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Abstract. We consider the Fix-Caginalp equation with the Neumann boundary
condition in Rn with n = 1, 2, 3. We obtain a global solution by the existence of
the Lyapunov function. After, we construct a dynamical system corresponding to the
equation. By the existence of the Lyapunov function, the ω-limit set is included in
the set of its stationary solution. We treat its dynamical properties such as a global
attractor, absorbing set, exponential attractor and so on. It is important to obtain
the estimate independent of the initial value. Finally, we construct an exponential
attractor.

1 Introduction In this paper, we consider the following Fix-Caginalp equation:
τφt = ε2∆φ + φ − φ3 + 2u x ∈ Ω, t > 0,
ut + l

2φt = κ∆u x ∈ Ω, t > 0,
∂φ
∂ν = ∂u

∂ν = 0 x ∈ ∂Ω, t > 0,
φ(x, 0) = φ0(x) x ∈ Ω,
u(x, 0) = u0(x) x ∈ Ω,

(1)

where τ , l, κ and ε are positive constants, ν is the outer unit normal vector and Ω is
a bounded domain in Rn with smooth boundary ∂Ω for n = 1, 2, 3. An equation (1) was
proposed by Caginalp in [4] to describe the phase transitions with finite thickness interfaces.
The unknown functions φ and u represent the phase function and the reduced temperature,
respectively. The positive constants τ , l, κ and ε represent the relaxation time, the latent
heat, the thermal diffusivity and a length scale which is a measure of the strength of the
bonding at the microscopic level, respectively. In [12], they consider the historic background
of the model and the derivation of a more general thermodynamically consistent model. At
first in [4], he proved a global existence of a solution under the restriction ε2

τ < κ. After in
[7], [2], [3] and [16], they dropped the restriction and proved the global existence under the
other boundary conditions

φ(x, t) = φ∂Ω(x), u(x, t) = u∂Ω(x),

∂φ

∂ν
(x, t) = 0, u(x, t) = u∂Ω(x)

and
φ(x, t) = φ∂Ω(x),

∂u

∂ν
(x, t) = 0

for x ∈ ∂Ω, t > 0, where φ∂Ω(x) and u∂Ω(x) are given functions on ∂Ω. In [7], they consider
the stationary problem with the Neumann boundary condition, derive the existence and
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non-existence of nontrivial solutions and the multi-existence of trivial solutions according
to the values of constants l, ε and

∫
Ω

udx + l
2

∫
Ω

φdx and deal with their stabilities. If
n = 1, the stationary problem with the Dirichlet boundary condition is considered in [5]
and [9]. They show that there exist exactly 2m + 1 solutions with m being an integer
determined by ε2 and Ω. In [7], they consider the asymptotic behaviour of solution of (1).
For results with initial data in different settings of spaces, see [7], [1] and [3]. Lately in
[13], they consider non-local stationary problem and get some results on multiple existence,
stability and bifurcation of the solution. For a system of reaction-diffusion equations in
a bounded domain Ω ⊂ R2, the existence of a global attractor and exponential attractor
is proved in [11]. Their key fact is that its dynamical system has the squeezing property.
Although the global existence for (φ0, u0) ∈ H1(Ω) × L2(Ω) is known by [7] and [16], we
treat more general space Hγ(Ω) × Hγ(Ω). For the definition of function space and notion
of dynamical system, see Section 2 in this paper or [15], [6], [8], [14], [9]. In [16], he proves
the dynamical properties with the Dirichlet boundary condition instead of the Neumann
boundary condition. Since we can use the Poincaré inequality, the estimates of the Dirichlet
boundary condition case are easier. In particular, since the solution (φ, u) with the Dirichlet
boundary condition has the global dissipative property, we don’t have to consider a space Hk

mentioned in Theorem 4 in this paper in order to construct a global attractor. The purpose
of this paper is to establish the existence of a global solution, the properties of ω-limit
set and the exponential attractor in the dynamical system introduced by the Fix-Caginalp
equation. The first theorem is concerned with the global existence.

Theorem 1 Let Ω ⊂ Rn(n = 1, 2, 3) be a bounded domain with smooth boundary ∂Ω. We
suppose that φ0, u0 ∈ Hγ(Ω) for γ < γ < γ, where

(
n, γ, γ

)
=

(
1, 0, 1

4

)
,
(
2, 0, 1

2

)
,
(
3, 1

2 , 2
3

)
.

Then, the problem (1) admits a unique global solution (φ, u) such that

φ, u ∈ C
(
(0,∞);H1(Ω)

)
∩ C ([0,∞);Hγ(Ω)) ∩ C1

(
(0,∞);H−1(Ω)

)
.

