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RESAMPLING PROCEDURE IN ESTIMATION OF OPTIMAL

PORTFOLIOS FOR TIME-VARYING ARCH PROCESSES

HIROSHI SHIRAISHI

Abstract. This paper discusses a resampling procedure in estimation of optimal
portfolios when the returns are the class of nonstationary ARCH models with time-
varying parameters. The asymptotic properties of weighted Gaussian quasi maximum

likelihood estimators θ̂GQML of time-varying ARCH(p) processes are studied, includ-
ing asymptotic normality. In particular, the extra bias due to nonstationarity of the
process is investigated. We consider bias adjusted estimators θ∗

GQML by use of re-

sampling. In this paper we assume that the optimal portfolio weight g depends on the
ARCH parameter θ, i.e., g = g(θ). Then the asymptotic distribution of the optimal

portfolio estimator g(θ∗
GQML) is derived. We numerically evaluate the magnitude

of g(θ̂GQML) and g(θ∗
GQML) for actual financial data, which shows eventually the

effect of bias adjustment.

1. Introduction

In the theory of portfolio analysis, optimal portfolio weights are determined by the
mean µ and variance Σ of the portfolio return. Several authors proposed estimators of
the optimal portfolio weights as functions of the sample mean µ̂ and the sample variance
Σ̂ for independent returns of assets. However, empirical studies show that financial re-
turn processes are often dependent. ¿From this point of view, Shiraishi (2005), Shiraishi
and Taniguchi (2008) considered the asymptotic efficiency of optimal portfolio weight
estimators when the returns are Gaussian or non-Gaussian linear stationary processes.
Furthermore, Shiraishi and Taniguchi (2006) considered that when the returns are non-
Gaussian linear locally stationary processes. Although the above papers took care of the
dependency of the return processes, they are not enough because it is known that finan-
cial return processes often have non-linearity of the past observations. To describe this
phenomenon, the ARCH model is introduced by Engle (1982) and its related models such
as the GARCH model are also introduced by many researchers. Furthermore, Dahlhaus
and Rao (2006) introduced a time-varying ARCH (tvARCH) model which is a class of
ARCH models with time-varying parameters. They studied the parameter estimation for
tvARCH(p) models by weighted Gaussian quasi maximum likelihood methods. Further-

more, they showed that the estimator θ̂GQML has asymptotic normality and the bias can
be explained in terms of the derivatives of the tvARCH process. In this paper, denoting
the optimal portfolio weights by a function g = g(θ) of ARCH parameter θ, we discuss

the asymptotic property of optimal portfolio weight estimators (i.e. g(θ̂GQML)) when
the returns are vector-valued non-Gaussian tvARCH(p) processes with time dependent
mean.

Since the nonstationarity of the process causes the estimator to be biased, we also
consider bias adjusted estimators by use of resampling. In general, it is difficult to apply
resampling to dependent data, because the idea is to simulate sampling from the pop-
ulation by sampling from the sample under the i.i.d. assumption. Hall and Yao (2003)
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and Shiraishi (2010) suggested a resampling procedure when the process is GARCH
model. In a similar way to the procedure, we show that stationary ARCH processes
(which locally approximate tvARCH processes) can be generated. Then, based on the
approximated ARCH processes, unbiased estimators θ∗

GQML for ARCH parameter θ can
be constructed, which implies that we can construct unbiased optimal portfolio weight
estimators g(θ∗

GQML).

This paper is organized as follows. First, following Dahlhaus and Rao (2006), we
show that a weighted Gaussian quasi maximum likelihood estimator has a good property
when the tvARCH process with time dependent mean is non Gaussian in Section 2. Ac-
cording to Dahlhaus and Rao (2006), the tvARCH process can be locally approximated
by stationary ARCH processes. Therefore, the tvARCH processes can be called locally
stationary. We elucidate the asymptotics of the estimator. Furthermore, we generate
approximated stationary ARCH processes by use of resampling. Then, we construct an
unbiased estimator for ARCH parameter and prove asymptotic normality of the esti-
mator. In Section 3, we propose an optimal portfolio weight depending on the ARCH
parameter. Moreover, we examine our approach numerically. The result shows eventu-
ally the effect of bias adjustment. We place the proofs of the theorems and lemmas in
Section 4.

Throughout this paper, |a| and |A| denote the Euclidean norm of a vector a and a

matrix A defined by
√
a′a and

√
tr(A′A), respectively. We write Xn

d→ X (or
p→ or

a.s.→ )
if {Xn} converges in distribution (or in probability or almost surely) to X. The ‘vec’
operator transforms a matrix into a vector by stacking columns, and the ‘vech’ operator
transforms a symmetric matrix into a vector by stacking elements on and below the main
diagonal.

