(µr−eµτ2 )φ̂

(
n2π

2j
,
m2π

2j

)
+ O

(
22jN−1 + 22jM−1

)
= 2−j

q∑
r=1

|Ar|2
L−1∑

n=1−L

L−1∑
m=1−L

cos(n(λr − λ̃τ1)) cos(m(µr − µ̃τ2))φ̂
(

n2π

2j
,
m2π

2j

)
+ O

(
22jN−1 + 22jM−1

)
.

Now, we have the following Lemmas 2-4 for overlap wavelet coefficients of signal com-

ponents.

Lemma 2. For all (τ1, τ2) ∈ E( 2πK
2l ), where K → ∞, as N,M → ∞, we have

βG1(j, λ̃τ1 , µ̃τ2) = O
(
2jK−1 + 22jN−1 + 22jM−1

)
= o(2j).

Proof. In this case, for any |x1| <
√

K/2, |x2| <
√

K/2 and r = 1, . . . , q, we have

πK

2j
<

∣∣∣∣λr − λ̃τ1 −
2π

2j
x1

∣∣∣∣ < 2π − πK

2j
or

πK

2j
<

∣∣∣∣µr − µ̃τ2 −
2π

2j
x2

∣∣∣∣ < 2π − πK

2j
,

therefore, ∣∣∣∣B2L−1(λr − λ̃τ1 −
2π

2j
x1)B2L−1(µr − µ̃τ2 −

2π

2j
x2)

∣∣∣∣
≤ (2L − 1)

sin 1
2

πK
2j

<
(2L − 1)

2
π

1
2

πK
2j

= (2L − 1)2jK−1.

Thanks to (iii) of Assumption 1 and Assumption 3, we have for K ′ → ∞,∫
|x1|<K′

∫
|x2|≥K′

φ(x1, x2)dx1dx2 ≤
∫ ∞

−∞

∫
|x2|≥2l′

φ(x1, x2)dx1dx2

=
(∫ ∞

−∞
φ(1)(x1)dx1

)(∫
|x2|≥K′

φ(2)(x2)dx2

)
= O(K ′−(u−1)).
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Hence, from

2−j

q∑
r=1

|Ar|2
L−1∑

n=1−L

L−1∑
m=1−L

ein(λr−eλτ1 )eim(µr−eµτ2 )φ̂

(
n2π

2j
,
m2π

2j

)

≤
{
2π2j

)−1
q∑

r=1

|Ar|2
∫
|x1|<

√
K/2

∫
|x2|<

√
K/2∣∣∣∣B2L−1(λr − λ̃τ1 −

2π

2j
x1)B2L−1(µr − µ̃τ2 −

2π

2j
x2)

∣∣∣∣ φ(x1, x2)dx1dx2

+
(2L − 1)2

2π2j

q∑
r=1

|Ar|2
{∫

|x1|≥
√

K/2

∫ ∞

−∞
φ(x1, x2)dx1dx2

+
∫
|x1|<

√
K/2

∫
|x2|≥

√
K/2

φ(x1, x2)dx1dx2

}
= O(2−j)O

(
(2L − 1)2jK−1

)
+ O

(
(2L − 1)22−j

)
O

(
K−u−1

2

)
= O

(
2jK−1

)
+ O

(
2jK−1K−u−3

2

)
= O

(
2jK−1

)
,

we have βG1(j, λ̃τ1 , µ̃τ2) = O(2jK−1 + 22jN−1 + 22jM−1) = o(2j).

Lemma 3. (a) If (|λ̃τ1 − λr| = 2π
2j K1 or |λ̃τ1 − λr| = 2π − 2π

2j K1), and (|µ̃τ2 − µr| =

2π
2j K2 or |µ̃τ2 − µr| = 2π − 2π

2j K2), for some constants K1,K2 > 0, then

βG1(j, λ̃τ1 , µ̃τ2) =
2j |Ar|2

(2π)2

∫ C

−C

∫ C

−C

cos K1ω1 cos K2ω2φ̂(ω1, ω2)dω1dω2

+ O
(
1 + 22jN−1 + 22jM−1

)
.

