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ON 3-VARIABLE EXTENSION FOR THE INTEGER MEAN
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ABSTRACT. Based on ideas of Lawson-Lim [4] and Jung-Lee-Yamazaki [2], an abstract
mean on a metric space was introduced in [5]. In this paper, we discuss a typical
example of such a mean on the nonnegative integers and estimate it by the usual
mean.

1 Introduction. Since [1] was published, multi-variable geometric operator means have
been discussed. Among them, Lawson-Lim [4] introduced abstract means on a metric space.
On the other hand,computable geometric operator means was introduced in [2]. In [5], we
combined these means and introduced N-means v on a metric space, particularly as N-
variable extension v = u¥): Let p is an abstract 2-mean in a metric space X. For a given

N-tuple (z1, -+ ,zn), let ax = a,(co) = 13, and

a,(cn) = ,u(a,(cnfl) a(nfl)) for1SESN-1 and ag\?) = u( E\T,L*l),agnfl)).

1Oyt
If lim,, oo algn) exists for all k and they coincide, say (), then we put v(xy, - ,xN) =
a(®) | which is the N-variable extension u(™ of .
Here we give an example of the 3-variable extension (%) for the integer mean p : Ny x
No — NO

p(n,m) = V J; mJ

where Ny is the nonnegative integers and [ J is the Gauss symbol and the metric is the
usual one induced by the absolute value. Then, since the total distance

da(af", ", ) = max {Ja{" — af”, Ja" — a§"], |a§” — o[}

is monotone decreasing for n, it has the 3-variable extension p(3).

By the construction of x(®), it is clear that u®)(a,b,c) < %b“. As we show later, the
equality holds if and only if @ = b = ¢. In this paper, we observe u(®)(a,b,¢) in detail and
estimate it by %’”c.

2 Basic value of p®. Let f(ni,n2,n3) = u®(n1,n2,n3). Then, f is a monotone
nondecreasing function. Since this 3-mean is symmetric, we may express f(ni,ng,ng) for
the case n1 < no < n3 and

(252 (252 252

() 252 252

Moreover the following simple lemma allows us that n; can be assumed to be 0:
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Lemma 1. f(n+ni,n+ng,n+ng) =n+ f(ny,ne,ng).

Proof. The required formula follows from the fact that

ng + n;
u(n+nk,n+nj){n+ k JJ

ng +n;
2

A [——

where j = kmod 3 + 1. O
First we show the case f(ni,n2,n3) = f(0,2™,2™), which increases at a rate of about
2/3. Here the operation // means the quotient for integers:

92k+1 _ 92k+2 _
Lemma 2. f(0722k,22k) = 3 and f(0722k+1722k+1) = 3

equivalently f(0,2™,2™) = (2™ x 2)//3 for allm 2 0.

for k =20, or

Proof. Note that £(0,1,1) = 0. For n = 22* for k > 1,

J(‘(O7 22k‘7 22k) — f(22k—17 22k‘7 22k—1) — 22k}—1 + f(O, 22]6—1’ 0) — 22k}—1 + '](‘(0707 22k—1)

— 22k—1 + f(o’ 22](:—27 22]{:—2)
2k_1 _ 22k+1_2

3 3

=22l 194 £(0,1,1) =2 %

Thus it also holds for k = 0. Lastly for n = 22*+1 for k > 0, by f(0,2,2) = 1 we have

f(0’22k+1’22k+1) — f(22k722k+1722k‘) — f(22k‘—1 + 22]{:’22](:—1 + 22]6’22]6)
— 22k +,f(0 22]671 22](:71)

92k _ 1 92k+2 _ |
=22k 44 £(0,2,2) =4 x +1= 3
Moreover we have f(0,2™,2™) = 2T 24 (mmod 2) _ (gm o 9) /3. O
3
By Lemma 2, f(0,0,2™) increases at about 1/3 rate:
Corollary 3. For k >0, f(0,0,2%F) = 21 gnd £(0,0,22k+1) = &, or equivalently
3 3

£(0,0,2m) = 21A=(mmod ) _ 9m 3 for ail m 2 0.

Proof. For k > 0, we have f(0,0,22%) = f(0,22F-1 22k=1) = 22’%1 and f(0,0,22F+1) =
f(O 22k 22k) — 22k+1_o ]
) ) 3 .