The associated nonlinear semigroup T (t)

T (t) (φ0(·), u0(·)) = (φ(·, t), u(·, t))

defines a dynamical system in Hγ(Ω) × Hγ(Ω).

To obtain the a priori estimate for H1 norm, we use the Lyapunov function

L (φ, u) (t) =
1
2

∫
Ω

u2dx +
lε2

8

∫
Ω

|∇φ|2 dx +
l

4

∫
Ω

W (φ)dx +
κδ

2

∫
Ω

|∇u|2 dx

for δ < 4τ
l , where

W (φ) =
1
4

(
φ2 − 1

)2
.

In the second theorem, we obtain the regularity of solution.

Theorem 2 Under the same assumption as Theorem 1,

φ, u ∈ C∞ (
(0, +∞);C∞(Ω)

)
.

For any η > 0, the orbit t ∈ [η, +∞) 7→ (φ(·, t), u(·, t)) is compact in Hγ(Ω) × Hγ(Ω).

Combining the estimates obtained in Theorems 1 and 2 with the existence of the Lya-
punov function, we consider the structure of ω-limit set in the third theorem. At first, by
E we denote the set of stationary solution corresponding to (1). Since φ(t), u(t) ∈ H1(Ω)
for t > 0, we assume that φ0, u0 ∈ H1(Ω). As proved in Theorem 1, it is also easy to show
that the dynamical system is defined on H1(Ω) × H1(Ω).
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Theorem 3 We suppose that φ0, u0 ∈ H1(Ω). Then, ω(φ0, u0) is nonempty, compact,
invariant and connected in H1(Ω) × H1(Ω). And ω(φ0, u0) is a single point and it holds
that ω(φ0, u0) ⊂ E.

We construct an exponential attractor in H1(Ω)×H1(Ω) in the last theorem. However,
the solution (φ, u) of (1) does not have the global dissipative property. Thus, we restrict
the initial function to

Hk =
{
(φ0, u0) ∈ H1(Ω) × H1(Ω) | L(φ0, u0) ≤ k

}
for fixed k > 0 and reduce a dynamical system to its subdynamical system {T (t) : Hk →
Hk}.

Theorem 4 Under the same assumption as Theorem 3, T (t) is dissipative in Hk. The dy-
namical system T (t) has a global attractor A ⊂ Hk. Then, there exists a compact absorbing
and positively invariant set X ⊂ Hk such that its subdynamical system {T (t) : X → X}
admits an exponential attractor E in H1(Ω) × H1(Ω).

This paper is composed of 6 sections. In Section 2, we introduce the notions and theories
of an abstract evolution equation and dynamical system. We also refer to the function
space involved in this paper. In Section 3, we apply the existence theorem in Section 2 and
establish the local solution of (1). In Section 4, we derive the a priori estimates and extend
the local solution globally in time. In Section 5, we consider a nonlinear mapping from
the initial function to the solution of (1) and define the dynamical system. The obtained
estimates in Section 4 lead us to the proof of Theorems 1, 2 and 3. In section 6, we construct
an exponential attractor and prove Theorem 4. Now that we restrict to Hk and have the
Lyapunov function, our result follows at once.

2 Preliminaries We introduce the results and related facts in an abstract evolution
equation. These results are mentioned in mainly [15] and [9], [8], [6]. Let X be a Banach
space with the norm ‖ · ‖. Let A be a densely defined, closed linear operator in X. We
assume that the spectrum of A is contained in an open sectorial domain such that

σ(A) ⊂ Σω ≡ {λ ∈ C | |arg λ| < ω} , ωA < ω <
π

2
(2)

and ∥∥∥(λ − A)−1
∥∥∥ ≤ Mω

|λ|
, λ 6∈ Σω, ωA < ω <

π

2
(3)

for ωA ∈ [0, π
2 ), where Mω > 0 is a constant depending on A and ω. We call A a sectorial

operator of X with angle 0 ≤ ωA < π
2 . We consider the Cauchy problem for a semilinear

abstract evolution equation {
Ut + AU = F (U) t > 0,
U(0) = U0

(4)

in X. Here, F is a nonlinear operator from D(Aη) into X, where 0 < η < 1 and satisfies a
Lipschitz condition of the form

‖F (U) − F (V )‖ ≤ Φ
(∥∥AβU

∥∥ +
∥∥AβV

∥∥)
×{

‖Aη (U − V )‖ + (‖AηU‖ + ‖AηV ‖)
∥∥Aβ (U − V )

