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ON 3-VARIABLE EXTENSION FOR THE INTEGER MEAN
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Abstract. Based on ideas of Lawson-Lim [4] and Jung-Lee-Yamazaki [2], an abstract
mean on a metric space was introduced in [5]. In this paper, we discuss a typical
example of such a mean on the nonnegative integers and estimate it by the usual
mean.

1 Introduction. Since [1] was published, multi-variable geometric operator means have
been discussed. Among them, Lawson-Lim [4] introduced abstract means on a metric space.
On the other hand,computable geometric operator means was introduced in [2]. In [5], we
combined these means and introduced N -means ν on a metric space, particularly as N -
variable extension ν = µ(N): Let µ is an abstract 2-mean in a metric space X. For a given

N -tuple (x1, · · · , xN ), let ak = a
(0)
k = xk and

a
(n)
k = µ(a

(n−1)
k , a

(n−1)
k+1 ) for 1 ≦ k ≦ N − 1 and a

(n)
N = µ(a

(n−1)
N , a

(n−1)
1 ).

If limn→∞ a
(n)
k exists for all k and they coincide, say a(∞), then we put ν(x1, · · · , xN ) =

a(∞), which is the N -variable extension µ(N) of µ.
Here we give an example of the 3-variable extension µ(3) for the integer mean µ : N0 ×

N0 → N0

µ(n,m) =

⌊
n+m

2

⌋
where N0 is the nonnegative integers and

⌊ ⌋
is the Gauss symbol and the metric is the

usual one induced by the absolute value. Then, since the total distance

d3(a
(n)
1 , a

(n)
2 , a

(n)
3 ) = max

{
|a(n)1 − a

(n)
2 |, |a(n)2 − a

(n)
3 |, |a(n)3 − a

(n)
1 |

}
is monotone decreasing for n, it has the 3-variable extension µ(3).

By the construction of µ(3), it is clear that µ(3)(a, b, c) ≦ a+b+c
3 . As we show later, the

equality holds if and only if a = b = c. In this paper, we observe µ(3)(a, b, c) in detail and
estimate it by a+b+c

3 .

2 Basic value of µ(3). Let f(n1, n2, n3) = µ(3)(n1, n2, n3). Then, f is a monotone
nondecreasing function. Since this 3-mean is symmetric, we may express f(n1, n2, n3) for
the case n1 ≦ n2 ≦ n3 and

f(n1, n2, n3) = f

(⌊
n1 + n2

2

⌋
,

⌊
n2 + n3

2

⌋
,

⌊
n3 + n1

2

⌋)
= f

(⌊
n1 + n2

2

⌋
,

⌊
n3 + n1

2

⌋
,

⌊
n2 + n3

2

⌋)
.

Moreover the following simple lemma allows us that n1 can be assumed to be 0:
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Lemma 1. f(n+ n1, n+ n2, n+ n3) = n+ f(n1, n2, n3).

Proof. The required formula follows from the fact that

µ(n+ nk, n+ nj) =

⌊
n+

nk + nj

2

⌋
= n+

⌊
nk + nj

2

⌋
= n+ µ(nk, nj)

where j = kmod3 + 1.

First we show the case f(n1, n2, n3) = f(0, 2m, 2m), which increases at a rate of about
2/3. Here the operation // means the quotient for integers:

Lemma 2. f(0, 22k, 22k) =
22k+1 − 2

3
and f(0, 22k+1, 22k+1) =

22k+2 − 1

3
for k ≧ 0, or

equivalently f(0, 2m, 2m) = (2m × 2)//3 for all m ≧ 0.

Proof. Note that f(0, 1, 1) = 0. For n = 22k for k ≧ 1,

f(0, 22k, 22k) = f(22k−1, 22k, 22k−1) = 22k−1 + f(0, 22k−1, 0) = 22k−1 + f(0, 0, 22k−1)

= 22k−1 + f(0, 22k−2, 22k−2)

· · · = 22k−1 + · · ·+ 2 + f(0, 1, 1) = 2× 22k − 1

3
=

22k+1 − 2

3
.