(b) If (|λ̃τ1 − λr| = 2π
2j K1 or |λ̃τ1 − λr| = 2π − 2π

2j K1), and τ2 ∈ Ir,µ( 2πK
2j ),

(
or if (|µ̃τ2 −

µr| = 2π
2j K1 or |µ̃τ2 − µr| = 2π − 2π

2j K1), and τ1 ∈ Ir,λ( 2πK
2j ),

)
where K1 is some

constant and K → 0, as N,M → ∞, then

βG1(j, λ̃τ1 , µ̃τ2) =
2j |Ar|2

(2π)2

∫ C

−C

∫ C

−C

cos K1ω1φ̂(ω1, ω2)dω1dω2

+ O
(
1 + 2jK2 + 22jN−1 + 22jM−1

)
.

Proof. For all (τ1, τ2) ∈ Ir( 2πK′

2j ) with some constant K ′, |x1| < 2
j
2 , |x2| < 2

j
2 and p 6= r,

we have for sufficiently large j

δ0

2
< |λp − λ̃τ1 −

2π

2j
x1| < 2π − δ0

2
or

δ0

2
< |µp − µ̃τ2 −

2π

2j
x2| < 2π − δ0

2
,

so,
∣∣∣B2L−1(λp − λ̃τ1 − 2π

2j x1)B2L−1(µp − µ̃τ2 − 2π
2j x2)

∣∣∣ ≤ (2L − 1) (sin(δ0/4))−1. Therefore,



46 J. Hirukawa

it is seen that

2−j
∑
p6=r

|Ap|2
L−1∑

n=1−L

L−1∑
m=1−L

ein(λp−eλτ1 )eim(µp−eµτ2 )φ̂

(
n2π

2j
,
m2π

2j

)
≤

(
2π2j

)−1 ∑
p 6=r

|Ap|2
∫
|x1|<2

j
2

∫
|x2|<2

j
2

∣∣∣B2L−1(λp − λ̃τ1 −
2π

2j
x1)

B2L−1(µp − µ̃τ2 −
2π

2j
x2)

∣∣∣φ(x1, x2)dx1dx2

+
(2L − 1)2

2π2j

∑
p6=r

|Ap|2
{ ∫

|x1|≥2
j
2

∫ ∞

−∞
φ(x1, x2)dx1dx2

+
∫
|x1|<2

j
2

∫
|x2|≥2

j
2

φ(x1, x2)dx1dx2

}

≤ O(2−j)O(2L − 1) + O

(
(2L − 1)2

2j

)
O

(
2−

j
2 (u−1)

)
= O

(
1 + 2−

j
2 (u−3)

)
= O(1)

and

βG1(j, λ̃τ1 , µ̃τ2) =
|Ar|2

2j

L−1∑
n=1−L

L−1∑
m=1−L

cos(n(λr − λ̃τ1)) cos(m(µr − µ̃τ2))

φ̂

(
n2π

2j
,
m2π

2j

)
+ O(22jN−1 + 22jM−1 + 1).

Since

L−1∑
n=1−L

L−1∑
m=1−L

cos
n2π

2j
K1 cos

m2π

2j
K2φ̂

(
n2π

2j
,
m2π

2j

)

=
22j

(2π)2

∫ C

−C

∫ C

−C

cos K1ω1 cos K2ω2φ̂(ω1, ω2)dω1dω2 + O(2j),

(a) is obvious. Next, with regard to (b), since

L−1∑
n=1−L

L−1∑
m=1−L

cos
n2π

2j
K1φ̂

(
n2π

2j
,
m2π

2j

)

=
22j

(2π)2

∫ C

−C

∫ C

−C

cos K1ω1φ̂(ω1, ω2)dω1dω2 + O(2j),
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we can see that

βG1(j, λ̃τ1 , µ̃τ2) =
|Ar|2

2j

L−1∑
n=1−L

L−1∑
m=1−L

cos(n(λr − λ̃τ1)) cos(m(µr − µ̃τ2))