∥∥}
(5)

for U, V ∈ D(Aη) with 0 < β ≤ η < 1, where Φ(·) is some increasing continuous function.
We have the following global existence theorem.
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Theorem 5 (Theorem 4.1 in [15]) Let (2), (3) and (5) with 0 < β ≤ η < 1 be satisfied.
Then, for any U0 ∈ D(Aβ), (4) admits a unique local solution U in

U ∈ C ((0, TU0 ];D(A)) ∩ C
(
[0, TU0 ];D(Aβ)

)
∩ C1 ((0, TU0 ];X) ,

where TU0 denotes the maximal existence time depending only on the norm
∥∥AβU0

∥∥. More-
over, it holds that ∥∥AβU

∥∥ + t1−β ‖Ut‖ + t1−β ‖AU‖ ≤ CU0 ,

where CU0 is a positive constant depending only on
∥∥AβU0

∥∥.

Here, we note that D(Aβ) = X for β = 0. We can take β = 0 in the condition (5)
throughout theorems in this section.

Theorem 6 (Corollary 4.1 in [15]) Under the assumption of Theorem 5, we suppose
that any local solution U satisfies the estimate∥∥AβU(t)

∥∥ ≤ CU0 ,

for 0 ≤ t ≤ TU0 with some positive constant CU0 depending only on
∥∥AβU0

∥∥ and independent
of TU0 . Then, (4) admits a unique global solution U for all t > 0.

Let K(R) be a bounded ball in the space D(Aβ)

K(R) =
{
U ∈ D(Aβ) |

∥∥AβU
∥∥ ≤ R

}
for 0 < R < ∞. Then, for all U0 ∈ K(R), there exists a local solution of (4) on some interval
[0, TU0 ]. There exists the time TR > 0 such that [0, TR] ⊂ [0, TU0 ] for all U0 ∈ K(R). We
have the theorem of the continuous dependence.

Theorem 7 (Theorem 4.3 and Corollary 4.2 in [15]) Under the assumption of The-
orem 5, let U and V be the solutions of (4) for the initial functions U0 and V0 in K(R),
respectively. Then, we have

tη ‖Aη (U(t) − V (t))‖ + tβ
∥∥Aβ (U(t) − V (t))

∥∥ + ‖U(t) − V (t)‖ ≤ LR ‖U0 − V0‖

and
tη−β ‖Aη (U(t) − V (t))‖ +

∥∥Aβ (U(t) − V (t))
∥∥ ≤ LR

∥∥Aβ (U0 − V0)
∥∥

for 0 < t ≤ TR, where LR is a positive constant depending only on R.

We assume that there exists an increasing continuous function p(·) > 0 such that any
local solution satisfies ∥∥AβU(t)

∥∥ ≤ p(
∥∥AβU0

∥∥)

for t ∈ [0, TU0 ] and U0 ∈ D(Aβ). Theorem 6 implies that there exists a global solution on
[0,+∞) with the estimate ∥∥AβU(t)

∥∥ ≤ p(
∥∥AβU0

∥∥)(6)

for t ∈ [0,+∞) and U0 ∈ D(Aβ). We define a nonlinear operator T (t) : D(Aβ) → D(Aβ)
by T (t)U0(·) = U(·, t). Let M be a subset of D(Aβ), M being a metric space with the
distance d(U, V ) =

∥∥Aβ (U − V )
∥∥ for U, V ∈ M. A family of nonlinear operators T (t) for

t ≥ 0 from M to itself is said to be a continuous semigroup on M provided that
(SG.1) T (0) is an identity mapping on M,
(SG.2) T (t)T (s) = T (t + s) for t, s ≥ 0,
(SG.3) T (t) is continuous from [0, +∞) ×M to M.
To show the property (SG.3), we combine Theorem 7 with the estimate (6). We apply the
estimate on the larger ball Kp(R) ⊃ KR because ∪0≤t<∞T (t)KR ⊂ Kp(R).



FIX-CAGINALP EQUATION 5

Theorem 8 (Proposition 6.2 in [15]) For any 0 < R < ∞, it holds that∥∥Aβ (T (t)U0 − T (t)V0)
∥∥ ≤ Ln+1

p(R)

∥∥Aβ (U0 − V0)
∥∥

for t ∈ [nTp(R), (n + 1)Tp(R)] with n ∈ N ∪ {0} and U0, V0 ∈ KR, where Ln+1
p(R) > 0 is a

constant depending only on n and p(R).