2. Asymptotic Theory for Fundamental Quantities

We suppose that the return process {Xt,N = (X1,t,N , . . . , Xm,t,N )′; t = 1, . . . , N
,N ∈ N} is anm-vector ARCH process with time-varying parameter {θt/N = (θ1,t/N , . . . , θq,t/N )′; t =
1, . . . , N}, defined by

Xt,N = µ(θt/N ) +Dt,N (θt/N )ϵt(1)

where µ = (µ1, . . . , µm) is an mean vector function, Dt,N = diag(h
1
2

1,t,N , . . . , h
1
2

m,t,N )

and ϵt = (ϵ1,t, . . . , ϵm,t)
′ are i.i.d. random vectors with E(ϵt) = 0, E(ϵtϵ

′
t) = Im and

E(|ϵt|12+δ) < ∞ for some δ > 0. Here Ht,N = (h1,t,N , . . . , hm,t,N )′ are m vectors defined
by

Ht,N (θt/N ) = U(θt/N ) +

p∑
j=1

Aj(θt/N )Y 2
t−j,N (θ(t−j)/N )(2)

with Y 2
t−j,N = (Y 2

1,t−j,N , . . . , Y 2
m,t−j,N )′, Yi,t−j,N = Xi,t−j,N − µi,U = (U1, . . . , Um)′ and

Aj = (Aab,j)a,b=1,...,m.
This model extends Dahlhaus and Rao (2006)’s model to multidimensional case with

a mean function. As you may see below, the asymptotic property of weighted Gaussian
quasi maximum likelihood estimators are essentially same as Dahlhaus and Rao (2006)’s
result.

We also assume that the time-varying parameter θt/N are unknown and included a
compact subset Θ of Rq, i.e. θt/N ∈ Θ ⊂ Rq for ∀t = 1, . . . , N,N ∈ N. We introduce

the notation ∇i = ∂
∂θi

,∇ij = ∂2

∂θi∂θj
,∇ijk = ∂3

∂θi∂θj∂θk
,∇ = (∇1, . . . ,∇q)

′ and ∇2 =

(∇ij)i,j=1,...,q for ∀θ ∈ Θ.
We call the sequence of stochastic processes {Xt,N : t = 1, . . . , N} satisfied with (1) and

(2), a time-varying ARCH process with order p (tvARCH(p) process). As shown below,
the tvARCH(p) process can be locally approximated by stationary ARCH processes.
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Therefore, we also call tvARCH processes locally stationary. We make the following
assumptions.

Assumption 1. There exist 0 < ρ,Q,M < ∞, 0 < ν < 1 and a positive sequence {l(j)}.
(i) For ∀θ ∈ Θ, i = 1, . . . ,m and j = 1, . . . , p

ρ < Ui(θ), |µ(θ)| ≤ Q, |U(θ)| ≤ Q and |Aj(θ)| ≤
Q

l(j)

where {l(j)} satisfies mQ
∑∞

j=1
1

l(j) ≤ 1− ν and
∑∞

j=1
j

l(j) < ∞.

(ii) For each u ∈ (0, 1], we assume θu ∈ Int(Θ) and

|µ(θu)− µ(θu′)| ≤ M |u− u′|, |U(θu)−U(θu′)| ≤ M |u− u′|

and

|Aj(θu)−Aj(θu′)| ≤ M

l(j)
|u− u′|,

for u, u′ ∈ (0, 1].
(iii) The third derivatives of µ(θ),U(θ) and Aj(θ) exist with

|∇i1...ikµa(θ)| ≤ C, |∇i1...ikUa(θ)| ≤ C and |∇i1...ikAab,j(θ)| ≤ C

for k = 1, 2, 3, i1, . . . , ik = 1, . . . , q, a, b = 1, . . . ,m and ∀θ ∈ Θ, where C is a
finite constant independent of i, a, b and θ.

(iv) The third derivatives of θu exist with∣∣∣∣∂jθu
∂uj

∣∣∣∣ ≤ C < ∞

for j = 1, 2, 3 and ∀u ∈ (0, 1].
(v) The random vector ϵt has a positive density on an interval containing zero.

For each given u0 ∈ (0, 1], we assume that there exist a stochastic process {X̃t(u0) =

(X̃1,t(u0), . . . , X̃m,t(u0))
′; t ∈ N}, that is, a stationary ARCH process associated with the

tvARCH(p) process at time point u0 which satisfies

X̃t(u0) = µ(θu0) + D̃t(u0,θu0)ϵt(3)

where D̃t(u0) = diag(h̃1,t(u0)
1
2 , . . . , h̃m,t(u0)

1
2 ). Here H̃t(u0) = (h̃1,t(u0), . . . ,

h̃m,t(u0))
′ are m vectors defined by

H̃t(u0,θu0) = U(θu0) +

p∑
j=1

Aj(θu0)Ỹ
2
t−j(u0,θu0)(4)

with Ỹ 2
t−j(u0) = (Ỹ1,t−j(u0)

2, . . . , Ỹm,t−j(u0)
2)′, Ỹi,t−j(u0) = X̃i,t−j(u0)− µi.