φ̂

(
n2π

2j
,
m2π

2j

)
+ O

(
22jN−1 + 22jM−1 + 1

)
=

|Ar|2

2j

L−1∑
n=1−L

L−1∑
m=1−L

cos
n2π

2j
K1

(
1 + O(m2(µr − µ̃τ2)

2)
)
φ̂

(
n2π

2j
,
m2π

2j

)
+ O

(
22jN−1 + 22jM−1 + 1

)
=

|Ar|2

2j

L−1∑
n=1−L

L−1∑
m=1−L

cos
n2π

2j
K1φ̂

(
n2π

2j
,
m2π

2j

)
+ O

(
2jK2 + 22jN−1 + 22jM−1 + 1

)
=

2j |Ar|2

(2π)2

∫ C

−C

∫ C

−C

cos K1ω1φ̂(ω1, ω2)dω1dω2

+ O
(
2jK2 + 22jN−1 + 22jM−1 + 1

)
.

Lemma 4. For all (τ1, τ2) ∈ Ir( 2πK
2j ) where K → 0, as N,M → ∞, we have

(a) βG1(j, λ̃τ1 , µ̃τ2) = 2j |Ar|2
(2π)2

∫ C

−C

∫ C

−C
φ̂(ω1, ω2)dω1dω2 + o(2j)

(b) βG1(j, λ̃τ1 , µ̃τ2) ≤
2j |Ar|2
(2π)2

∫ C

−C

∫ C

−C
φ̂(ω1, ω2)dω1dω2 + O(1 + 22jN−1 + 22jM−1)

(c) βG1(j, λ̃τ1 , µ̃τ2) ≥
2j |Ar|2
(2π)2

{∫ C

−C

∫ C

−C
φ̂(ω1, ω2)dω1dω2

−K2
∫ C

−C

∫ C

−C
ω2

1+ω2
2

2 φ̂(ω1, ω2)dω1dω2

}
+ O(1 + 22jN−1 + 22jM−1 + 2jK4).

Proof. According to proof of Lemma 3, we have

βG1(j, λ̃τ1 , µ̃τ2) =
|Ar|2

2j

L−1∑
n=1−L

L−1∑
m=1−L

cos(n(λr − λ̃τ1)) cos(m(µr − µ̃τ2))

φ̂

(
n2π

2j
,
m2π

2j

)
+ O

(
22jN−1 + 22jM−1 + 1

)
.

Since

L−1∑
n=1−L

L−1∑
m=1−L

φ̂

(
n2π

2j
,
m2π

2j

)
=

22j

(2π)2

∫ C

−C

∫ C

−C

φ̂(ω1, ω2)dω1dω2 + O(2j),(8)
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(a) and (b) are obvious. With regard to (c), from equation (8) and

L−1∑
n=1−L

L−1∑
m=1−L

n2φ̂

(
n2π

2j
,
m2π

2j

)
=

24j

(2π)4

∫ C

−C

∫ C

−C

ω1
2φ̂(ω1, ω2)dω1dω2

+ O(23j),

we can see that

L−1∑
n=1−L

L−1∑
m=1−L

cos(n(λr − λ̃τ1)) cos(m(µr − µ̃τ2))φ̂
(

n2π

2j
,
m2π

2j

)

=
L−1∑

n=1−L

L−1∑
m=1−L

(
1 − n2

2
|λr − λ̃τ1 |2 + O(n4|λr − λ̃τ1 |4)

)
(

1 − m2

2
|µr − µ̃τ2 |2 + O(m4|µr − µ̃τ2 |4)

)
φ̂

(
n2π

2j
,
m2π

2j

)
≥

L−1∑
n=1−L

L−1∑
m=1−L

φ̂

(
n2π

2j
,
m2π

2j

)

−
(

2πK

2j

)2 L−1∑
n=1−L

L−1∑
m=1−L

(
n2 + m2

2

)
φ̂

(
n2π

2j
,
m2π

2j

)
+ O(22jK4)

=
22j

(2π)2

∫ C

−C

∫ C

−C

φ̂(ω1, ω2)dω1dω2 + O(2j)

− 22jK2

(2π)2

∫ C

−C

∫ C

−C

ω1
2 + ω2

2

2
φ̂(ω1, ω2)dω1dω2 + O(2jK2) + O(22jK4).