Henceforth, we write X = D(Aβ). We denote the totality of trajectories starting from
the points in M by the triplet (T (t),M, X) and call it a dynamical system. A set Σ ⊂ M
is said to be positively invariant under T (t) if T (t)Σ ⊂ Σ for all t ≥ 0. A set Σ ⊂ M is said
to be negatively invariant under T (t) if Σ ⊂ T (t)Σ for all t ≥ 0. A set Σ is invariant under
T (t) if it satisfies both conditions. A set A ⊂ M is said to attract a set B ⊂ M under T (t)
if

sup
v∈T (t)B

inf
u∈A

‖v − u‖ → 0

as t → +∞. T (t) is said to be dissipative if there exists a bounded set C ⊂ M such that
attracts every point of M under T (t). A set A ⊂ M of (T (t),M, X) is said to be a global
attractor if A is a maximal compact invariant set and attracts every bounded set B ⊂ M.
A set D ⊂ M is said to be an absorbing set if for every bounded set B ⊂ M, there exists
t0 such that ∪t≥t0T (t)B ⊂ D holds. We take t1 ≥ t0 so that ∪t≥t1T (t)D ⊂ D holds. Let
X = ∪t≥t1T (t)D ⊂ D. E is said to be an exponential attractor of (T (t),X , X), provided
that
(EA.1) A ⊂ E ⊂ X holds, where A is a global attractor,
(EA.2) E is compact in X,
(EA.3) E is positively invariant under T (t),
(EA.4) E has a finite fractal dimension dF (E),
(EA.5) supu∈T (t)X infv∈E ‖u − v‖ ≤ c0e

−c1t, where c0 and c1 are positive constants. Here,
if we denote by Nr(E) the smallest number of r−balls necessary to cover E , we define a
fractal dimension by

dF (E) = lim sup
r→0

log Nr(E)
log 1

r

.

Then, we have

Theorem 9 (Theorem 3.1 in [6]) Let F (U) satisfy the Lipschitz condition

‖F (U) − F (V )‖ ≤ CX

∥∥∥A
1
2 (U − V )

∥∥∥
for U, V ∈ X , where CX > 0 depends only on X . Moreover, we assume that the mapping
S(t, U0) = T (t)U0 satisfies the Lipschitz condition

‖S(s, U0) − S(t, V0)‖ ≤ CX ,T (‖U0 − V0‖ + |t − s|)

for U0, V0 ∈ X and s, t ∈ [0, T ] with any T > 0, where CX ,T depends only on X and T .
Then, the flow {T (t)} admits an exponential attractor E.

Finally, we introduce the function space treated in this paper. For p ∈ N, Hp(Ω) denotes
the usual Sobolev space with the norm

‖w‖Hp =

 ∑
|α|≤p

‖Dαw‖2
2

 1
2
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for w ∈ Hp(Ω), where ‖ · ‖p denotes the standard Lp norm in Ω, α is a multi index
α = (α1, α2, · · · , αn), |α| = α1 + α2 + · · · + αn and

Dα =
∂|α|

∂α1x1∂α2x2 · · · ∂αnxn
.

For 0 ≤ s0 < s < s1 < +∞, Hs(Ω) is the interpolation space between Hs0(Ω) and Hs1(Ω),
denoted [Hs0(Ω),Hs1(Ω)]θ, s = (1 − θ) s0 + θs1 with θ ∈ [0, 1]. Then, the interpolation
inequality

‖ · ‖Hs ≤ C ‖ · ‖1−θ
Hs0 ‖· ‖

θ
Hs1

holds according to Theorem 1.15 in [15]. Moreover, we denote

Hm
N (Ω) =

{
u ∈ Hm(Ω) | ∂u

∂ν
= 0 x ∈ ∂Ω

}
for m > 3

2 . By D(Ω), we denote the space of all infinitely differentiable functions on Ω with
compact supports. Hs

0(Ω) is defined as the closure of the set D(Ω) in the space Hs(Ω).
H−s(Ω) is defined as the dual space of Hs

0(Ω).

3 Local solution We prove the local existence and uniqueness of the solution by the
theories of an abstract evolution equation. We show that the nonlinear term in (1) satisfies
the condition (5).

Proposition 1 (Local existence in Hγ) Suppose that φ0, u0 ∈ Hγ(Ω) for γ < γ < γ.
Then, (1) admits a unique local solution (φ, u) such that

φ, u ∈ C
(
(0, T γ

φ0,u0
]; H1(Ω)

)
∩ C

(
[0, T γ

φ0,u0
]; Hγ(Ω)

)
∩ C1

(
(0, T γ

φ0,u0
]; H−1(Ω)

)
,

where γ and γ are defined in Theorem 1. In this paper, T s
φ0,u0

denotes the maximal existence
time depending only on the norms ‖u0‖Hs and ‖φ0‖Hs of initial functions.