Comparing (1) and (2) with (3) and (4), it seems clear that if t/N is close to u0. Then,

Y 2
t,N (θt/N ) and Ỹ 2

t (u0,θu0) should be close and the degree of the approximation should

depend both on the rescaling factor N and the deviation |t/N−u0|. The following lemma
corresponds to Theorem 1 of Dahlhaus and Rao (2006).

Lemma 1. Suppose {Xt,N} and {X̃t(u0)} are tvARCH(p) and ARCH processes defined
by (1),(2) and (3),(4), respectively. Then, under Assumption 1, we have

Y 2
t,N (θt/N ) = Ỹ 2

t (u0,θu0) +Op

(∣∣∣∣ tN − u0

∣∣∣∣+ 1

N

)
.

The proofs of Theorem and Lemma will be given in Section 4
In what follows, we consider a kernel type estimator of the parameter of a tvARCH(p)

model given the sample {Xt,N ; t = 1, . . . , N}. We now define the segment (kernel)
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estimator of θu0 for u0 ∈ (0, 1). Let t0 ∈ N such that |u0 − t0/N | < 1/N . The estimator
is the minimizer of the weighted conditional likelihood

Lt0,N (θ) :=
N∑

k=p+1

1

bN
W

(
t0 − k

bN

)
lk,N (θ)(5)

where

lk,N (θ) =
1

2

{
log det

(
Dk,N (θ)2

)
+ (Xk,N − µ(θ))

′
Dk,N (θ)−2 (Xk,N − µ(θ))

}
and W : [−1/2, 1/2] → R is a kernel function of bounded variation with

∫ 1/2

−1/2
W (x)dx =

1 and
∫ 1/2

−1/2
xW (x)dx = 0. That is, we consider

θ̂t0/N = argmin
θ∈Θ

Lt0,N (θ).(6)

In the derivation of the asymptotic properties of this estimator, we make use of the local
approximation of Y 2

t,N by the stationary process Ỹ 2
t (u0) defined in (4). Similarly to the

above, we therefore define the weighted likelihood

L̃N (u0,θ) :=

N∑
k=p+1

1

bN
W

(
t0 − k

bN

)
l̃k(u0,θ)(7)

where |u0 − t0/N | < 1/N and

l̃k(u0,θ) =
1

2

{
log det

(
D̃k(u0,θ)

2
)

+
(
X̃k(u0)− µ(θ)

)′
D̃k(u0,θ)

−2
(
X̃k(u0)− µ(θ)

)}
.

Similarly to Dahlhaus and Rao (2006), it is shown that both Lt0,N (θ) and L̃N (θ) converge
to

L(u0,θ) := E
(
l̃0(u0,θ)

)
as N → ∞, b → 0, bN → ∞ and |u0 − t0/N | < 1/N . It is easy to show that L(u0,θ) is
minimized by θ = θu0 . For later reference, we introduce the followings:

Σ(u0) := −E
(
∇2 l̃0(u0,θu0)

)
= −{Σij(u0)}i,j=1,...,q

K(u0) :=

(
1

2

∫ 1/2

−1/2

W (x)2dx

)
E
(
∇l̃0(u0,θu0)∇l̃0(u0,θu0)

′
)

=

{(
1

2

∫ 1/2

−1/2

W (x)2dx

)
Kij(u0)

}
i,j=1,...,q

B(u0) :=

(
1

2

∫ 1/2

−1/2

x2W (x)dx

)
Σ(u0)

−1

(
∂2

∂u2
∇L(u,θu0)

⌋
u=u0

)
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where

Σij(u0) =
m∑
l=1

E

(
∇iµl(θu0)∇jµl(θu0)

h̃l,0(u0,θu0)
+

1

2

∇ih̃l,0(u0,θu0)∇j h̃l,0(u0,θu0)

h̃l,0(u0,θu0)
2

)

Kij(u0) =

m∑
l=1

E

(
∇iµl(θu0)∇jµl(θu0)

h̃l,0(u0,θu0
)

)

+
1

4

m∑
l1,l2=1

{
E

(
∇ih̃l1,0(u0,θu0)∇j h̃l2,0(u0,θu0)

h̃l1,0(u0,θu0)h̃l2,0(u0,θu0)

)
Cov

(
ϵ2l1,0, ϵ

2
l2,0

)
+2E

(
∇ih̃l1,0(u0,θu0)∇jµl2(θu0)

h̃l1,0(u0,θu0)h̃l2,0(u0,θu0)
1/2

)
Cov

(
ϵ2l1,0, ϵl2,0

)
+2E

(
∇iµl1(θu0)∇j h̃l2,0(u0,θu0)

h̃l1,0(u0,θu0)
1/2h̃l2,0(u0,θu0)

)
Cov

(
ϵl1,0, ϵ

2
l2,0

)}
.