Next we observe the special case of the form f(0,n,n). To see this, note that if all 3
variables are odd, then it does not increase in the next step:

Lemma 4. f(2J,2K,2N) = f(2J,2K,2N + 1).
Proof. Since we may assume J = 0, we have

£(0,2K,2N + 1) — f(0,2K,2N) = f(K,K + N,N) — f(K,K + N,N) = 0.

Now we observe f(0,n,n):
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Proposition 5. The function f(0,n,n) strictly increases only at

—1
n =22t — >0
for 20, k> 0. Precisely,
L L
2(4% — 1)
£(0, 2041 _ 041
n,n) Z ( ) /2 Z 2n + 3 /4

=0 =0
where L = L(n) = |logy 3”5_1J.
Proof. Put ny = 22tk — . At n = ng = 2k, the function f(0,n,n) is increasing by

£(0,2k,2k) = f(k,2k, k) =1+ f(k— 1,2k — 1,k — 1) = 1 + £(0,2k — 1,2k — 1).

Since ny is odd for ¢ > 0, we have

2np_1 = 22k — = S =

2401 — 1) 22+ A1) 2041y 4@;1 1 me+l
3 2 2 2

Suppose it is increasing at n = ny. Then

ney1 — 1 neyp — 1 ney1 — 1 ney1 + 1
VAN TAS Ry TASY =f< ”12 ST, le ): €+12 +f<0,0, H;)

Nep1 — 1 nepr — 1 et — 1
=~ 4 £(0,0,2n0) = == 4 £(0,m4,m0) = 14+ =+ f(0,mp — 1,mg — 1)

2 2 2
—1 —1
=14 W% + f(0,0,2n, —2) =1+ W% + £(0,0,2n, — 1) (by Lemma 4)
Ngq1 0. +1 ngp1 —1 ngpp —1
=1 LT q) =1 —1
R S S A T S,
=1 +f(07n[+1 - 17n£+1 - ]-) .
Thus f(0,n,n) is 1ncreasmg at all ny = 2%+ — . To obtain the upper bound of /,
we have n = 2201k — =1 5o that

3n—12 6k x 4° — 4% = (6k — 1)4° > 5 x 4°.

Therefore we have 3%~ > 4% that is, L(n) = |log, % |. Since these n; satisfy that

‘ .
ne + 452 divides 221, we have

£(0,n,n) >Z(

The equality holds since it always holds for n = 2™ by Lemma 2: In fact, for sufficiently
large m, we have L = (log, 2™ — 1)//2 = (m — 1)//2 and

> //22I+1

m—1—-2L=m—-1-2((m—-1)//2)=(m—1)mod2 = (m+ 1) mod 2.



200 J.I.Fujii, M.Fujii and A.Matsumoto

Therefore

fO 2m 2m Zi< > /22€+1 Z2m 20—1 — gm— 2L— IZ4Z
/=0

= 2m—2L—14LJrl —1 gmtl_gm-i=2L gm+l_ 2(m+1)mod2

3 3 - 3
Thus the equality holds for 2™ for a sufficiently large m, that is, it always holds. O

Since f(0,0,2n) = f(0,n,n) and f(0,0,2n—1) = f(0,n—1,n—1) = f(0,0,2n —2), we
have only to observe the former case:

=2m*l /3,

Corollary 6. The function f(0,0,n) increases only at n = 2 (2%_‘—1]4:— %) > 0 for
£20, k>0. Precisely

00”;;( 4 - )>//4e+1
2|

Proof. It suffices to obtain L(n). By n = 2 (22”1/{ 4 ’1> we have

where L = L(n) = |log, 225

3
2”>6k><4Z 494 1= (6k—1)4° +12>5x 4° + 1.

It follows from 2%-2 > 5 x 4¢ that L(n) = |log, 2252 |. 0

Remark 1. Here we consider a function

Ty(n) = (n+ 2(423_1)> yrees

It plays a central role for various formulae for f. We easily have a formula: Tyyq(4n —2) =

Ty(n). Moreover, since @ mod 4 = 2 for £ > 0, we have

Tg(4m + 2) = Tg(4m + 3) = Tg(4m + 4) = Tg(4m + 5)

and
Ty(4m + 1) = Ty(4m) = Ty(4m — 1) = Ty(4m — 2)
for £ > 0.
Next we observe f(0,k,n) for small k:
Lemma 7. £(0,1,n) = f(0,0,n).