Proof of Proposition 1: (1) can be written into Ut + AU = F (U), 0 < t < ∞,

U(0) = U0 ≡
(

φ0

u0

)
,

where

U =
(

φ
u

)
, A =

(
A1 0
B A2

)
, F =

(
1
τ

{(
ε2 + 1

)
φ − φ3 + 2u

}(
κ − l

τ

)
u + l

2τ

(
φ3 − φ

) )
,

A1 = −ε2

τ
(∆ − 1) , A2 = −κ (∆ − 1) and B =

lε2

2τ
∆.

The two operators A1 and A2 are positive definite self-adjoint operators of H−1(Ω) with
domains D(A1) = D(A2) = H1(Ω). We regard B as a linear and bounded operator from
H1(Ω) to H−1(Ω). If necessary, we put w(x, t) = pu(x, t) for small p > 0. Then, the second
equation in (1) is converted into

wt +
lp

2
φt = κ∆w.
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For sufficiently small p > 0, we can suppose that

Ã =
(

A1 0
pB A2

)
and hence A are strictly positive operators of X ≡ H−1(Ω) × H−1(Ω). Theorems 2.1 and
2.16 in [15] imply that A is a sectorial operator with angle 0 ≤ ωA < π

2 in X. Then, it
holds that

D(Aβ) = Hγ(Ω) × Hγ(Ω)

for 1
2 < β < 1, where γ = 2β − 1 (for details, see Theorems 12.1 and 16.7 in [15]). Under

our setting, we can apply Theorem 5 in Section 2 to (1). In fact, by the next lemma, we
show that the nonlinear term in (1) satisfies the condition (5). We set

(
n, β, β, α

)
=

(
n,

γ + 1
2

,
γ + 1

2
, α

)
=


(
1, 1

2 , 5
8 , 3

4

)
for n = 1,(

2, 1
2 , 3

4 , 1
)

for n = 2,(
3, 3

4 , 5
6 , 1

)
for n = 3.

Lemma 1 Let n = 1, 2, 3. Then, there exist α and β satisfying 0 < β < β < β < α < α ≤ 1
such that ∥∥∥(φ − ψ)3

∥∥∥
H−1

≤ C
∥∥∥Aβ

1 (φ − ψ)
∥∥∥2

H−1
‖Aα

1 (φ − ψ)‖H−1

for φ, ψ ∈ Hα(Ω), where C is a positive constant depending only on α, β and Ω.

Proof of Lemma 1: In the case of n = 1, 2, we note that

‖w‖q ≤ C ‖w‖H1

for w ∈ H1(Ω), where q > 1 and C is a positive constant depending only on q and Ω.
Henceforth, we denote a positive embedding constant depending only on q and Ω by C. We
take 0 < p < 2 and 4 < q with 2

2+p + 2
q = 1. For n = 1, we have

∥∥∥(φ − ψ)3
∥∥∥

H−1
= sup

w∈H1
0 (Ω),‖w‖H1≤1

∣∣∣∣∫
Ω

(φ − ψ)3 wdx

∣∣∣∣
≤ sup

w∈H1
0 (Ω),‖w‖H1≤1

‖w‖q ‖φ − ψ‖2
2+p ‖φ − ψ‖q

≤ C ‖φ − ψ‖2

H
p

4+2p
‖φ − ψ‖

H
1

2+p

≤ C

∥∥∥∥A
4+3p

4(2+p)
1 (φ − ψ)

∥∥∥∥2

H−1

∥∥∥∥A
3+p

2(2+p)
1 (φ − ψ)

∥∥∥∥
H−1

.

Here, 1
2 < 4+3p

4(2+p) < 5
8 < 3+p

2(2+p) < 3
4 . For n = 2, we have∥∥∥(φ − ψ)3

∥∥∥
H−1

≤ C ‖φ − ψ‖2

H
p

2+p
‖φ − ψ‖

H
2

2+p

≤ C

∥∥∥∥A
1+p
2+p

1 (φ − ψ)
∥∥∥∥2

H−1

∥∥∥∥A
4+p

2(2+p)
1 (φ − ψ)

∥∥∥∥
H−1

.