The following theorem corresponds to Theorem 3 of Dahlhaus and Rao (2006).

Theorem 1. Suppose {Xt,N : t = 1, . . . , N} is a tvARCH(p) process which satisfies

Assumption 1 and W is a kernel function of bounded variation with
∫ 1/2

−1/2
W (x)dx = 1

and
∫ 1/2

−1/2
xW (x)dx = 0. Then, if |u0 − t0/N | < 1/N and b = O(N−1/5),

√
bN(θ̂t0/N − θu0)

d→ N(BL(u0),Σ(u0)
−1K(u0)Σ(u0)

−1),

where L is a constant value satisfied with L = bN1/5 and BL(u0) = limN→∞ L5/2B(u0).

We have shown that the bias can be explained in terms of the derivatives of the
tvARCH process. Furthermore, we have proved asymptotic normality of the estimator.
This derivative enables us to study more precisely the nonstationary behavior of the
process. Theorem 1 leads us to take an optimal bandwidth bopt based on minimization
the mean squared error.

Remark 1. Under the conditions of Theorem 1, the mean squared error

MSE(θ̂t0/N ) = E|θ̂t0/N − θu0
|2 is minimized by

bopt = N− 1
5
tr
{
Σ(u0)

−1K(u0)Σ(u0)
−1
}

|B(u0)|2
.

According to Dahlhaus and Rao (2006), since L̃N (u0,θ) is the (weighted) likelihood of
the stationary approximation, magnitude of the bias, that is

B(u0) = lim
N→∞

E
[√

bNΣ(u0)
−1∇

(
Lt0,N (θu0)− L̃N (u0,θu0)

)]
,

depends on degree of the nonstationarity which implies the difference between Lt0,N (θ)

and L̃N (u0,θ). In other words, B(u0) describes how different between the tvARCH (p)
process {Xt,N} (i.e., nonstationary process) and the locally approximated ARCH (p) pro-

cess {X̃t(θu0)} (i.e., stationary process) because the difference |
(
Lt0,N (θ)− L̃N (u0,θ)

)
|

for any θ ∈ Int(Θ) tends to be 0 as the time-varying parameters {θt/N} of {Xt,N} are
close to a constant vector θu0 . Since the bias B(u0) depends on degree of the nonsta-
tionarity, the optimal choice of the bandwidth (of the segment length) also depends on
the degree of stationarity of the process. Because bopt depends on the asymptotic bias
and variance, it is not applicable directly in the actual real data analysis, so that one

idea is to start with preliminary estimators µ(θ̂u0), H̃0(u0, θ̂u0) for µ(θu0), H̃0(u0,θu0),
respectively. Then we can calculate their derivatives numerically, and plug them in
Σ(u0),K(u0) and B(u0).

Next, we construct unbiased estimator of θN/N by use of resampling. Let XN =
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{X1,N , . . . ,XN,N} be observations from a model described as (1) and (2). Based on XN ,

we can construct {θ̂t/N}t=1,...,N by (6). Then, the error ϵt are recovered by

ϵ̂t ≡ D−1
t,N (θ̂t/N ){Xt,N − µ(θ̂t/N )} (t = p+ 1, · · · , N).

Let GN (·) denote the empirical distribution which put mass 1/(N − p) at each ϵ̂t. Let

F ∗
N (x) = GN (σ−1

ϵ (x − ϵ̄)) where x ∈ Rm, ϵ̄ = 1/(N − p)
∑N

t=p+1 ϵ̂t and σ2
ϵ = 1/(N −

p)
∑N

t=p+1(ϵ̂t − ϵ̄)(ϵ̂t − ϵ̄)′. Let {ϵ∗t } be i.i.d. observations from F ∗
N (·). Given {ϵ∗t }, we

generate {X̃∗
t (1)} by

X̃∗
t (1) = µ(θ̂N/N ) + D̃∗

t (1, θ̂N/N )ϵ∗t ,(8)

where D̃∗
t (1, θ̂N/N ) = diag(h̃∗

1,t(1, θ̂N/N )1/2, . . . , h̃∗
m,t(1, θ̂N/N )1/2). Here

H̃∗
t (1, θ̂N/N ) = (h̃∗

1,t(1, θ̂N/N ), . . . , h̃∗
m,t(1, θ̂N/N ))′ are defined by

H̃∗
t (1, θ̂N/N ) = U(θ̂N/N ) +

p∑
j=1

Aj(θ̂N/N )Ỹ ∗2
t−j(1, θ̂N/N )

with Ỹ ∗2
t−j(1, θ̂N/N ) = (Ỹ ∗

1,t−j(1, θ̂N/N )2, . . . , Ỹ ∗
m,t−j(1, θ̂N/N )2)′ and

Ỹ ∗
i,t(1, θ̂N/N ) =

{
X̃∗

i,t(1)− µi(θ̂N/N ) if t > −T
0 if t ≤ −T

.