Hence,

βG1(j, λ̃τ1 , µ̃τ2) ≥
2j |Ar|2

(2π)2
{ ∫ C

−C

∫ C

−C

φ̂(ω1, ω2)dω1dω2

− K2

∫ C

−C

∫ C

−C

ω2
1 + ω2

2

2
φ̂(ω1, ω2)dω1dω2

}
+ O

(
1 + 22jN−1 + 22jM−1 + 2jK4

)
.

Next, we have the following result for overlap wavelet coefficients of noise components.

Lemma 5. Assume that Assumptions 1-4 hold, then

βJX
(j, λ̃τ1 , µ̃τ2) = O

(
2−j log NM

)
a.s.
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Proof. From Corollary 1, we can see that supλ,µ{JX(λ, µ,N,M)} ≤ O(log NM) a.s., hence,

|βJX
(j, λ̃τ1 , µ̃τ2)|

≤ 2π

2j

∫
R2

φ(x1, x2)
∣∣∣∣JX

(
2π

2j
x1 + λ̃τ1 ,

2π

2j
x2 + µ̃τ2 , N,M

)∣∣∣∣ dx1dx2

≤ 2π

2j
sup
λ,µ

{JX(λ, µ,N,M)}
∫

R2
φ(x1, x2)dx1dx2

=
2π

2j
O(log NM)

∫
R2

φ(x1, x2)dx1dx2 = O
(
2−j log NM

)
a.s.

Furthermore, we have the following result for overlap wavelet coefficients of cross com-

ponents.

Lemma 6. Assume that Assumptions 1-4 hold, then

βG2(j, λ̃τ1 , µ̃τ2) = O
(
2−j

√
NM log NM

)
a.s.

Proof. It can be seen that

βG2(j, λ̃τ1 , µ̃τ2) =
1

NM2jπ

∫ ∞

−∞

∫ ∞

−∞
φ(x1, x2)<

{
G

(
2π

2j
x1 + λ̃τ1 ,

2π

2j
x2 + µ̃τ2 , N,M

)
SX

(
2π

2j
x1 + λ̃τ1 ,

2π

2j
x2 + µ̃τ2 , N,M

)}
dx1dx2

≤
supλ,µ |SX(λ, µ,N,M)|

NM2j

∫ ∞

−∞

∫ ∞

−∞
φ(x1, x2)∣∣∣∣G (

2π

2j
x1 + λ̃τ1 ,

2π

2j
x2 + µ̃τ2 , N,M

)∣∣∣∣ dx1dx2

≤
supλ,µ |SX(λ, µ,N,M)|

2j

q∑
r=1

|Ar|
∫ ∞

−∞

∫ ∞

−∞
φ(x1, x2)dx1dx2

= O
(
2−j

√
NM log NM

)
a.s.

Combining the results of Lemmas 2-6, the proof of Theorem 1 is completed.

6.2 Proof of Theorem 2. According to 1 of Theorem 1, for all (τ1, τ2) ∈ E( 2πK
2j ) with

any K → ∞, as N,M → ∞, it follows that βJY (j, λ̃τ1 , µ̃τ2) = o(2j) a.s. Therefore, for

any (τ1, τ2) ∈ Σ(j), there exist r (1 ≤ r ≤ q) and some constant 0 < θ < θ1 which satisfy
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(τ1, τ2) ∈ Ir( 2π
2j(1−θ) )∩Σ(j) if j is sufficiently large. If the lattices (τ1, τ2), (τ ′

1, τ
′
2) are in the

same set Ir( 2π
2j(1−θ) ), then

|λ̃τ1 − λ̃τ ′
2
| ≤ |λ̃τ1 − λr| + |λ̃τ ′

1
− λr| ≤

4π

2j(1−θ)
=

1
2j(1−θ1)

4π

2j(θ1−θ)
<

1
2j(1−θ1)

,

|λ̃τ1 − λ̃τ ′
2
| ≥ |λ̃τ1 − λr| − |λ̃τ ′

1
− λr| ≥ 2π − 4π

2j(1−θ)
> 2π − 1

2j(1−θ1)

or

λ̃τ1 , λ̃τ ′
1
∈

[
0,

2π

2j(1−θ)