Here, 1
2 < 1+p

2+p < 3
4 < 4+p

2(2+p) < 1. In the case of n = 3, we note that

‖w‖6 ≤ C ‖w‖H1
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for w ∈ H1(Ω). We take 3
2 < p < 3 and 18

5 < q < 6 with 5
6+p + 1

q = 5
6 . We have∥∥∥(φ − ψ)3

∥∥∥
H−1

≤ sup
w∈H1

0 (Ω),‖w‖H1≤1

‖w‖6 ‖φ − ψ‖2
2
5 (6+p) ‖φ − ψ‖q

≤ C ‖φ − ψ‖2

H
3(1+p)
2(6+p)

‖φ − ψ‖
H

9−p
6+p

≤ C

∥∥∥∥A
5(3+p)
4(6+p)
1 (φ − ψ)

∥∥∥∥2

H−1

∥∥∥∥A
15

2(6+p)
1 (φ − ψ)

∥∥∥∥
H−1

.

Here, 3
4 < 5(3+p)

4(6+p) < 5
6 < 15

2(6+p) < 1. 2

For U =
(

φ
u

)
, V =

(
ψ
v

)
∈ D(Aα) with β < α < α, we have

F (U) − F (V ) =

 1
τ

{(
ε2 + 1 − 3φψ

)
(φ − ψ) − (φ − ψ)3 + 2 (u − v)

}
(
κ − l

τ

)
(u − v) + l

2τ

{
(φ − ψ)3 + (3φψ − 1) (φ − ψ)

} 
and concentrate on the estimetes

‖φ − ψ‖H−1 ,
∥∥∥(φ − ψ)3

∥∥∥
H−1

, ‖φψ (φ − ψ)‖H−1 , ‖u − v‖H−1 .

Now by the estimates as obtained in Lemma 1, we can apply Theorem 5 to our setting. 2

Remark 1 (Local existence in L2) In the case of n = 1, We can take γ = 0 in Propo-
sition 1. Now that it holds that H

1
2+r(Ω) ⊂ C(Ω) for r > 0, we have∥∥∥(φ − ψ)3

∥∥∥
H−1

≤ sup
w∈H1

0 (Ω),‖w‖H1≤1

‖w‖C ‖φ − ψ‖2
2 ‖φ − ψ‖C ≤ C ‖φ − ψ‖2

2 ‖φ − ψ‖
H

1
2 +r ,

where r ∈ (0, 1
2 ) and ‖ · ‖C denotes the norm of the space of continuous functions in Ω.

Hence, for φ0, u0 ∈ L2(Ω), (1) admits a unique local solution (φ, u) such that

φ, u ∈ C
(
(0, T 0

φ0,u0
];H1(Ω)

)
∩ C

(
[0, T 0

φ0,u0
]; L2(Ω)

)
∩ C1

(
(0, T 0

φ0,u0
]; H−1(Ω)

)
.

Proposition 2 (Local existence in H1) Suppose that φ0, u0 ∈ H1(Ω). Then, (1) admits
a unique local solution (φ, u) such that

φ, u ∈ C
(
(0, T 1

φ0,u0
];H2

N (Ω)
)
∩ C

(
[0, T 1

φ0,u0
]; H1(Ω)

)
∩ C1

(
(0, T 1

φ0,u0
]; L2(Ω)

)
.

Proof of Proposition 2: In Theorem 5, we take

X = L2(Ω) × L2(Ω) D(A
1
2 ) = H1(Ω) × H1(Ω) D(A) = H2

N (Ω) × H2
N (Ω) β = η =

1
2
.

We have ∥∥∥(φ − ψ)3
∥∥∥

2
= ‖φ − ψ‖3

6 ≤ C3 ‖φ − ψ‖3
H1

for φ, ψ ∈ H1(Ω). Hence, we can apply Theorem 5 to our setting. 2
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Proposition 3 (Local existence in H2) Suppose that φ0, u0 ∈ H2
N (Ω). Then, (1) ad-

mits a unique local solution (φ, u) such that

φ, u ∈ C
(
(0, T 2

φ0,u0
];H3

N (Ω)
)
∩ C

(
[0, T 2

φ0,u0
];H2

N (Ω)
)
∩ C1

(
(0, T 2

φ0,u0
];H1(Ω)

)
.

Proof of Proposition 3: In Theorem 5, we take

X = H1(Ω)×H1(Ω) D(A
1
2 ) = H2

N (Ω)×H2
N (Ω) D(A) = H3

N (Ω)×H3
N (Ω) β = η =

1
2
.

