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Abstract. In this paper we prove the existence and decay of global solutions with
small initial data for a nonlinear second order ordinary differential equation of the form
ẍ(t) + ρ(ẋ(t)) + g(x(t)) = f(x, ẋ, t), where ρ(y) behaves as |y|ry, r ≥ 0, and g(x) as
|x|px, p ≥ 0, in a neighborhood of the origin (x, y) = (0, 0), and f(x, ẋ, t) is a nonlinear
pertubation.

1 Introduction. In this paper we are concerned with the initial value problem to second
order nonlinear ordinary differential equations of the form

ẍ + ρ(ẋ) + g(x) = f(x, ẋ, t), 0 ≥ 0, (1.1)

with
x(0) = x0, ẋ(0) = x1, (1.2)

where ρ(y) behaves as |y|ry, r > 0, and g(x) as |x|px, p > 0, in a neighborhood of the origin
(x, y) = (0, 0).

For the nonlinear perturbation term f(x, y, t) we assume that as follows:

Hyp.A

(1) f(x, y, t) is continuous in (x, y, t) ∈ R2×[0,∞) and satisfies a local Lipshitz condition,

|f(x1, y1, t) − f(x2, y2, t)| ≤ L(|x1 − x2| + |y1 − y2|) if (xi, yi) ∈ B(R), i = 1, 2,

where R > 0 is a fixed positive number and we set

B(R) = {(x, y) ∈ R2||x|2 + |y|2 < R2}

.
(2)

|f(x, y, t)| ≤ k(|x|α+1 + |y|β+1) if (x, y) ∈ B(R)

for some α > 0 and β > 0 with k > 0.

If both of ρ(y) and g(x) are linear, that is, if ρ(y) = ay, a > 0, and g(x) = bx, b > 0, it
is easy to show that the problem admits a unique solution x(t) for small data (x0, x1), and

E(t) ≡
1

2
(|ẋ(t)|2 + |x(t)|2) ≤ CE(0)e−λt

with some λ > 0, where C is a constant . Indeed, it is an easy application of the constant
variational formula to semilinear equation. But, such a method is not applicable to the case
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ρ(y) and/or g(x) are nonlinear with ρ′(0) = 0 and/or g′(0) = 0, that is, ρ(y) and/or g(x)
are degenerate at x = y = 0.

Further, we note that when f is independent of ẋ and t, that is, when f = f(x),
the global existence is easily proved for small data (x0, x1) by use of the property of the
potential function U(x) = G(x) − F (x) where F ′(x) = f(x),G′(x) = g(x). But, such a
standard argument can not be generally applied if f depends on ẋ and/or t.

Our equation (1.1) is a rather standard nonlinear second order ordinary differential
equation naturally suggested by the typical weakly nonlinear equation ẍ + ẋ + x = f(x).
However, no result concerning the global existence is found in standard books( cf. [3],[4],[5]
and [6]), and our purpose here is to show the global existence and decay for the problem
(1.1) by a new device.

When ρ(y) = |y|ry, g(x) = |x|px and f ≡ 0 the problem admits a unique solution x(t)
for each (x0, x1) ∈ R2 and we know

E(t) ≡
1

2
|ẋ(t)|2 +

1

p + 2
|x(t)|p+2 ≤ C0(1 + t)−µ (1.3)

with µ = (p + 2)/(pr + p + r) where C0 is a constant depending on E(0) (see [8]). It is easy
to see that the decay rate is optimal if p = 0. For the special case ρ(y) = y , g(x) = x3

and f ≡ 0 the asymptotic behaviour of solutions is precisely investigated by Ball and Carr
[2]. By a result of [2] we see that the decay rate in (1.3) is also optimal if r = 0 and p = 2.
In the present paper we refine the argument in [8] and show the global existence of small
amplitude solutions satisfying the property (1.3) for the problem (1.1)-(1.2). For generality
we consider in fact the equation of the form

ẍ + ρ(x, ẋ, t) + g(x) = f(x, ẋ, t), t ≥ 0, (1.1)′

where ρ(x, y, t) is a function which behaves as |y|ry in a neighbourhod of the origin (x, y) =
(0, 0).