Thus it also holds for k = 0. Lastly for n = 22k+1 for k ≧ 0, by f(0, 2, 2) = 1 we have

f(0, 22k+1, 22k+1) = f(22k, 22k+1, 22k) = f(22k−1 + 22k, 22k−1 + 22k, 22k)

= 22k + f(0, 22k−1, 22k−1)

· · · = 22k + · · ·+ 4 + f(0, 2, 2) = 4× 22k − 1

3
+ 1 =

22k+2 − 1

3
.

Moreover we have f(0, 2m, 2m) = 2m+1−2+(m mod 2)
3 = (2m × 2)//3.

By Lemma 2, f(0, 0, 2m) increases at about 1/3 rate:

Corollary 3. For k ≧ 0, f(0, 0, 22k) = 22k−1
3 and f(0, 0, 22k+1) = 22k+1−2

3 , or equivalently

f(0, 0, 2m) = 2m−1−(m mod 2)
3 = 2m//3 for all m ≧ 0.

Proof. For k ≧ 0, we have f(0, 0, 22k) = f(0, 22k−1, 22k−1) = 22k−1
3 and f(0, 0, 22k+1) =

f(0, 22k, 22k) = 22k+1−2
3 .

Next we observe the special case of the form f(0, n, n). To see this, note that if all 3
variables are odd, then it does not increase in the next step:

Lemma 4. f(2J, 2K, 2N) = f(2J, 2K, 2N + 1).

Proof. Since we may assume J = 0, we have

f(0, 2K, 2N + 1)− f(0, 2K, 2N) = f(K,K +N,N)− f(K,K +N,N) = 0. □

Now we observe f(0, n, n):
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Proposition 5. The function f(0, n, n) strictly increases only at

n = 22ℓ+1k − 4ℓ − 1

3
> 0

for ℓ ≧ 0, k > 0. Precisely,

f(0, n, n) =
L∑

ℓ=0

(
n+

4ℓ − 1

3

)
//22ℓ+1 =

L∑
ℓ=0

(
2n+

2(4ℓ − 1)

3

)
//4ℓ+1

where L = L(n) =
⌊
log4

3n−1
5

⌋
.

Proof. Put nℓ = 22ℓ+1k − 4ℓ−1
3 . At n = n0 = 2k, the function f(0, n, n) is increasing by

f(0, 2k, 2k) = f(k, 2k, k) = 1 + f(k − 1, 2k − 1, k − 1) = 1 + f(0, 2k − 1, 2k − 1).

Since nℓ is odd for ℓ > 0, we have

2nℓ−1 = 22ℓk − 2(4ℓ−1 − 1)

3
=

22ℓ+1k − 4(4ℓ−1−1)
3

2
=

22ℓ+1k − 4ℓ−1
3 + 1

2
=

nℓ + 1

2
.

Suppose it is increasing at n = nℓ. Then

f(0, nℓ+1, nℓ+1) = f

(
nℓ+1 − 1

2
, nℓ+1,

nℓ+1 − 1

2

)
=

nℓ+1 − 1

2
+ f

(
0, 0,

nℓ+1 + 1

2

)
=

nℓ+1 − 1

2
+ f(0, 0, 2nℓ) =

nℓ+1 − 1

2
+ f(0, nℓ, nℓ) = 1 +

nℓ+1 − 1

2
+ f(0, nℓ − 1, nℓ − 1)

= 1 +
nℓ+1 − 1

2
+ f(0, 0, 2nℓ − 2) = 1 +

nℓ+1 − 1

2
+ f(0, 0, 2nℓ − 1) (by Lemma 4)

= 1 +
nℓ+1 − 1

2
+ f

(
0, 0,

nℓ+1 + 1

2
− 1

)
= 1 + f

(
nℓ+1 − 1

2
,
nℓ+1 − 1

2
, nℓ+1 − 1

)
= 1 + f (0, nℓ+1 − 1, nℓ+1 − 1) .

Thus f(0, n, n) is increasing at all nℓ = 22ℓ+1k− 4ℓ−1
3 . To obtain the upper bound of ℓ,

we have n ≧ 22ℓ+1k − 4ℓ−1
3 , so that

3n− 1 ≧ 6k × 4ℓ − 4ℓ = (6k − 1)4ℓ ≧ 5× 4ℓ.