Since it holds that
‖w‖C ≤ C ‖w‖H2

for w ∈ H2
N (Ω), we have∥∥∥∇ (φ − ψ)3

∥∥∥
2

= 3
∥∥∥(φ − ψ)2 ∇ (φ − ψ)

∥∥∥
2
≤ 3C2 ‖φ − ψ‖2

H2 ‖φ − ψ‖H1 ≤ 3C2 ‖φ − ψ‖3
H2

for φ, ψ ∈ H2
N (Ω), which proves the proposition. 2

Proposition 4 (Local existence in H3) Suppose that φ0, u0 ∈ H3
N (Ω). Then, (1) ad-

mits a unique local solution (φ, u) such that

φ, u ∈ C
(
(0, T 3

φ0,u0
];H4

N (Ω)
)
∩ C

(
[0, T 3

φ0,u0
]; H3

N (Ω)
)
∩ C1

(
(0, T 3

φ0,u0
]; H2

N (Ω)
)
.

Proof of Proposition 4: In Theorem 5, we take

X = H2
N (Ω)×H2

N (Ω) D(A
1
2 ) = H3

N (Ω)×H3
N (Ω) D(A) = H4

N (Ω)×H4
N (Ω) β = η =

1
2
.

The following estimate shows the proposition.∥∥∥∆(φ − ψ)3
∥∥∥

2
≤ 6

∥∥∥(φ − ψ) |∇ (φ − ψ)|2
∥∥∥

2
+ 3

∥∥∥(φ − ψ)2 ∆(φ − ψ)
∥∥∥

2

≤ 6C2 ‖φ − ψ‖H3 ‖φ − ψ‖H2 ‖φ − ψ‖H1 + 3C2 ‖φ − ψ‖3
H2

≤ 9C2 ‖φ − ψ‖3
H3

for φ, ψ ∈ H3
N (Ω). 2

4 Global solution We derive the a priori estimates to obtain the global solution. The
tools are the Lyapunov function and energy method.

Lemma 2 For φ0, u0 ∈ H1(Ω) and t ∈ [0, T 1
φ0,u0

],

L (φ, u) (t) =
1
2

∫
Ω

u2dx +
lε2

8

∫
Ω

|∇φ|2 dx +
l

4

∫
Ω

W (φ)dx +
κδ

2

∫
Ω

|∇u|2 dx

is the Lyapunov function for (1), where δ < 4τ
l and W (φ) = 1

4

(
φ2 − 1

)2.
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Proof of Lemma 2: We have only to prove that L (φ, u) (t) is monotone decreasing
with respect to t. Now that we have (φ(t), u(t)) ∈ H1(Ω) × H1(Ω) for t ∈ [0, T 1

φ0,u0
] from

Proposition 2, L (φ, u) (t) < ∞ because of the inclusion H1(Ω) ⊂ L4(Ω). Note that

lτa2 + 2lδab + 4δb2 = l

(√
τa +

δ√
τ

b

)2

+ δ
4τ − lδ

τ
b2 ≥ 0

for a, b ∈ R and δ < 4τ
l . We have

L (φ, u) (t) − L (φ, u) (t′) =
∫ t

t′

d

dt
L (φ, u) (s)ds

=
∫ t

t′

∫
Ω

uutdxds +
lε2

4

∫ t

t′

∫
Ω

∇φ · ∇φtdxds +
l

4

∫ t

t′

∫
Ω

(
φ2 − 1

)
φφtdxds

+κδ

∫ t

t′

∫
Ω

∇u · ∇utdxds

=
∫ t

t′

∫
Ω

u

(
κ∆u − l

2
φt

)
dxds − lε2

4

∫ t

t′

∫
Ω

∆φφtdxds

+
l

4

∫ t

t′

∫
Ω

(
φ2 − 1

)
φφtdxds − δ

∫ t

t′

∫
Ω

ut

(
ut +

l

2
φt

)
dxds

= −κ

∫ t

t′

∫
Ω

|∇u|2 dxds − 1
4

∫ t

t′

∫
Ω

(
lτφ2

t + 2lδφtut + 4δu2
t

)
dxds ≤ 0

for 0 ≤ t′ < t ≤ T 1
φ0,u0

. In particular, we have

κ

∫ t

0

‖∇u‖2
2 ds +

δ (4τ − lδ)
4τ

∫ t

0

‖ut‖2
2 ds ≤ L (φ0, u0) − L (φ, u) (t) ≤ L (φ0, u0) .(7)

On the other hand, since

lτa2 + 2lδab + 4δb2 = δ

(
2b +

l

2
a

)2

+ l
4τ − lδ

4
a2 ≥ 0

for a, b ∈ R and δ < 4τ
l , it also holds that

κ

∫ t

0

‖∇u‖2
2 ds +

l (4τ − lδ)
16

∫ t

0

‖φt‖2
2 ds ≤ L (φ0, u0) − L (φ, u) (t) ≤ L (φ0, u0) .(8)

2

Proposition 5 (Global existence in H1) Suppose that φ0, u0 ∈ H1(Ω). Then, (1) ad-
mits a unique global solution (φ, u) such that

φ, u ∈ C
(
(0,+∞);H2

N (Ω)
)
∩ C

(
[0, +∞);H1(Ω)

)
∩ C1

(
(0, +∞);L2(Ω)

)
.