2 Statements of main results. First we state the precise assumptions on ρ(x, y, t) and
g(x).

Hyp.B ρ(x, y, t) is locally Lipshitz continuous on B(R), R > 0, for each t , continuous
on B(R) × [0,∞) and satisfies

k0|y|
r+2 ≤ ρ(x, y, t)y ≤ k1(|y|

2 + |y|r+2), (2.1)

for some r ≥ 0 and some constants k0, k1 > 0 independent of t.

Hyp.C g(x) is a Lipshitz continuous function on [−R, R], R > 0, satisfying

g(0) = 0 and k2|x|
p+2 ≤ G(x) ≤ k3g(x)x ≤ k4(|x|

2 + |x|p+2), (2.2)

for some p ≥ 0 with some positive constants ki, i = 2, 3, 4.

It is easy to see that the problem admits a unique local in time solution x(t) for each
(x0, x1) ∈ B(R). Our result reads as follows:

Theorem 2.1 Assume that

2α > 3p + 2r(p + 2) and β > 2(pr + p + r)/(p + 2).
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Then under assumptions Hyp.A,Hyp.B and Hyp.C, there exists δ > 0 such that if (x0, x1) ∈
B(δ), the problem (1.1)’-(1.2) admits a unique global solution x(t) on [0,∞), satisfying

E(t) ≡
1

2
|ẋ(t)|2 + G(x(t)) ≤ C0(1 + t)−µ (2.3)

with µ = (p +2)/(pr + p + r) where G(x) =
∫ x

0
g(ξ)dξ and C0 denotes a constant depending

on |x0| + |x1|. ( When p = r = 0 (2.3) is replaced by an exponential decay estimate.)

For illustration we give three nontrivial examples.

Example1. Consider
ẍ + ẋ3 + x3 = x8ẋ2. (2.4)

By Young’s inequality we see

|x8y2| ≤
16

25
(|x|25/2 + |y|50/9).

In this case we can take p = r = 2, α = 23/2 > 11 and β = 41/9 > 4, and we see that the
required conditions are satisfied. Thus , if |x0|+ |x1| is sufficiently small the above problem
admits a unique solution on [0,∞). The solutions satisfy

E(t) =
1

2
|ẋ(t)|2 +

1

4
|x(t)|4 ≤ C0(1 + t)−1/2.

Example 2. Consider

ẍ(t) + (1 − |x|2)ẋ + |x|x = x3(t)sint. (2.6)

Since
|x3sint| ≤ |x|3

and
3

4
|y|2 ≤ |(1 − |x|2)y2| ≤ |y|2 if |x| ≤ 1/2

we can take r = 0, p = 1, α = 2 > 3/2 and β = arbitrary > 2/3. Thus , if |x0| + |x1| is
sufficiently small the problem admits a unique solution on [0,∞). The solutions satisfy

E(t) =
1

2
|ẋ(t)|2 +

1

3
|x(t)|3 ≤ C0(1 + t)−3.

Example 3. Consider

ẍ(t) + (1 − |x|)|ẋ|ẋ + x = x2ẋ. (2.7)

Since
1

2
|y|3 ≤ |(1 − |x|)|y|y2 ≤ |y|3 if |x| ≤ 1/2

and

|x|2|y| ≤
4

7
(|x|7/2 + |y|7/3)

we can take r = 1, p = 0, α = 5/2 > 2 and β = 4/3 > 1. Thus , if |x0| + |x1| is sufficiently
small the problem admits a unique solution on [0,∞). The solutions satisfy

E(t) =
1

2
(|ẋ(t)|2 + |x(t)|2) ≤ C0(1 + t)−2.
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3 Estimation for 0 ≤ t ≤ 1. Let (x0, x1) ∈ B(R). We can assume that the solution
x(t) exists on [0, T ) for some T > 0. In this section we show that T can be taken as T > 1
if |x0| + |x1| is appropriately small.

Proposition 3.1 There exists δ0 > 0 such that if 0 < E(0) ≤ δ0, then

E(t) < K < 2E(0) if 0 ≤ t < T and 0 ≤ t ≤ 1 (3.1)

where E(t) is defined in (2.3) and K > 0 is a constant independent of T .

Proof.

