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ON LOEWNER AND KWONG MATRICES
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ABSTRACT. Let f(t) be an operator monotone function from the interval (0, c0) into
itself. In this note, we show that for any positive integer m, the matrices

{r)™ + {f(tj)}’"] 7 [{f(ti)}m — {7

4t gt =t
are positive semidefinite for all positive integers n and t1,...,t, in (0,00); that is, the
Kwong matrices K ;(41/myym (t1,...,tn) and the Loewner matrices Liyr/myym (t1y ..., tn)

are positive semidefinite. The former is a generalization of Kwong’s result, and the
latter is an alternative proof for operator monotonicity of the function t — {f(t/™)}™.

1 Introduction Let f(t) be a continuously differentiable function from the interval
(0,00) into itself. The function f(¢) is said to be operator monotone on (0,00) if for two
positive definite matrices A and B of any size n the inequality A = B implies f(A4) = f(B).
Here A = B means that A — B is positive semidefinite. For distinct ¢1,...,t, in (0,00), we
define the n x n matrix Ly (t1,...,t,) as

Lf(t)(tl,...,tn) = {W} 7

where the diagonal entries are understood as the first derivatives f’(¢;). This matrix is

called a Loewner matriz. Similarly we define the n x n matrix Ky (t1,...,t,) as
f@t) + f(t)
K tlyeeoytn) i= | —F——————=|,
f(t)( 1, ) ) |: tz _|_ t]

which we call an Kwong matriz. (In [2, 9] it is called an anti-Loewner matrix.)

We also define the n x n matrix LEZ(?)(tl, ...y ty) and K}’g;(tl, ooy ty) as

LU (.. t)

(m _ {f(tz-)}’”—{f(tj)}m}, Ky [{ﬂm}mﬂﬂm}m

e 1) T

for a positive integer m.

It is well-known that f(t) is operator monotone if and only if for all n and ¢4, ..., t,, the
Loewner matrices L) (t1,. .. ,t,) are positive semidefinite, which is one of principal results
by Léwner [11]. If f(t) is operator monotone, the Kwong matrices K¢ (t1,...,t,) are pos-
itive semidefinite; this was given by Kwong [10]. In fact, the latter is recently characterized
by Audenaert [2]. On the other hand, it is known that if f(¢) is operator monotone, so is the
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function ¢ — {f(t'/™)}™ for any positive integer m. See [1, 8]. Hence, combining them, we

conclude that if f is operator monotone, then the Loewner matrices Lifarimyym (t1y..eytn)
and the Kwong matrices K 1/myym(t1,...,t,) are positive semidefinite; therefore, so are
L%))(th...,tn) and K}Z;(th...,tn).

In this note, we give an alternative proof for operator monotonicity of the function ¢ —
{f(t*/™)}™ by showing in Theorem 2.6 that if f is operator monotone, then ' (t1,. .- ytn)

f(@®)
are positive semidefinite for all n and ¢, ..., ¢, in (0,00). We also show in Theorem 2.5 that
if f is operator monotone, then K}Z; (t1,...,t,) are positive semidefinite for all n and
t1,...,t, in (0,00); in the case of n = 1, this is just Kwong’s result. We refer the reader to

[3, 4, 7] for properties of operator monotone functions.

2 Main Theorems We recall several facts as mentioned:

Theorem 2.1 (Lowner [11]) Let f be a C' function on (0,00). Then f is operator
monotone if and only if L)(t1,...,t,) are positive semidefinite for all positive integers n
and tq,...,t, in (0,00).

Theorem 2.2 (Kwong [10]) Let f be a positive C! function on (0, 00). If f is operator
monotone, then Ky (t1,...,t,) are positive semidefinite for all positive integers n and
t1,...,t, in (0, 00).

Although the following characterization is not used in this note, but we review: The-
orem 2.3 (Audenaert [2]) Let f be a positive C'! function on (0,00). For all positive
integers n and t1,...,t, in (0,00) Kfu)(t1,...,t,) are positive semidefinite if and only if
f(V/t)\/t is operator monotone.

Theorem 2.4 (Ando [1], Fujii-Fujii [8]) Let f be an operator monotone function from
(0,00) into itself. Then so is the function t s {f(t}/™)}™ for any positive integer m.