Proof. Note that

£(0,1,4m +2) = m+ £(0,0,m +1) = f(0,0,4m +2)

f(0,1,4m+3) =m+ f(0,1,m+1), m+ f(0,0,m+ 1) = f(0,0,4m + 3).
So we have only to verify the case f(0,1,4m+3) = f(0,0,4m + 3), which is reduced to the
equality f(0,1,n+1) = f(0,0,n+1). By the above observation, we have only to verify the
case n+ 1 =4m + 3.

Therefore by this reduction, it suffices to show f(0,1,k) = f(0,0,k) for k = 0,1,2,3.

Since £(0,1,3) = 0, we have £(0,1,2) = £(0,0,3) = £(0,0,2) = f(0,1,1) = £(0,0,1) =
£(0,0,0) = 0, so that the required equality yields. O
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Direct computation shows the following table for f(0, k,n) where n = 4m — j:

Im — 3 dm — 2 Im —1 4m
2 m—-1+4+f(0,00m—1) | m+ f(0,0,m—1) | m+ f(0,0,m —1) | m+ f(0,0,m)
3 m_1+f(0707m) m+f(0707m_1) m+f(0701m) m+f(0107m)

Therefore we have the formulae for f(0,k,n) for k = 2, 3:

In the below, the upper bounds L, of ¢ are slightly varied, but they are easily obtained
as in the above. So we omit the upper bounds for ¢ for the sake of convenience:

Lemma 8. f0,2,n) = (n+2) 4+ 350 Te(n/4),
f0.3,n) =(n+2)/4+ 35 (Te(n+1) + Ty(n — 1) — Ty(n)).

In fact, in case n = 4m — 3, then n — 1 = 4(m — 1), and hence m — 1 = (n — 1)/4 =
(n—1)/4=nj4 = (n+2)/4. Thereby

£0.2,n) =m — 14 £(0,0,m —1) = (n+2)/4+ £(0,0,n4) = (n+2)/4+ > _ Ty(n//4).
By the above remark, we have £20

£0.3,n) =m—1+4 £(0,0,m) = (n+2)/4+ > _ Ti((n—1)//4)

00

=(n+2)/4+ ) Te(n+1).

21

Since Ty(n+1) = Ty(4dm — 2) and Ty(n) = Ty(4dm — 3) = Te(dm —4) = Ty(n — 1) also by
the remark, we have

£0,3,n) = (n+2) /44> (Te(n+1) +0)
1
=(n+2)/4+>_ (Tu(n+1)+Ti(n— 1) — Ty(n)).

21

3 General formulae for ;3. Under modulo 4, the values of f (0, k,n) are classified
as the following table:

k\ n 4N 4N 41 4N 42 4N +3

4K K+ N+f(0,K,N) K+ N+ £(0,K,N) K+N+f(0,K N+1) K+N+f(0,K N+1)
4K +1 K+ N+ £(0,K, N) K+ N+ £(0,K, N) K+N+fO0,K,N+1) | K+N+f0,K+1,N+1)
)
)

4K+ || K+EN$70,K+1,N) | K+N47OK+1,N) | K+N+14+f(0KN K+N+144(0,K N)
4K+3 || KEN+70K+1,N) | K4 N+FOK+1L,N+1) | KEN+147(0,KN) | KEN$14+(0,K+1,N+1)

Summing up, we obtain the reducing formulae for f(0, k,n):
Lemma 9. f(0,k,n) =k/j4+nj4+ ((k mod 4)//2 + (n mod 4)/2)//2
+ f(0,k//4+ ((k mod 4) /2 + ((n + 2) mod 4) //2) /2 + (k mod 2 + n mod 4) /4,
n//4+ ((n mod 4)//2 + ((k + 2) mod 4)//2) /2 + (n mod 2 + k mod 4) //4).
)

Combining Lemmas 7-9, we can obtain any value of f(a,b, ¢) formally. For example, we
have the following values:



202 J.I.Fujii, M.Fujii and A.Matsumoto

Example 1.