)
, or λ̃τ1 , λ̃τ ′

1
∈

(
2π − 2π

2j(1−θ)
, 2π

]
,

that is,

|λ̃τ1 − λ̃τ ′
1
| <

1
2j(1−θ1)

or |λ̃τ1 − λ̃τ ′
1
| > 2π − 1

2j(1−θ1)

and similarly

|µ̃τ2 − µ̃τ ′
2
| <

1
2j(1−θ1)

or |µ̃τ2 − µ̃τ ′
2
| > 2π − 1

2j(1−θ1)
.

So, we can see that all the lattices (τ1, τ2) ∈ Ir( 2π
2j(1−θ) ) ∩ Σ(j) are in the same Σd, hence

q̂ = q̃(N,M) ≤ q a.s.

On the other hand for large j, Ir( 2π
2j(1−θ) ), r = 1, . . . , q are disjoint, so Ir( 2π

2j(1−θ) ) ∩

Σ(j), r = 1, . . . , q are disjoint, too. Since if r1 6= r2, then δ0 ≤ |λr1 − λr2 | ≤ 2π − δ0 or

δ0 ≤ |µr1 − µr2 | ≤ 2π − δ0, we have for any (τ1, τ2) ∈ Ir1(
2π

2j(1−θ) ), (τ ′
1, τ

′
2) ∈ Ir2(

2π
2j(1−θ) ),

r1 6= r2 and large j,

1
2j(1−θ1)

< |λ̃τ1 − λ̃τ ′
1
| < 2π − 1

2j(1−θ1)
or

1
2j(1−θ1)

< |µ̃τ2 − µ̃τ ′
2
| < 2π − 1

2j(1−θ1)
.

Hence, if r1 6= r2, any lattices (τ1, τ2) in the set Ir1(
2π

2j(1−θ) ) and (τ ′
1, τ

′
2) in the set Ir2(

2π
2j(1−θ) )

will not belong to same Σd. According to 3(a) of Theorem 1, for any lattices (τ1, τ2) ∈

Ir( 2π2−jθ

2j ) where θ > 0 is an arbitrary constant, we have 2−j |βJY
(j, λ̃τ1 , µ̃τ2)| > T0. That is

Ir( 2π
2j(1+θ) ) ⊂ Σ(j) ∩ Ir( 2π

2j(1−θ) ). Since inside each Ir( 2π
2j(1+θ) ) with j(1 + θ) ¿ J , there is at

least one points coming from the set {(τ1, τ2) : τ1, τ2 ∈ IJ}, it follows that Σ(j)∩Ir( 2π
2j(1+θ) ) =

Ir( 2π
2j(1+θ) ) 6= {∅}. Therefore, for large N,M , so for large j, we have q̂ = q̃(N,M) ≥ q a.s.,

which complete the proof of 1 of Theorem 2.
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With regarding to 2 of Theorem 2, according to the proof of 1 of Theorem 2, for any

1 ≤ d ≤ q̃(N,M), there exists 1 ≤ r ≤ q such that Σd = Ir( 2π
2j(1−θ) ) ∩ Σ(j) with some

constant θ > 0. Hence, the maximum points of |βJY (j, λ̃τ1 , µ̃τ2)| within the subset Σd

belong to Ir( 2π
2j(1−θ) ). According to 1, 2, 3(a) of Theorem 1 and since for any K1,K2 > 0,

∫ C

−C

∫ C

−C

cos K1ω1 cos K2ω2φ̂(ω1, ω2)dω1dω2 <

∫ C

−C

∫ C

−C

φ̂(ω1, ω2)dω1dω2,∫ C

−C

∫ C

−C

cos K1ω1φ̂(ω1, ω2)dω1dω2 <

∫ C

−C

∫ C

−C

φ̂(ω1, ω2)dω1dω2,

there exist K > 0 with K → 0, as N,M → ∞, such that for any constant θ > 0

max
(τ1,τ2)∈Ir

“

2π

2j(1−θ)

”

{|βJY (j, λ̃τ1 , µ̃τ2)|} = max
(τ1,τ2)∈Ir( 2πK

2j )
{|βJY (j, λ̃τ1 , µ̃τ2)|}.