We will show the following theorems:
Theorem 2.5 Let f be an operator monotone function from (0, c0) into itself. Then for

any positive integer m, K}%Lg (t1,...,t,) are positive semidefinite for all positive integers n
and t1,...,t, in (0,00) : or Kypya/myym(t1,...,t,) are positive semidefinite for all positive
integers n and t1, ..., ¢, in (0,00).

Theorem 2.5 is a generalization of Theorem 2.2.
Theorem 2.6 Let f be an operator monotone function from (0, c0) into itself. Then for

any positive integer m, L;T(nt)) (t1,...,tn) are positive semidefinite for all positive integers n
and t1,...,t, in (0,00) : or Lys1/myym(t1,...,tn) are positive semidefinite for all positive
integers n and tq,...,t, in (0, c0).

Theorem 2.6 shows another proof of Theorem 2.4.
Proof of Theorem 2.5. It is known that the operator monotone function f is of the
form

f0) =a+pt+ [ g du.

where «, § are non-negative numbers and p is a positive measure on (0, 00). See [3, p.144].
Let g(t) = [;° t/(t+A) duu(X). Then the power {f(t)}™ is represented as the sum of t*{g(t)}'
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for non-negative integers k, I satisfying k41 < m with non-negative coefficients, and t*{g(t)}!

is the multi-integral of
tk-‘rl

Ly Vo W B

4t
J
is positive semidefinite. Letting p(t) = (t + A1)(t + A2) - - (¢ + A;), we have the expression

over du(Ar) - - - du(N\;). Hence, for our purpose, it is sufficient to show that X := [

h(t;) + h(tj)]

o |1 () + 5 p(t) 1
p(t) i+t p(t))

and using the expansion of p(t): p(t) = aot' + a1t'=* 4+ -+ + a;_1t + a; for ag = 1 and
non-negative integers ay, ..., ay,

tf tf-H_s—l—t?—H_s t; ‘| l [t§+l—s+t§+l—sl b
- m 1 am_ S»

l
X = ap— = aj— D
; ¢ lp(ti) e+t p(ty) ; 5 tr

4 th

p(t)" " p(tn)

where D is the diagonal matrix given as D; = diag ( . By [5, 6] or

tk-i-l—s + tk—i—l—s tk+l—s +t/§+l—s
Theorem 2.2, | ———2 | is positive semidefinite, so is D, | ———2——| D,
tm 4 ot ]
Hence, we conclude that X is positive semidefinite; therefore, the proof is complete. |
Note that
Lo [teyr - ey ROECINIOEO)
F®) 2 —¢2 ti + 1, ti — 1

= Kf(t)(tl,...,tn) OLf(t)(tl,...,tn),

where o stands for Hadamard or Schur product: the entrywise product. When f is operator
monotone, both matrices are positive semidefinite by Theorems 2.1 and 2.2, by Schur’s
Theorem so is their Hadamard product L;z()t). For a positive integer k, since

. {ft)y> = L)
L;Q(t)) - l ]

2k 2k
2" — 12

L)) S #(2)) S I K (7)) S VA () ) i
t?k—l +t?k—l t%k_l . t?k_l

2k—1 k—1

— (2°77) (281
= Kf(t) (tl""’t")oLf(t) (tla"'7tn)’

k
we conclude by induction and Theorem 2.5 that Lgf( t)) is positive semidefinite for all k. But

in fact, we have Theorem 2.6:

Proof of Theorem 2.6. We use the same notation as in the proof of Theorem
h(t;) — h(t;
2.5. By the similar argument, it is sufficient to show that Y := (l)(])] is positive
G =t




414 T. SANO AND S. TACHIBANA
semidefinite. This matrix is represented as

l " t1§+l—s _ tlﬁ-l—s 15 l thtl=s _ 4kti=s
Y = a;— L J = aj_s Dy | ——2—| D,.
S COR ) P Pl B

7

k+l—s k+l—s
t; — tj

=t

By [5, 6] or Theorem 2.1, [ 1 is positive semidefinite, so is Y and the proof

is complete. |
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