Suppose that E(t) ≤ 2E(0) and (x(t), ẋ(t)) ∈ B(R) on [0, T̂ ] for some T̂ such that T̂ < T
and T̂ ≤ 1. Then, multiplying the equation by ẋ(t) we see

E(t) ≤ E(0) +

∫ t

0

|f(x, ẋ, t)ẋ|ds

≤ E(0) + C

∫ t

0

(|x(s)|α+1|ẋ(s)| + |ẋ(s)|β+2)ds

≤ E(0) + C sup
0≤s≤T̂

(E(α+1)/(p+2)+1/2(s) + E(β+2)/2(s))

≤ E(0) + C
(

(2E(0))(2α−p)/2(p+2) + (2E(0))β/2
)

sup
0≤s≤T̂

E(s), 0 ≤ t ≤ T̂ , (3.2)

where C denotes constants independent of x(t) which may change from line to line.
Assume that

C
(

(2E(0))(2α−p)/2(p+2) + (2E(0))β/2
)

< 1/2

which is satisfied if E(0) ≤ δ0 with a small δ0 > 0( note that 2α > p and β > 0). Then we
have from (3.2) that if E(0) 6= 0,

sup
0≤s≤T̂

E(s) < K < 2E(0) (3.3)

for some K > 0 independent of T̂ and T . Since δ0 is small the estimate (3.3) implies that
if 0 < E(0) < δ0, then x(t) exists and E(t) never reaches the value K on the interval [0, T )
or [0, 1]. Consequently, the assertion (3.1) holds. q.e.d.

The estimate (3.1) is independent of T and hence it shows that the solution x(t) exists
in fact beyond t = 1, that is, we can take T > 1. Further, by the estimate (3.3) we see that
if 0 < E(0) ≤ δ0, then

E(t) < 2E(0) for 0 ≤ t ≤ T̃ . (3.1)′

for some T̃ , 1 < T̃ < T .

4 A difference inequality. We assume E(0) < δ0 as in Proposition 3.1. We derive a
difference inequality for E(t) on [0, T ) by use of the similar arguments as in [7, 8] which
will be useful to show the boundedness and decay of E(t).

Multiplying the equation by ẋ(t) and integrating we have for 0 ≤ t < T − 1,

∫ t+1

t

ρ(x(s), ẋ(s), s)ẋ(s)ds
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= E(t) − E(t + 1) +

∫ t+1

t

F (s)ẋ(s)ds ≡ D(t)2, (4.1)

where we set F (t) = f(x(t), ẋ(t), t).
By the assumption on ρ ,

∫ t+1

t

|ẋ(s)|r+2ds ≤ CD(t)2 (4.2)

and hence,
∫ t+1

t

|ẋ(s)|2ds ≤ CD(t)4/(r+2). (4.3)

From (4.3) there exist t1 ∈ [t, t + 1/4], t2 ∈ [t + 3/4, t + 1] such that

|ẋ(ti)| ≤ CD(t)2/(r+2).

( Note that C may change from line to line.)
Multiplying the equation by x(t) and integrating on [t1, t2] we have

∫ t2

t1

g(x(s))x(s)ds = ẋ(t1)x(t1) − ẋ(t2)x(t2)

+

∫ t2

t1

|ẋ(s)|2ds +

∫ t2

t1

(F (s)x(s) − ρ(x(s), ẋ(s), s)x(s))ds

≤ C

(

D(t)2/(r+2) sup
t≤s≤t+1

|x(s)| + D(t)4/(r+2) + D(t)2(r+1)/(r+2) sup
t≤s≤t+1

|x(s)|

)

+C

∫ t+1

t

|F (s)||x(s)|ds. (4.4)

It follows from (4.3),(4.4) and the assumption (2.2) that
∫ t2

t1

E(s)ds ≤ C
(

D(t)2/(r+2) + D(t)2(r+1)/(r+2)
)

sup
t≤s≤t+1

E(s)1/(p+2)

+CD(t)4/(r+2) + +C

∫ t+1

t

|F (s)||x(s)|ds ≡ A(t)2 (4.5)

and there exists t∗ ∈ [t + 1/4, t + 3/4] such that

E(t∗) ≤ 2A(t)2.