For any K > 0 where K → 0, as N,M → ∞, we take K > 0 as limN,M→∞ KK−1 =

limN,M→∞ K2K
−1

= 0. Then, for all (τ1, τ2) ∈
{

Ir( 2πK
2j ) − Ir( 2πK

2j )
}

, we have

2πK

2j
< |λr − λ̃τ1 | < 2π − 2πK

2j

or

2πK

2j
< |µr − µ̃τ2 | < 2π − 2πK

2j

hold. Therefore, according to proof of 3(c) of Theorem 1, we can see that

max
{
|βJY (j, λ̃τ1 , µ̃τ2)| : (τ1, τ2) ∈

{
Ir(

2πK

2j
) − Ir(

2πK

2j
)
}}

<
2j |Ar|2

(2π)2

{∫ C

−C

∫ C

−C

φ̂(ω1, ω2)dω1dω2

− K
2
min

{ ∫ C

−C

∫ C

−C

ω2
1

2
φ̂(ω1, ω2)dω1dω2,

∫ C

−C

∫ C

−C

ω2
2

2
φ̂(ω1, ω2)dω1dω2

}}
+ O(1 + 22jN−1 + 22jM−1 + 2−j

√
NM log NM + 2jK4),

and if K also satisfies the order of (6), then O(1 + 22jN−1 + 22jM−1

+2−j
√

NM log NM + 2jK4) = o(2jK
2
). Furthermore, for any (τ1, τ2) ∈ Ir( 2π eK

2j ) where
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K̃ → 0 and K̃K
−1 → 0, as N,M → ∞, we have

βJY (j, λ̃τ1 , µ̃τ2) =
2j |Ar|2

(2π)2

∫ C

−C

∫ C

−C

φ̂(ω1, ω2)dω1dω2

+ O(1 + 22jN−1 + 22jM−1 + 2−j
√

NM log NM + 2jK̃2)

=
2j |Ar|2

(2π)2

∫ C

−C

∫ C

−C

φ̂(ω1, ω2)dω1dω2 + o(2jK
2
)

> max
{
|βJY (j, λ̃τ1 , µ̃τ2)| : (τ1, τ2) ∈

{
Ir(

2πK

2j
) − Ir(

2πK

2j
)
}}

.

Hence, we have (λd, µd) ∈ Ir( 2πK
2j ), and so, for large j (λd, µd) = (λ̂r, µ̂r).

6.3 Proof of Theorem 3. Since (λ̂r, µ̂r) ∈ Ir( 2πK
2j ) = Ir( 2πK2−jθ′

2j′ ) and θ′ > 0 satisfies

(7), it follows that

βJY
(j′, λ̃

bτ1,r
, µ̃

bτ2,r
) =

2j′ |Ar|2

(2π)2

∫ C

−C

∫ C

−C

φ̂(ω1, ω2)dω1dω2

+ O

(
2j′

(
K2−jθ′

)2
)

a.s.

Therefore,

Âr =

[
(2π)2

2j′

(∫ C

−C

∫ C

−C

φ̂(ω1, ω2)dω1dω2

)−1

{
2j′ |Ar|2

(2π)2

∫ C

−C

∫ C

−C

φ̂(ω1, ω2)dω1dω2 + O

(
2j′

(
K2−jθ′

)2
)}] 1

2

=
(
|Ar|2 + O

((
K2−jθ′

)2
)) 1

2

= Ar + O

((
K2−jθ′

)2
)

a.s.
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Figure 1: The graph of φ̂(ω1, ω2).

Figure 2: The observation of example 4.

Figure 3: 2−jβJY
(j, λ̃τ1 , µ̃τ2) of example 4 with j = 3, J = 7.
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Figure 4: 2−jβJY
(j, λ̃τ1 , µ̃τ2) of example 4 with j = 4, J = 7.

Figure 5: 2−jβJY (j, λ̃τ1 , µ̃τ2) of example 4 with j = 5, J = 7.