Therefore we have 3n−1
5 ≧ 4ℓ, that is, L(n) =

⌊
log4

3n−1
5

⌋
. Since these nℓ satisfy that

nℓ +
4ℓ−1
3 divides 22ℓ+1, we have

f(0, n, n) ≧
L∑

ℓ=0

(
n+

4ℓ − 1

3

)
//22ℓ+1.

The equality holds since it always holds for n = 2m by Lemma 2: In fact, for sufficiently
large m, we have L = (log2 2

m − 1)//2 = (m− 1)//2 and

m− 1− 2L = m− 1− 2((m− 1)//2) = (m− 1)mod 2 = (m+ 1)mod 2.
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Therefore

f(0, 2m, 2m) ≧
L∑

ℓ=0

(
2m +

4ℓ − 1

3

)
//22ℓ+1 =

L∑
ℓ=0

2m−2ℓ−1 = 2m−2L−1
L∑

ℓ=0

4ℓ

= 2m−2L−1 4
L+1 − 1

3
=

2m+1 − 2m−1−2L

3
=

2m+1 − 2(m+1)mod 2

3
= 2m+1//3.

Thus the equality holds for 2m for a sufficiently large m, that is, it always holds.

Since f(0, 0, 2n) = f(0, n, n) and f(0, 0, 2n− 1) = f(0, n− 1, n− 1) = f(0, 0, 2n− 2), we
have only to observe the former case:

Corollary 6. The function f(0, 0, n) increases only at n = 2
(
22ℓ+1k − 4ℓ−1

3

)
> 0 for

ℓ ≧ 0, k > 0. Precisely

f(0, 0, n) =
L∑

ℓ=0

(
n+

2(4ℓ − 1)

3

)
//4ℓ+1

where L = L(n) =
⌊
log4

3n−2
10

⌋
.

Proof. It suffices to obtain L(n). By n ≧ 2
(
22ℓ+1k − 4ℓ−1

3

)
, we have

3n

2
≧ 6k × 4ℓ − 4ℓ + 1 = (6k − 1)4ℓ + 1 ≧ 5× 4ℓ + 1.

It follows from 3n−2
2 ≧ 5× 4ℓ that L(n) =

⌊
log4

3n−2
10

⌋
.

Remark 1. Here we consider a function

Tℓ(n) =

(
n+

2(4ℓ − 1)

3

)
//4ℓ+1.

It plays a central role for various formulae for f . We easily have a formula: Tℓ+1(4n− 2) =

Tℓ(n). Moreover, since 2(4ℓ−1)
3 mod 4 = 2 for ℓ > 0, we have

Tℓ(4m+ 2) = Tℓ(4m+ 3) = Tℓ(4m+ 4) = Tℓ(4m+ 5)

and
Tℓ(4m+ 1) = Tℓ(4m) = Tℓ(4m− 1) = Tℓ(4m− 2)

for ℓ > 0.

Next we observe f(0, k, n) for small k:

Lemma 7. f(0, 1, n) = f(0, 0, n).

Proof. Note that

f(0, 1, 4m) = f(0, 1, 4m+ 1) = m+ f(0, 0,m) = f(0, 0, 4m+ 1) = f(0, 0, 4m)

f(0, 1, 4m+ 2) = m+ f(0, 0,m+ 1) = f(0, 0, 4m+ 2)

f(0, 1, 4m+ 3) = m+ f(0, 1,m+ 1), m+ f(0, 0,m+ 1) = f(0, 0, 4m+ 3).

So we have only to verify the case f(0, 1, 4m+3) = f(0, 0, 4m+3), which is reduced to the
equality f(0, 1, n+1) = f(0, 0, n+1). By the above observation, we have only to verify the
case n+ 1 = 4m+ 3.