Returning to the energy identity as (4.1), that is,

E(t̂) +

∫ t̂

t∗
ρ(x(s), ẋ(s), s)ẋ(s)ds = E(t∗) +

∫ t̂

t∗
F (x(s))ẋ(s)ds, t ≤ t̂ ≤ t + 1,

we have
sup

t≤s≤t+1
E(s) ≤ E(t∗)

+

∫ t+1

t

ρ(x(s), ẋ(s), s))ẋ(s)ds +

∫ t+1

t

|F (s)ẋ(s)|ds

≤ 2A(t)2 + D(t)2 +

∫ t+1

t

|F (s)ẋ(s)|ds. (4.6)

Recalling the definition of A(t)2 and applying Young’s inequality we arrive at the following
difference inequality.
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Proposition 4.1 We have

sup
t≤s≤t+1

E(s) ≤ C
(

D(t)2(p+2)/(p+1)(r+2) + D(t)2(r+1)(p+2)/(p+1)(r+2)

+D(t)4/(r+2) + D(t)2
)

+

∫ t+1

t

|F (s)|(|ẋ(s)| + |x(s)|)ds, 0 ≤ t < T − 1, (4.7)

where D(t)2 is defined by (4.1).

5 Boundedness of E(t) on [0,∞). We shall derive the boundedness of E(t) on [0,∞)
from the difference inequality (4.7). We assume for a moment that

E(0) < δ0 and E(t) ≤ 2E(0) for 0 ≤ t ≤ T̃ , 1 < T̃ < T. (5.1)

By (3.1)’ we see that (5.1) is certainly valid for some T̃ > 1. We shall show that (5.1) is
valid in fact for all T̃ , T̃ < T . For this we use an idea similar to the one used in [9]( see also
Amerio and Prouse [1]).

We suppose that E(t) ≤ E(t + 1) for some 0 ≤ t ≤ T̃ − 1. Then it follows from (4.7)
that

sup
t≤s≤t+1

E(s)

≤ C{

(

(

∫ t+1

t

|F (s)ẋ(s)|ds

)(p+2)/(p+1)(r+2)

+

(
∫ t+1

t

|F (s)ẋ(s)|ds

)(r+1)(p+2)/(p+1)(r+2)

+

(
∫ t+1

t

|F (s)ẋ(s)|ds

)2/(r+2)

+

(
∫ t+1

t

|F (s)|(|ẋ(s)| + |x(s)|)ds

)

}. (5.2)

Here, we see by Hyp A,(2),

∫ t+1

t

|F (s)ẋ(s)|ds ≤ C

∫ t+1

t

(|x(s)|α+1 + |ẋ(s)|β+1)|ẋ(s)|ds

≤ C( sup
t≤s≤t+1

E(s)(2α+p+4)/2(p+2) + sup
t≤s≤t+1

E(s)(β+2)/2). (5.3)

Similarly,

∫ t+1

t

|F (s)||x(s)|ds ≤ C

∫ t+1

t

(|x(s)|α+1 + |ẋ(s)|β+1)|x(s)|ds

≤ C( sup
t≤s≤t+1

E(s)(α+2)/(p+2) + sup
t≤s≤t+1

E(s)((β+1)(p+2)+2)/2(p+2)). (5.4)

We have from (5.1), (5.2),(5.3) and (5.4) that

sup
t≤s≤t+1

E(s) ≤ C{ sup
t≤s≤t+1

E(s)(2α+p+4)/2(p+1)(r+2) + sup
t≤s≤t+1

E(s)(β+2)(p+2)/2(p+1)(r+2)

+ sup
t≤s≤t+1

E(s)(2α+p+4)(r+1)/2(p+1)(r+2) + sup
t≤s≤t+1

E(s)(β+2)(p+2)(r+1)/2(p+1)(r+2)

+ sup
t≤s≤t+1

E(s)(2α+p+4)/(p+2)(r+2) + sup
t≤s≤t+1

E(s)(β+2)/(r+2)

+ sup
t≤s≤t+1

E(s)(2α+p+4)/2(p+2) + sup
t≤s≤t+1

E(s)(β+2)/2}



GLOBAL EXISTENCE AND DECAY 135

+C( sup
t≤s≤t+1

E(s)(α+2)/(p+2) + sup
t≤s≤t+1

E(s)((β+1)(p+2)+2)/2(p+2)).

≤ Q1(E(0)) sup
t≤s≤t+1

E(s), 0 ≤ t ≤ T̃ − 1, (5.5)

where we set

Q1(E(0)) = C

5
∑

i=1

(E(0)µi + E(0)νi) (5.6)

with

µ1 =
2α − 3p − 2(p + 1)r

2(p + 1)(r + 2)
, µ2 =

(2α + p + 4)r + 2α − 3p − 2(p + 1)r

2(p + 1)(r + 2)
,

µ3 =
2α − p − pr − 2r

(p + 2)(r + 2)
, µ4 =

2α − p

2(p + 2)
, µ5 =

α − p

p + 2

and

ν1 =
(p + 2)β − 2(pr + p + r)

2(p + 1)(r + 2)
, ν2 =

(β + 2)r + (p + 2)β − 2(pr + p + r)

2(p + 1)(r + 2)
,

ν3 =
β − r

r + 2
, ν4 =

β

2
, ν5 =

β(p + 2) − p

2(p + 2)
.