¿From the above procedure, we need to draw ϵ∗t for −T ≤ t ≤ N . If it is neces-
sary to remove suspected edge effects, we may treat T as a sufficiently large integer.
Throughout this paper, (∗) implies that we are dealing with the bootstrap quantity,
hence distribution P ∗ and expectation E∗ etc. are taken under {ϵ∗t } ∼ i.i.d. F ∗

N given
XN = {X1,N , . . . ,XN,N}.

By using this model, we introduce a resampled estimator of the parameter θN/N , that
is,

θ∗
N/N = argmin

θ∈Θ
L̃∗
N (1,θ)(9)

where

L̃∗
N (1,θ) =

N∑
k=p+1

1

bN
W

(
N − k

bN

)
l̃∗k(1,θ)

and

l̃∗k(1,θ) =
1

2

{
log det

(
D̃∗

k(1,θ)
2
)

+
(
X̃∗

k(1)− µ(θ)
)′

D̃∗
k(1,θ)

−2
(
X̃∗

k(1)− µ(θ)
)}

.

Then, we have the following result.

Theorem 2. Suppose {X̃∗
t (1) : t = 1, . . . , N} is generated by (8) satisfying Assumption

1. Suppose also that W is a kernel function of bounded variation with
∫ 1/2

−1/2
W (x)dx = 1,∫ 1/2

−1/2
xW (x)dx = 0 and b = O(N−1/5). Then,

√
bN(θ∗

N/N − θN/N )
d∗

→ N(0,Σ(1)−1K(1)Σ(1)−1).
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3. Optimal portfolios

In this section, we propose an optimal portfolio weight estimator when the observed
return process is written as (1) and (2). We construct an optimal portfolio weight
estimator for the stationary ARCH process associated with the tvARCH(p) process at
time point 1(= N/N).

Suppose that (pseudo) return process is described by (3) and (4) at time point 1. Then,
the mean vector and variance matrix are written by

E(X̃t(1)) = µ(θN/N )(10)

V (X̃t(1)) =

p∏
j=1

(Im −Aj(θN/N ))−1Ũ(θN/N ) ≡ V (θN/N )(11)

where Ũ = diag(U1, . . . , Um). Let ω = (ω1, . . . , ωm)′ be the vector of portfolio weights.

Then, the return of portfolio at time t is X̃t(1)
′ω, and the expectation and variance are,

respectively, given by µ(θN/N )′ω, ω′V (θN/N )ω. Optimal portfolio weights have been
proposed by various criteria. They are expressed as a function g(µ, V ) of µ and V . (See
Shiraishi and Taniguchi (2008)).

Since the mean vector and variance matrix are parameterized by θ, we can express the
optimal portfolio weight function as g = g(θ) = g(µθ, Vθ). Also, it should be noted that
since the vector of portfolio weight ω = (ω1, . . . , ωm)′ satisfies the restriction e′ω = 1,
where e = (1, . . . , 1)′, we have only to estimate the subvector (ω1, . . . , ωm−1)

′. Hence we
assume that the function g is (m− 1)-dimensional, i.e.,

(12) g : θ → Rm−1.

For g given by (12) we impose the following.

Assumption 2. The function g(θ) is continuously differentiable.

Then we have the following result.

Theorem 3. Suppose {X̃∗
t (1) : t = 1, . . . , N} is generated by (8) satisfying Assumption

1. Suppose also that W is a kernel function of bounded variation with
∫ 1/2

−1/2
W (x)dx = 1,∫ 1/2

−1/2
xW (x)dx = 0 and b = O(N−1/5). Then, under Assumption 2, we have

√
bN(g(θ∗

N/N )− g(θN/N ))
d∗

→ N(0,∇g(θN/N )Σ(1)−1K(1)Σ(1)−1∇g(θN/N )′).

In what follows, we examine our approach numerically. Here, we discuss a global asset
allocation problem where Japanese capital must be allocated to “U.S. dollar”, “Australian
dollar” and “Euro”, respectively. Based on the daily log-returns for these exchange rates,
we construct the mean-variance optimal portfolios. The data are from Jan 1st, 2007 to
Jun 1st, 2007.

Suppose now the return process {Xt,N = (X1,t,N , X2,t,N , X3,t,N )′; t = 1, . . . , N, N =
2, . . . , 100} is the following tvARCH(1) process ;

Xt,N = θ
(1)
t/N +Dt,N (θt/N )ϵt

where Dt,N = diag(h
1/2
1,t,N , h

1/2
2,t,N , h

1/2
3,t,N ), and Ht,N = (h1,t,N , h2,t,N , h3,t,N )′ is defined

by

Ht,N (θt/N ) = θ
(2)
t/N + θ

(3)
t/NY 2

t−1,N (θ
(1)
t/N ),

with θt/N = (θ
(1)′

t/N ,θ
(2)′

t/N , vec(θ
(3)
t/N )′)′, θ

(i)
t/N = (θ

(i)
1,t/N , θ

(i)
2,t/N , θ

(i)
3,t/N )′ for i = 1, 2, θ

(3)
t/N =

(θ
(3)
ij,t/N )i,j=1,2,3 and Y 2

t,N = ((X1,t,N − θ
(1)
1,t/N )2, (X2,t,N − θ

(1)
2,t/N )2, (X3,t,N − θ

(1)
3,t/N )2)′.