70,25, m) = 70.4,m) = L4 S 7m0

20
£(0,2% n) = ¥+ 1 +Y T(n—2x4,0)
) ) 3 ?
20
j—1
F0,3x 47 n) =4 — 14+ Ti(n+2x4,5)+> Te(n)+ ) _ [Te(n +4)+ Te(n —4") — Tz(n)]
£=0 2j+1

J
F0,3x 27 n)y=2x 47 +> " Ti(n)+ {Te(n — 4T L Ty(n — 2 x 4771 — Ty(n — 6 x 40]

£=0 2j+1
FO27 ) = 3o A"+ 3 T =20+ 3 {T‘ (" > 4m>
m=0 £20 £25+1 m=0
j j ' j _
—T, (n—l— 24’”) + T, <n— Z4m+22]+1> — T <n—1— Z4m+2zj+1)}
m=0 m=0 m=0
) j—1 J ] J ]
O +1n)=) 4"+ <n+ > 4’") ATt - (n -1+ ) 4’”) AT
m=0 m=0 m=0
+ <n+ > oam +4J> JAt — <n —14+ ) 4 +4J> JAT 4> " Ti(n)
m=0 m=0 £20
j—1 j—1 J J
+ 3 |n <n_1_ Z4m> 7 <n_ Z4m> s (n—l— Zw) ) (n_ Zw)}
£25+1 m=0 m=0 m=0 m=0

J

f(0,22j+1 _ 17n) _ Z 4m + ZT( (n+ 1- 22j+l)
m=1

>0

+> | <n— 24’”) — T, (n—l— 24’””

241 m=1 m=1
(0,4 —1,n) = z_:4m+ <n+1+ iaf") )4 — <n+ 24’”) Yz
m=1 m=0 m=0
j—1 j—1

+Y Tin+1)+ > |Te (n— Z4m> —Ty <n+1— 24’”)}

£20 > m=0 m=0

1 0, gl 2,m) = zj: 4™ + ZTZ (n _ 22j+1)
m=1 €20
Eh ) £)]
[24] m=1 oo’
i—1 i o
JO.€ —2m) =3 4"+ <n+1+ Z4m> N4 - <n1+ ZM) yre
m=1 m=0 =

+Y Ti(n)+ > | T <n—1—§:4m> - <n+1—]_ 47")].

£20 025
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4 Estimation. Since [1] was published, multi-variable geometric operator means have
been discussed. In general f(a,b,c) < %b“ holds. The equality holds if and only if the
variables are equal:

Theorem 10. The equality 1) (a,b,c) = f(a,b,c) = % holds if and only if a =b=c.
Proof. Tt is clear that the equation holds for a = b = ¢. Conversely suppose the equation

holds. Then f(a,b,c) must be equal to f((a + b)/2,(b+ ¢)/2,(c + a)/2), the parities for

variables are equal. Since we may assume a is 0, then %£¢ = £(0,b,¢) = f(b/2, (b+c)/2,¢/2).

Thereby b/2 and ¢/2 must be even. Such procedure shows that b/2¥ and ¢/2* are even for
allk e N. If z = b or = = cis 2¢, then /2° = 1, which is odd. Thus b and ¢ must be 0, so
that a =b=rc. O

Next we consider the other cases. The following result is the invariant case that the sum
of variables is a constant:

Theorem 11. For m,n € N,
f(07 2m7 2”) = f(07 07 2"7' + 2”)'
Proof. Since we may assume 2 < m < n by Lemma 2, the reduction formula shows

F(0,2m,27) = 2772 42772 4 (0,272, 2777

d24m//2_1 -2 —2(mj2—-1) d2 9n—2(mj2-1)
== 2T MONE o TR e N AMIET 4 f(0, 2 et 2, g2
4mi2 _ 1 qnl2 —q
:.”:2mmod2 3 2nmod2 3 +f(07072nm0d2)
_2m_2mmod2+2n_2nmod2+0_2m_|_2n_2mmod2_2nmod2
a 3 B 3

Similar procedure as f(0,0,2™ +27) = 2m=2 4 27=2 4 £(0,0,2™ "2 4 2"~2) shows that it is
equal to the above. O

Contrastively to Lemma 4, the following formula is a non-constant case:
Theorem 12. For m,n 2 k+ 3+ (kmod 2) and k 2 0,
£(0,2m,2") = f(0,2™ — 2% 2" + 2F) 4- 1.
Proof. We may assume m < n. For k = 0, we have
f(0,2m,2™) — f(0,2™ —1,2" + 1)
— f(2m71 2m71 + 277.71’27171) _ f(szl _ 172m71 4 27171,27171)
— 1 + f 0 2n 1 2771—17271—1) _ f(0,2n—1 _ 27n—1 + 17277,—1 + 1)
=1 4 f 277, 2 2m72 2n71 o 2m72’ 277,72) o f(2n72 o 2m727 27’7,71 o 2m72 4 1’ 277,72)