Therefore by this reduction, it suffices to show f(0, 1, k) = f(0, 0, k) for k = 0, 1, 2, 3.
Since f(0, 1, 3) = 0, we have f(0, 1, 2) = f(0, 0, 3) = f(0, 0, 2) = f(0, 1, 1) = f(0, 0, 1) =
f(0, 0, 0) = 0, so that the required equality yields.
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Direct computation shows the following table for f(0, k, n) where n = 4m− j:

k 4m− 3 4m− 2 4m− 1 4m

2 m− 1 + f(0, 0,m− 1) m+ f(0, 0,m− 1) m+ f(0, 0,m− 1) m+ f(0, 0,m)

3 m− 1 + f(0, 0,m) m+ f(0, 0,m− 1) m+ f(0, 0,m) m+ f(0, 0,m)

Therefore we have the formulae for f(0, k, n) for k = 2, 3:

In the below, the upper bounds Lℓ of ℓ are slightly varied, but they are easily obtained
as in the above. So we omit the upper bounds for ℓ for the sake of convenience:

Lemma 8. f(0, 2, n) = (n+ 2)//4 +
∑

ℓ≧0 Tℓ(n//4),

f(0, 3, n) = (n+ 2)//4 +
∑

ℓ≧1 (Tℓ(n+ 1) + Tℓ(n− 1)− Tℓ(n)).

In fact, in case n = 4m − 3, then n − 1 = 4(m − 1), and hence m − 1 = (n − 1)/4 =
(n− 1)//4 = n//4 = (n+ 2)//4. Thereby

f(0, 2, n) = m− 1 + f(0, 0,m− 1) = (n+ 2)//4 + f(0, 0, n//4) = (n+ 2)//4 +
∑
ℓ≧0

Tℓ(n//4).

By the above remark, we have

f(0, 3, n) = m− 1 + f(0, 0,m) = (n+ 2)//4 +
∑
ℓ≧0

Tℓ((n− 1)//4)

= (n+ 2)//4 +
∑
ℓ≧1

Tℓ(n+ 1).

Since Tℓ(n+1) = Tℓ(4m− 2) and Tℓ(n) = Tℓ(4m− 3) = Tℓ(4m− 4) = Tℓ(n− 1) also by
the remark, we have

f(0, 3, n) = (n+ 2)//4 +
∑
ℓ≧1

(Tℓ(n+ 1) + 0)

= (n+ 2)//4 +
∑
ℓ≧1

(Tℓ(n+ 1) + Tℓ(n− 1)− Tℓ(n)) .

3 General formulae for µ(3). Under modulo 4, the values of f(0, k, n) are classified
as the following table:

k \ n 4N 4N + 1 4N + 2 4N + 3

4K K + N + f(0, K,N) K + N + f(0, K,N) K + N + f(0, K,N + 1) K + N + f(0, K,N + 1)

4K + 1 K + N + f(0, K,N) K + N + f(0, K,N) K + N + f(0, K,N + 1) K + N + f(0, K + 1, N + 1)

4K + 2 K + N + f(0, K + 1, N) K + N + f(0, K + 1, N) K + N + 1 + f(0, K,N) K + N + 1 + f(0, K,N)

4K + 3 K + N + f(0, K + 1, N) K + N + f(0, K + 1, N + 1) K + N + 1 + f(0, K,N) K + N + 1 + f(0, K + 1, N + 1)

Summing up, we obtain the reducing formulae for f(0, k, n):

Lemma 9. f(0, k, n) = k//4 + n//4 + ((k mod 4)//2 + (n mod 4)//2)//2

+ f(0, k//4 + ((k mod 4)//2 + ((n+ 2) mod 4)//2)//2 + (k mod 2 + n mod 4)//4,

n//4 + ((n mod 4)//2 + ((k + 2) mod 4)//2)//2 + (n mod 2 + k mod 4)//4).

Combining Lemmas 7–9, we can obtain any value of f(a, b, c) formally. For example, we
have the following values:
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Example 1.

f(0, 22j , n) = f(0, 4j , n) =
4j − 1

3
+
∑
ℓ≧0

T (n, ℓ)

f(0, 22j+1, n) =
4j+1 − 1

3
+
∑
ℓ≧0

T (n− 2× 4j , ℓ)

f(0, 3× 4j , n) = 4j − 1 + Tℓ(n+ 2× 4j , j) +

j−1∑
ℓ=0

Tℓ(n) +
∑

ℓ≧j+1

[
Tℓ(n+ 4j) + Tℓ(n− 4j)− Tℓ(n)