By using (6) and (9), we construct Gaussian quasi maximum likelihood estimator θN/N

(GQMLE), and resampled Gaussian quasi maximum likelihood estimator θ∗
N/N (rGQMLE),
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respectively. Then, two types of optimal portfolio weight estimator g(θN/N ) and g(θ∗
N/N )

are constructed from (10) and (11). Here, we consider the following optimal portfolio
problem: {

min
w

w′V (θ)w

subject to µ(θ)′w = µP and e′w = 1
.

Then, optimal portfolio weight g(θ) is written as

g(θ) =
1

σµµ · σee − (σµe)2
{(σee · µP − σµe)µ(θ)− (σµe − σµµ)e}

where σµµ = µ(θ)′V (θ)−1µ(θ), σµe = µ(θ)′V (θ)−1e and σee = e′V (θ)−1e.
Figure 1 shows the portfolio returns (= α′

NXN+1,N+1) for

• GQMLE (i.e. αN = g(θN/N )),
• rGQMLE (i.e. αN = g(θ∗

N/N )),

• SM&SV (i.e. αN = g(sample mean, sample variance)),

under µP = 0.0001, . . . , 0.0010 and N = 2, . . . , 100.

Figure 1 is about here.

It is easy to see that the variations for GQLME and rGQMLE are smaller than those
for SM&SV. This symptom leads us our optimal portfolio estimators are low-risk in
view of the variation. In Table 1, we can see sample means of the portfolio returns for
N = 2, . . . , 100 and µP = 0.0001, . . . , 0.0010.

Table 1 is about here.

Obviously, the sample means for GQLME and rGQMLE are larger than those for SM&SV.
Compare GQMLE with rGQMLE, those for rGQMLE are quite close to the target returns
rather than those for GQMLE, which shows eventually the effect of bias adjustment. Fi-
nally, we show sample mean squares errors of the portfolio returns for N = 2, . . . , 100
and µP = 0.0001, . . . , 0.0010 in Table 2.

Table 2 is about here.

For almost all target returns, the MSEs for GQLME and rGQMLE are smaller than those
for SM&SV. Although those for rGQMLE are relatively larger than those for GQMLE,
the spreads are not so wide.

Summarizing the numerical study, our proposed optimal portfolio estimators are obvi-
ously attractive rather than traditional one. Furthermore, we obtained the large effect
of bias adjustment by use of resampling.

4. Proofs

This section provides the proofs of Theorems and Lemmas.
Proof of Lemma 1. Let ηt = diag(ϵ21,t, . . . , ϵ

2
m,t). Then, from Volterra expansions (e.g.,Giraitis

et al.(2000)), it follows that

Y 2
t,N (θt/N ) = ηtU(θt/N ) +

∞∑
k=1

mt,N (k)

Ỹ 2
t (u0,θu0) = ηtU(θu0) +

∞∑
k=1

m̃t(u0, k)
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where

mt,N (k) = ηt

p∑
j1,...,jk=1

{
k∏

r=1

Ajr (θ(t−
∑r−1

s=1 js)/N
)ηt−

∑r
s′=1

js′

}
U(θ(t−

∑k
s′′=1

js′′ )/N
)

m̃t(u0, k) = ηt

p∑
j1,...,jk=1

{
k∏

r=1

Ajr (θu0)ηt−
∑r

s′=1
js′

}
U(θu0).

Then, in an analogous manner to the proof of theorem 1 of Dahlhaus and Rao (2006),
we have

E
∣∣∣Y 2

t,N (θt/N )− Ỹ 2
t (t/N,θt/N )

∣∣∣ = O

(
1

N

)
E
∣∣∣Y 2

t,N (θt/N )− Ỹ 2
t (t/N,θt/N )

∣∣∣ = O

(∣∣∣∣ tN − u0

∣∣∣∣)
from Assumption 1. Therefore, we have shown Lemma 1 by using the triangle inequality
and Markov’s inequality.

To prove Theorem 1, we need the following lemmas. The following lemma corresponds
to Lemma 1 of Dahlhaus and Rao (2006).

Lemma 2. Suppose {Xt,N : t = 1, . . . , N} is a tvARCH(p) process which satisfies
Assumption 1. Then, if |u0 − t0/N | < 1/N ,

sup
u∈(0,1]

∣∣∇2Lt0,N (θu)−∇2L(u0,θu)
∣∣ p→ 0,

where b → 0, bN → ∞ as N → ∞.