(

(
=1 +f<0 Qm— 2 2” 2) f<0’2m—272n—2 + 1)
=1+ f(0,2m72 2772) — £(0,2™m72,2""2) = 1.
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For k > 0, putting K = k — (k mod 2), we have
£(0,2™ 2™) — £(0,2™ — 2k 2" 4 2K)
= fmt2mTtpantlgnTly - femet — okl gmel g gnml gl 9kl
— f(2m72 4 2n72, 2m71 4 277,72’ 2m72 4 anl)
—f@mTE 4 2n T am T R gkt g g gntl g 9k ?)
= £(0,2m72,2772) — £(0,2m2 — 2k=2 9n=2 4 ok=2)
= .= f(O, Qm—K’ 2n—K) _ f(O, gm—K _ 9k mod 2, on—K | 9k mod 2).
Thus it suffices to show that
£(0,2™,2™) — £(0,2™ — 1,27 + 1) = £(0,2™,2") — £(0,2™ —2,2" +2) =1
In fact, f(0,2™,2™) — f(0,2™ — 1,2" + 1) = 1 has been already shown in the above. Also
£(0,2™ 2™) — £(0,2™ —2,2" 4 2)
=feEmher et en ) - et - 2m 4 2nt 2n )
= f(0,2"t —2m=ton=hy 1 — f(0,2" "t —2m~t L2 9n )
= f(2n2 —gm=2 gn—l _gm=2 gn=2y 1
— f(2n% —om=2 1 onmt _9mm2 ] 9n7?)

O

Remark 2. Let k= 0. In case (m,n) = (0,0),(3,2),(1,z), (z,1) for x # 1, we have
£(0,2™,2m) — £(0,2™ —1,2" + 1) = 0.
Other cases, we also have the above difference is 1.
So we try to estimate f(a,b,c) by (a +b+¢)/3:
Lemma 13. Fork €N, let 0 < x,y £ 4% — 1. Then

4 -1 AHEK+N) 2 (@F-1)
4k 3 3 4k

f0,4°K + 2,45 N +y) > + f(0, K, N)
for K, N € N.
Proof. Since %ﬂ’ < %’ we have
f(0,4*K + 2,4*N + ) > f(0,4" K, 4*N) = 4* "1 (K + N) + f(0,4* 'K 4*71N)
==+ 4 1)(K+N)+ f(0,K,N)

4k — 1

=3 (K +N)+ f(0,K,N)

4 -1 FME+N)+r+y (@ -1ty

Tgk 3 - 3 x 4k + /(0. K, N)

4 -1 MK+ N)+x+y 2 (4F-1)
4k 3 3 4k

v

+ f(0,K,N). O
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Remark 3. If = y = 0 in the above theorem, then

4k —1 4¥(K + N)

f(0,4"K 4*N) = + f(0, K, N).

4k 3
4k 1 k+n 2 (4F—1)2
llary 14. Z : -3 '
Corollary f(0,k,n) = 4k 3 3 4k

Theorem 15. For nonnegative integers a,b,c and k,

4* —1 a+b+c min{a,b,c} 2 (4% -1)?

f(a,b,c) 2 4k 3 41{: g 4k:
4 -1 atbte 2 (4F-1)°
= 4k 3 3 4k

In addition, if a,b,c 2 &3_1)2, then

4k -1 a4+b+ec
4k 3 '

Proof. Since we may assume a < b, ¢, the above corollary implies

fla,b,c) 2

48 —1 b+c—2a 2 (4F—-1)2
fla,b,c) =a+ f(0,b—a,c—a) Za+ Y 3 -3 7
4 -1 a+b+ec a 2 (4F-1)2
T3 TET3 T
4 —1 a+b+c 2 (4F-1)?

4k 3 3 4k

1\

w

Ifb,cZa2 2(4163771)2, then
a _ 2(4F —1)2
4k = 3 x gk
so that we have the last inequality. O

v

Remark 4. By Remark 3, if b — a and ¢ — a are the multiples of 4% for b, ¢ > a, then

4 —1 a+b+c a
fla,b,c) = T 3 +473—|—f(0,b—a,c—a).

Remark 5. If a,b,c 2 M, then

4k -1 a4+b+c

>
flabe)z e 5

We also pose the case for k = 1:

Corollary 16.

3 a+b+c min{a,bc} 3
b 27. =
fabe)z g —5—+—7 2
>3 atbte 3
— 4 3 2

In addition, if a,b,c = 12, then
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