]

f(0, 3× 22j+1, n) = 2× 4j +

j∑
ℓ=0

Tℓ(n) +
∑

ℓ≧j+1

[
Tℓ(n− 4j+1) + Tℓ(n− 2× 4j+1)− Tℓ(n− 6× 4j)

]

f(0, 22j+1 + 1, n) =

j∑
m=0

4m +
∑
ℓ≧0

Tℓ(n− 22j+1) +
∑

ℓ≧j+1

[
Tℓ

(
n−

j∑
m=0

4m
)

− Tℓ

(
n− 1−

j∑
m=0

4m
)

+ Tℓ

(
n−

j∑
m=0

4m + 22j+1

)
− Tℓ

(
n− 1−

j∑
m=0

4m + 22j+1

)]

f(0, 4j + 1, n) =

j−1∑
m=0

4m +

(
n+

j∑
m=0

4m
)
//4j+1 −

(
n− 1 +

j∑
m=0

4m
)
//4j+1

+

(
n+

j∑
m=0

4m + 4j
)
//4j+1 −

(
n− 1 +

j∑
m=0

4m + 4j
)
//4j+1 +

∑
ℓ≧0

Tℓ(n)

+
∑

ℓ≧j+1

[
Tℓ

(
n− 1−

j−1∑
m=0

4m
)

− Tℓ

(
n−

j−1∑
m=0

4m
)

+ Tℓ

(
n− 1−

j∑
m=0

4m
)

− Tℓ

(
n−

j∑
m=0

4m
)]

f(0, 22j+1 − 1, n) =

j∑
m=1

4m +
∑
ℓ≧0

Tℓ

(
n+ 1− 22j+1

)

+
∑
ℓ≧j

[
Tℓ

(
n−

j∑
m=1

4m
)

− Tℓ

(
n− 1−

j∑
m=1

4m
)]

f(0, 4j − 1, n) =

j−1∑
m=1

4m +

(
n+ 1 +

j−1∑
m=0

4m
)
//4j −

(
n+

j−1∑
m=0

4m
)
//4j

+
∑
ℓ≧0

Tℓ(n+ 1) +
∑
ℓ≧j

[
Tℓ

(
n−

j−1∑
m=0

4m
)

− Tℓ

(
n+ 1−

j−1∑
m=0

4m
)]

f(0, 22j+1 − 2, n) =

j∑
m=1

4m +
∑
ℓ≧0

Tℓ

(
n− 22j+1

)

+
∑
ℓ≧j

[
Tℓ

(
n−

j∑
m=1

4m
)

− Tℓ

(
n− 2−

j∑
m=1

4m
)]

f(0, 4j − 2, n) =

j−1∑
m=1

4m +

(
n+ 1 +

j−1∑
m=0

4m
)
//4j −

(
n− 1 +

j−1∑
m=0

4m
)
//4j

+
∑
ℓ≧0

Tℓ(n) +
∑
ℓ≧j

[
Tℓ

(
n− 1−

j−1∑
m=0

4m
)

− Tℓ

(
n+ 1−

j−1∑
m=0

4m
)]

.
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4 Estimation. Since [1] was published, multi-variable geometric operator means have
been discussed. In general f(a, b, c) ≦ a+b+c

3 holds. The equality holds if and only if the
variables are equal:

Theorem 10. The equality µ(3)(a, b, c) ≡ f(a, b, c) = a+b+c
3 holds if and only if a = b = c.

Proof. It is clear that the equation holds for a = b = c. Conversely suppose the equation
holds. Then f(a, b, c) must be equal to f((a + b)/2, (b + c)/2, (c + a)/2), the parities for
variables are equal. Since we may assume a is 0, then b+c

3 = f(0, b, c) = f(b/2, (b+c)/2, c/2).
Thereby b/2 and c/2 must be even. Such procedure shows that b/2k and c/2k are even for
all k ∈ N. If x = b or x = c is 2ℓ, then x/2ℓ = 1, which is odd. Thus b and c must be 0, so
that a = b = c.

Next we consider the other cases. The following result is the invariant case that the sum
of variables is a constant:

Theorem 11. For m,n ∈ N,

f(0, 2m, 2n) = f(0, 0, 2m + 2n).