Proof of Lemma 2. We write

∇ijLt0,N (θu)−∇ijL(u0,θu)

=
(
∇ijLt0,N (θu)−∇ijL̃N (u0,θu)

)
+
(
∇ijL̃N (u0,θu)−∇ijL(u0,θu)

)
≡ R1 +R2 (say).

¿From Lemma 1 and Assumption 1, we have

|hl,t0,N (θu)− h̃l,t0(u0,θu)| = Op

(
p∑

k=1

∣∣∣∣ t0 − k

N
− u0

∣∣∣∣+ 1

N

)
,

|∇ihl,t0,N (θu)−∇ih̃l,t0(u0,θu)| = Op

(
p∑

k=1

∣∣∣∣ t0N − u0

∣∣∣∣+ 1

N

)
for l = 1, . . . ,m. Hence,

R1 =
N∑

k=p+1

1

bN
W

(
t0 − k

bN

){
∇ij lk,N (θu)−∇ij l̃k(u0,θu)

}
= op(1).

On the other hand, from Dahlhaus and Rao (2006) Lemma A.2,

R2 ≤
∣∣∣∇ijL̃N (u0,θu)−∇ijL(u0,θu)

∣∣∣ = op(1).

The proof now follows from this observation.
The following lemma corresponds to Proposition 2 of Dahlhaus and Rao (2006).

Lemma 3. Suppose {Xt,N : t = 1, . . . , N} is a tvARCH(p) process which satisfies
Assumption 1. Then, if |u0 − t0/N | < 1/N ,

√
bN∇L̃N (u0,θu0)

d→ N(0,K(u0))

where b → 0, bN → ∞ as N → ∞.
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Proof of Lemma 3. Since ∇L̃N (u0,θu0) is the weighted sum of martingale differences,
the result follows from Fullar (1996) Theorem 5.3.4.

The following lemma corresponds to Theorem 3 of Dahlhaus and Rao (2006).

Lemma 4. Suppose {Xt,N : t = 1, . . . , N} is a tvARCH(p) process which satisfies

Assumption 1. Then, if |u0 − t0/N | < 1/N and b = O(N−1/5),
√
bNΣ(u0)

−1∇Bt0,N (θu0)
p→ B(u0)

where Bt0,N (θ) := Lt0,N (θ)− L̃N (u0,θ).

Proof of Lemma 4. ¿From the definition of Bt0,N (θu0), we can write

∇iBt0,N (θu0) =

N∑
k=p+1

1

bN
W

(
t0 − k

bN

){
∇i l̃k

(
k

N
,θu0

)
−∇i l̃k (u0,θu0) + rk,N

}
where rk,N = ∇ilk,N (θu0)−∇i l̃k(

k
N ,θu0).

Taking Taylor expansion of ∇i l̃k(u,θu0) about u = u0, we have

∇i l̃k

(
k

N
,θu0

)
−∇i l̃k(u0,θu0)

=

(
k

N
− u0

)
∂∇i l̃k(u,θu0

)

∂u

⌋
u=u0

+
1

2

(
k

N
− u0

)2
∂2∇i l̃k(u,θu0

)

∂u2

⌋
u=u0

+
1

6

(
k

N
− u0

)3
∂3∇i l̃k(u,θu0)

∂u3

⌋
u=Ũk

,

≡
(

k

N
− u0

)
ãi,k +

1

2

(
k

N
− u0

)2

b̃i,k +
1

6

(
k

N
− u0

)3

c̃i,k (say)

where the random variable Ũk ∈ (0, 1]. Similarly to Dahlhaus and Rao (2006) Lemma
A.7.-A.10. and Corollary A.2., if Assumption 1 is satisfied, it is shown that

E

(∣∣∣∣∣∂s∇i l̃k(u,θu0)

∂us

∣∣∣∣∣
)

= O(1) for s = 1, 2, 3, u ∈ (0, 1],

∞∑
l=0

∣∣∣∣∣Cov

(
∂s∇i l̃k(u,θu0)

∂us
,
∂s∇i l̃k+l(u,θu0)

∂us

)∣∣∣∣∣ = O(1) for s = 1, 2, u ∈ (0, 1].

Hence, if b = O(N−1/5), it is easy to see that

N∑
k=p+1

1

bN
W

(
t0 − k

bN

){
∇i l̃k

(
k

N
,θu0

)
−∇i l̃k (u0,θu0)

}

=
b2

2

∫ 1/2

−1/2

x2W (x)dxE(b̃i,k) + op

(
1√
bN

)
.(13)

On the other hand, from Lemma 1, it follows that

N∑
k=p+1

1

bN
W

(
t0 − k

bN

)
rk,N = Op

(
1

N

)
.(14)

Therefore, from (13) and (14), we obtain

∇iBt0,N (θu0) =
b2

2

∫ 1/2

−1/2

x2W (x)dxE(b̃i,k) + op

(
1√
bN

)
.