Figure 6: 2−jβJY
(j, λ̃τ1 , µ̃τ2) of example 4 with j = 6, J = 7.
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(j,J) 4,6 4,7 4,8 5,6 5,7 5,8 6,6 6,7 6,8

(M1) 0.340 0.341 0.343 0.299 0.302 0.309 0.225 0.235 0.254
(M2) 0.155 0.157 0.158 0.132 0.139 0.141 0.089 0.108 0.114
(M3) 0.091 0.092 0.092 0.033 0.036 0.037 0.024 0.024 0.027

τ1,1, τ2,1 17,27 33,54 67,108 17,27 33,54 67,108 17,27 33,54 67,108
-1.473 -1.522 -1.497 -1.473 -1.522 -1.497 -1.473 -1.522 -1.497

λ1, µ1 -0.491 -0.491 -0.491 -0.491 -0.491 -0.491 -0.491 -0.491 -0.491
τ1,2, τ2,2 42,52 84,105 169,209 42,52 84,105 169,209 42,52 84,105 169,209

0.982 0.982 1.006 0.982 0.982 1.006 0.982 0.982 1.006
λ2, µ2 1.963 2.013 1.988 1.963 2.013 1.988 1.963 2.013 1.988

Table 1: The peak values (M1)-(M3) and (λd, µd) in example 2.

(j,J) 4,6 4,7 4,8 5,6 5,7 5,8 6,6 6,7 6,8

(M1) 0.371 0.372 0.374 0.318 0.322 0.328 0.238 0.249 0.269
(M2) 0.240 0.241 0.244 0.189 0.200 0.205 0.120 0.155 0.167
(M3) 0.143 0.156 0.159 0.127 0.134 0.136 0.085 0.104 0.110

τ1,1, τ2,1 17,27 33,54 67,108 17,27 33,54 67,108 17,27 33,54 67,108
-1.473 -1.522 -1.497 -1.473 -1.522 -1.497 -1.473 -1.522 -1.497

λ1, µ1 -0.491 -0.491 -0.491 -0.491 -0.491 -0.491 -0.491 -0.491 -0.491
τ1,2, τ2,2 17,52 34,105 67,209 17,52 33,105 67,209 17,52 33,105 67,209

-1.473 -1.473 -1.497 -1.473 -1.522 -1.497 -1.473 -1.522 -1.497
λ2, µ2 1.963 2.013 1.988 1.963 2.013 1.988 1.963 2.013 1.988

τ1,3, τ2,3 43,52 85,105 168,209 42,52 84,105 169,209 42,52 84,105 169,209
1.080 1.031 0.982 0.982 0.982 1.006 0.982 0.982 1.006

λ3, µ3 1.963 2.013 1.988 1.963 2.013 1.988 1.963 2.013 1.988

Table 2: The peak values (M1)-(M3) and estimators (λd, µd) in example 4.

1 mean sd 2 mean sd 3 mean sd 4 mean sd

-1.497 0.000 -1.497 0.000 -1.497 0.000 -1.497 0.000
bλ1, bµ1 -0.491 0.000 bλ1, bµ1 -0.491 0.000 bλ1, bµ1 -0.491 0.000 bλ1, bµ1 -0.491 0.000

1.006 0.000 1.006 0.000 -1.497 0.000 -1.497 0.000
bλ2, bµ2 1.991 0.008 bλ2, bµ2 1.992 0.009 bλ2, bµ2 1.997 0.012 bλ2, bµ2 1.993 0.010

- - - - 1.006 0.000 1.006 0.000
bλ3, bµ3 - - bλ3, bµ3 - - bλ3, bµ3 1.995 0.011 bλ3, bµ3 1.997 0.012

bA1 1.451 0.016 bA1 1.453 0.015 bA1 1.461 0.013 bA1 1.460 0.016
bA2 0.967 0.009 bA2 0.969 0.009 bA2 1.193 0.015 bA2 1.193 0.013
bA3 - - bA3 - - bA3 0.983 0.011 bA3 0.983 0.010

Table 3: The performances of estimators in examples 1-4.
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