Proof. Since we may assume 2 ≦ m < n by Lemma 2, the reduction formula shows

f(0, 2m, 2n) = 2m−2 + 2n−2 + f(0, 2m−2, 2n−2)

= · · · = 2m mod 2 4
m//2 − 1

3
+ 2n−2 + · · ·+ 2n−2(m//2−1) + f(0, 2m mod 2, 2n−2(m//2−1))

= · · · = 2m mod 2 4
m//2 − 1

3
+ 2n mod 2 4

n//2 − 1

3
+ f(0, 0, 2n mod 2)

=
2m − 2m mod 2 + 2n − 2n mod 2

3
+ 0 =

2m + 2n − 2m mod 2 − 2n mod 2

3
.

Similar procedure as f(0, 0, 2m +2n) = 2m−2 +2n−2 + f(0, 0, 2m−2 +2n−2) shows that it is
equal to the above.

Contrastively to Lemma 4, the following formula is a non-constant case:

Theorem 12. For m,n ≧ k + 3 + (k mod 2) and k ≧ 0,

f(0, 2m, 2n) = f(0, 2m − 2k, 2n + 2k) + 1.

Proof. We may assume m < n. For k = 0, we have

f(0,2m, 2n)− f(0, 2m − 1, 2n + 1)

= f(2m−1, 2m−1 + 2n−1, 2n−1)− f(2m−1 − 1, 2m−1 + 2n−1, 2n−1)

= 1 + f(0, 2n−1 − 2m−1, 2n−1)− f(0, 2n−1 − 2m−1 + 1, 2n−1 + 1)

= 1 + f(2n−2 − 2m−2, 2n−1 − 2m−2, 2n−2)− f(2n−2 − 2m−2, 2n−1 − 2m−2 + 1, 2n−2)

= 1 + f(0, 2m−2, 2n−2)− f(0, 2m−2, 2n−2 + 1)

= 1 + f(0, 2m−2, 2n−2)− f(0, 2m−2, 2n−2) = 1.
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For k > 0, putting K = k − (k mod 2), we have

f(0, 2m, 2n)− f(0, 2m − 2k, 2n + 2k)

= f(2m−1, 2m−1 + 2n−1, 2n−1)− f(2m−1 − 2k−1, 2m−1 + 2n−1, 2n−1 + 2k−1)

= f(2m−2 + 2n−2, 2m−1 + 2n−2, 2m−2 + 2n−1)

− f(2m−2 + 2n−2, 2m−1 + 2n−2 − 2k−2, 2m−2 + 2n−1 + 2k−2)

= f(0, 2m−2, 2n−2)− f(0, 2m−2 − 2k−2, 2n−2 + 2k−2)

= · · · = f(0, 2m−K , 2n−K)− f(0, 2m−K − 2k mod 2, 2n−K + 2k mod 2).

Thus it suffices to show that

f(0, 2m, 2n)− f(0, 2m − 1, 2n + 1) = f(0, 2m, 2n)− f(0, 2m − 2, 2n + 2) = 1

In fact, f(0, 2m, 2n)− f(0, 2m − 1, 2n + 1) = 1 has been already shown in the above. Also

f(0, 2m, 2n)− f(0, 2m − 2, 2n + 2)

= f(2m−1, 2m−1 + 2n−1, 2n−1)− f(2m−1 − 1, 2m−1 + 2n−1, 2n−1 + 1)

= f(0, 2n−1 − 2m−1, 2n−1) + 1− f(0, 2n−1 − 2m−1 + 2, 2n−1 + 1)

= f(2n−2 − 2m−2, 2n−1 − 2m−2, 2n−2) + 1

− f(2n−2 − 2m−2 + 1, 2n−1 − 2m−2 + 1, 2n−2)

= f(0, 2m−2, 2n−2) + 1− f(1, 2m−2, 2n−2 + 1)

= f(2m−3, 2m−3 + 2n−3, 2n−3) + 1− f(2m−3, 2m−3 + 2n−3, 2n−3 + 1)

= f(2m−3, 2m−3 + 2n−3, 2n−3) + 1− f(2m−3, 2m−3 + 2n−3, 2n−3) (by Lemma 4)

= 1. □

Remark 2. Let k = 0. In case (m,n) = (0, 0), (3, 2), (1, x), (x, 1) for x ̸= 1, we have

f(0, 2m, 2n)− f(0, 2m − 1, 2n + 1) = 0.