By the assumptions 2α > 3p+2(p+1)r and (p+2)β > 2(pr +p+ r) we see that µi > 0 and
νi > 0 for all i = 1, · · · , 5, and hence, Q1(0) = 0. Therefore there exists 0 < δ1 ≤ δ0 such that
if E(0) < δ1, then Q1(E(0)) < 1. Thus, we obtain from (5.5) that E(s) = 0, t ≤ s ≤ t + 1.
Note that (5.5) is derived under the assumption that E(t) ≤ E(t+1). Consequently, we see
that E(t + 1) ≤ E(t) for all 0 ≤ t ≤ T̃ − 1 if E(0) < δ1, and this fact implies further that

E(t) ≡ 0 or E(t) ≤ sup
0≤s≤1

E(s) < 2E(0), 0 ≤ t ≤ T̃ . (5.7)

Note that the estimate (5.7) is proved under the assumption (5.1) and further (5.7) is more
strict or better than (5.1). From this observation we can conclude that the solution in fact
exists on [0,∞) and satisfies the estimate (5.7) for all t ≥ 0.

6 Completion of the proof of Theorem. We shall show the decay estimate of E(t)
and complete the proof of Theorem 2.1. We return to the difference inequality (4.7), which
is now valid for all t ≥ 0. Since E(t + 1) ≤ E(t) for all t ≥ 0 we have from (4.7) and (5.4)
that

sup
t≤s≤t+1

E(s) ≤ C
(

D0(t)
2(p+2)/(p+1)(r+2) + D0(t)

2(p+2)(r+1)/(p+1)(r+2)

+D0(t)
4/(r+2) + D0(t)

2
)

+ CQ1(E(0)) sup
t≤s≤t+1

E(s) (6.1)

where we set

D0(t)
2 = E(t) − E(t + 1).

Now we make the further assumption which is essentially the same as Q1(E(0)) < 1,

CQ1(E(0)) ≤
1

2
. (6.2)

The condition (6.2) is realized if

E(0) ≤ δ2 (6.3)
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for some small δ2, 0 < δ2 < δ1 ≤ δ0. Then we have from (6.1) that

sup
t≤s≤t+1

E(s)

≤ C
(

D0(t)
2(p+2)/(p+1)(r+2) + D0(t)

2(p+2)(r+1)/(p+1)(r+2) + D0(t)
4/(r+2) + D0(t)

2
)

≤ C0D
2(p+2)/(p+1)(r+2)
0 , (6.4)

where C0 denotes constants depending on E(0). It follows from (6.4) that

sup
t≤s≤t+1

E(s)1+(p+r+pr)/(p+2) ≤ C0(E(t) − E(t + 1)), 0 ≤ t < ∞. (6.5)

Applying the lemma below we obtain the decay estimate

E(t) ≤ C0(1 + t)−(p+2)/(p+r+pr).

When p = r = 0 we have the usual exponential decay E(t) ≤ C0e
−λt with some λ > 0. The

proof of Theorem3.1 is complete.

Lemma 6.1 ([7]) Let φ(t) be a positive function on [0, T ), T > 1, satisfying φ(t+1) ≤ φ(t)
and

sup
t≤s≤t+1

φ(s)1+γ ≤ k (φ(t) − φ(t + 1)) , 0 ≤ t ≤ T − 1

with k > 0, γ > 0. Then

φ(t) ≤

(

( sup
0≤s≤1

φ(s))−γ +
γ

k
(t − 1)+

)−1/γ

≤ C0(1 + t)−1/γ , 0 ≤ t < T,

where C0 is a constant depending on sup0≤s≤1 φ(s) and k. (When γ = 0 we have φ(t) ≤

C0e
−λt with some λ > 0.)

Remark. The proof of the above lemma is given in [7] under the assumption that φ(t)
is nonincreasing in t. But it is valid if φ(t + 1) ≤ φ(t) for each t ≥ 0.
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