Since

B(u0)i = Σ(u0)
−1

∫ 1/2

−1/2

x2W (x)dxE(b̃i,k),
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the proof is completed under b = O(N−1/5).
Proof of Theorem 1. ¿From the usual Taylor expansion, we can see that

0 = ∇Lt0,N (θu0) +∇2Lt0,N (θ̄)(θ̂t0/N − θu0)

with θ̄ between θ̂t0/N and θu0 . By using Lemmas 2-4, we have
√
bN(θ̂t0/N − θu0) =

{
−∇2Lt0,N (θ̄)

}−1 √
bN∇Lt0,N (θu0)

= Σ(u0)
−1

√
bN∇Lt0,N (θu0) + op(1) (by Lemma 2)

= Σ(u0)
−1

√
bN∇L̃N (u0,θu0) +

√
bNΣ(u0)

−1∇Bt0,N (θu0) + op(1)

= Σ(u0)
−1

√
bN∇L̃N (u0,θu0) +BL(u0) + op(1)

(by Lemma 4)
d→ N

(
BL(u0),Σ(u0)

−1K(u0)Σ(u0)
−1
)
. (by Lemma 3)

Proof of Theorem 2. Similarly to Lemma 2 and Lemma 3, we obtain that

∇2L̃∗
N (1,θ∗

N/N )
p∗

→ ∇2L∗(1,θN/N ) = −Σ∗(1)(15)
√
bN∇L̃∗

N (1,θ∗
N/N )

d∗

→ N(0,K∗(1))(16)

where Σ∗(1) and K∗(1) are resampling version of Σ(1) and K(1). Therefore, we have
√
bN(θ∗

N/N − θN/N ) =
{
−∇2L̃∗

N (1, θ̄)
}−1 √

bN∇L̃∗
N (1,θN/N )

= Σ∗(1)−1
√
bN∇L̃∗

N (1,θN/N ) + op(1) (by (15))

d∗

→ N
(
0,Σ∗(1)−1K∗(1)Σ∗(1)−1

)
. (by (16))

Hence, the proof is completed if it is shown that

Σ∗(1)−1K∗(1)Σ∗(1)−1 p→ Σ(1)−1K(1)Σ(1)−1.

Now note that from the definition of ϵ̂t, it may be deduced that

ϵ̂t = Dt,N (θ̂t/N )−1{Xt,N − µ(θ̂t/N )}
= Dt,N (θt/N )−1{Xt,N − µ(θt/N )}

+{Dt,N (θ̂t/N )−1 −Dt,N (θt/N )−1}{Xt,N − µ(θt/N )}

+Dt,N (θ̂t/N )−1{µ(θt/N )− µ(θ̂t/N )}
= ϵt + op(1),

which implies ϵ̃t ≡ σ−1
ϵ (ϵ̂t − ϵ̄) = ϵt + op(1). Using the above result and the ergodic the-

orem by Stout(1974), for any measurable function f(·) satisfying E|f(ϵa1,t, . . . , ϵak,t)| <
∞, we obtain that

E∗f(ϵ∗a1,t, . . . , ϵ
∗
ak,t

) =
1

N − p

N−p∑
t=1

f(ϵ̃a1,t, . . . , ϵ̃ak,t)

=
1

N − p

N−p∑
t=1

f(ϵa1,t, . . . , ϵak,t) + op(1)

= Ef(ϵa1,t, . . . , ϵak,t) + op(1),

which implies

Σ∗(1)−1K∗(1)Σ∗(1)−1 p→ Σ(1)−1K(1)Σ(1)−1.

The proof now follows from this observation.
Proof of Theorem 3. The proof follows from Theorem 2 and the δ−method (e.g.,Proposition
6.4.3 of Brockwell and Davis (1991)).
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Figure 1. Time series plots of portfolio return for SM&SV portfolio,
GQMLE portfolio and rGQMLE portfolio

Table 1. Sample Mean of portfolio return for SM&SV portfolio,
GQMLE portfolio and rGQMLE portfolio

Target Return SM&SV GQMLE rGQMLE
0.0001 -0.0000493 0.0000442 0.0003009
0.0002 -0.0000704 0.0000394 0.0002921
0.0003 -0.0001079 0.0000347 0.0002833
0.0004 -0.0001253 0.0000299 0.0002745
0.0005 -0.0001685 0.0000252 0.0002657
0.0006 -0.0002217 0.0000204 0.0002569
0.0007 -0.0002234 0.0000156 0.0002481
0.0008 -0.0002554 0.0000109 0.0002393
0.0009 -0.0003253 0.0000061 0.0002305
0.0010 -0.0003003 0.0000014 0.0002216
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