Other cases, we also have the above difference is 1.

So we try to estimate f(a, b, c) by (a+ b+ c)/3:

Lemma 13. For k ∈ N, let 0 ≦ x, y ≦ 4k − 1. Then

f(0, 4kK + x, 4kN + y) ≧ 4k − 1

4k
· 4

k(K +N)

3
− 2

3
· (4

k − 1)2

4k
+ f(0,K,N)

for K,N ∈ N.

Proof. Since x+y
3 ≦ 2(4k−1)

3 , we have

f(0, 4kK + x, 4kN + y) ≧ f(0, 4kK, 4kN) = 4k−1(K +N) + f(0, 4k−1K, 4k−1N)

= · · · = (4k−1 + · · ·+ 1)(K +N) + f(0,K,N)

=
4k − 1

3
(K +N) + f(0,K,N)

=
4k − 1

4k
· 4

k(K +N) + x+ y

3
− (4k − 1)(x+ y)

3× 4k
+ f(0,K,N)

≧ 4k − 1

4k
· 4

k(K +N) + x+ y

3
− 2

3
· (4

k − 1)2

4k
+ f(0,K,N). □
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Remark 3. If x = y = 0 in the above theorem, then

f(0, 4kK, 4kN) =
4k − 1

4k
· 4

k(K +N)

3
+ f(0,K,N).

Corollary 14. f(0, k, n) ≧ 4k − 1

4k
· k + n

3
− 2

3
· (4

k − 1)2

4k
.

Theorem 15. For nonnegative integers a, b, c and k,

f(a, b, c) ≧ 4k − 1

4k
· a+ b+ c

3
+

min{a, b, c}
4k

− 2

3
· (4

k − 1)2

4k

≧ 4k − 1

4k
· a+ b+ c

3
− 2

3
· (4

k − 1)2

4k
.

In addition, if a, b, c ≧ 2(4k−1)2

3 , then

f(a, b, c) ≧ 4k − 1

4k
· a+ b+ c

3
.

Proof. Since we may assume a ≦ b, c, the above corollary implies

f(a, b, c) = a+ f(0, b− a, c− a) ≧ a+
4k − 1

4k
· b+ c− 2a

3
− 2

3
· (4

k − 1)2

4k

=
4k − 1

4k
· a+ b+ c

3
+

a

4k
− 2

3
· (4

k − 1)2

4k

≧ 4k − 1

4k
· a+ b+ c

3
− 2

3
· (4

k − 1)2

4k
.

If b, c ≧ a ≧ 2(4k−1)2

3 , then

a

4k
≧ 2(4k − 1)2

3× 4k
,

so that we have the last inequality.

Remark 4. By Remark 3, if b− a and c− a are the multiples of 4k for b, c ≧ a, then

f(a, b, c) =
4k − 1

4k
· a+ b+ c

3
+

a

4k
+ f(0, b− a, c− a).

Remark 5. If a, b, c ≧ 2(4k−1)2

3 , then

f(a, b, c) ≧ 4k − 1

4k
· a+ b+ c

3
.

We also pose the case for k = 1:

Corollary 16.

f(a, b, c) ≧ 3

4
· a+ b+ c

3
+

min{a, b, c}
4

− 3

2

≧ 3

4
· a+ b+ c

3
− 3

2
.

In addition, if a, b, c ≧ 12, then

f(a, b, c) ≧ 3

4
· a+ b+ c

3
.
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119–126.

communicated by Masatoshi Fujii.

Department of Art and Sciences (Information Science), Osaka Kyoiku University,
Asahigaoka, Kashiwara, Osaka 582-8582, Japan.

E-mail address: fujii@cc.osaka-kyoiku.ac.jp

* Department of Mathematics, Osaka Kyoiku University, Asahigaoka, Kashiwara,
Osaka 582-8582, Japan.

** Nose Highschool, Nose, Toyono-Gun, Osaka 563-0122, Japan.