Proof of Proposition 5: By Proposition 2, there exists a unique local solution (φ, u) in
the same function space. We have only to derive the a priori estimate thanks to Theorem
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6. From Lemma 2, it holds that

1
2
‖u‖2

2 +
lε2

8
‖∇φ‖2

2 +
l

16
‖φ‖2

2 +
l

16

∫
Ω

(
φ2 − 3

2

)2

dx +
κδ

2
‖∇u‖2 − 5l

64
|Ω|

= L (φ, u) (t)
≤ L (φ0, u0)

≤ 1
2
‖u0‖2

2 +
lε2

8
‖φ0‖2

H1 +
l

16
‖φ0‖4

4 +
l

16
|Ω| + κδ

2
‖∇u0‖2

.

The Sobolev embedding theorem implies that the right-hand side is finite, which completes
the proof of Proposition 5. 2

Proposition 6 (Global existence in H2) Suppose that φ0, u0 ∈ H2
N (Ω). Then, (1) ad-

mits a unique global solution (φ, u) such that

φ, u ∈ C
(
(0, +∞);H3

N (Ω)
)
∩ C

(
[0, +∞);H2

N (Ω)
)
∩ C1

(
(0, +∞); H1(Ω)

)
.

Proof of Proposition 6: As mentioned in Proposition 5, we derive the a priori estimates
for H2 norm. In this paper, we denote by CHs > 0 the constant depending only on the
norms ‖u0‖Hs and ‖φ0‖Hs of initial functions, the measure |Ω| and physical constants
τ, l, κ, ε. We have the following two inequalities from (1):

τ

2
d

dt
‖φt‖2

2 + ε2 ‖∇φt‖2
2 + 3

∫
Ω

φ2φ2
t dx =

∫
Ω

φt

(
τφt − ε2∆φ + φ3

)
t
dx

= ‖φt‖2
2 + 2

∫
Ω

utφtdx(9)

and

1
2

d

dt
‖ut‖2

2 + κ ‖∇ut‖2
2 +

l

τ
‖ut‖2

2 −
ε2l

2τ

∫
Ω

∇ut · ∇φtdx

+
l

2τ

∫
Ω

ut

(
φt − 3φ2φt

)
dx

=
∫

Ω

ut

{
utt − κ∆ut +

l

τ
ut +

ε2l

2τ
∆φt +

l

2τ

(
φt − 3φ2φt

)}
dx

=
l

2τ

∫
Ω

ut

(
−τφt + ε2∆φ + φ − φ3 + 2u

)
t
dx = 0.(10)

By integrating (9) over (0, t) with respect to t, we have

τ

2
‖φt‖2

2 + ε2
∫ t

0

‖∇φt‖2
2 ds ≤ τ

2
‖(φ0)t‖2

2 + 2
∫ t

0

‖φt‖2
2 ds +

∫ t

0

‖ut‖2
2 ds,(11)

which implies that φt ∈ L2(Ω) by (7) and (8). Hence by (1), we have

‖∆φ‖2 ≤ CH2 and ‖φt‖2 ≤ CH2 .(12)
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Next by integrating (10) over (0, t) with respect to t, we have

1
2
‖ut‖2

2 −
1
2
‖(u0)t‖2

2 + κ

∫ t

0

‖∇ut‖2
2 ds +

l

τ

∫ t

0

‖ut‖2
2 ds

−ε2l

2τ

∫ t

0

∫
Ω

∇ut · ∇φtdxds +
l

2τ

∫ t

0

∫
Ω

ut

(
φt − 3φ2φt

)
dxds = 0.(13)

Here, it holds that ∫ t

0

∫
Ω

∇ut · ∇φtdxds =
2
l

∫ t

0

∫
Ω

∇ut · ∇ (κ∆u − ut) dxds

= −κ

l

(
‖∆u‖2

2 − ‖∆u0‖2
2

)
− 2

l

∫ t

0

‖∇ut‖2
2 ds.

From (12), ‖φ‖H2 is bounded, which implies φ ∈ C(Ω) from the Sobolev embedding theorem.
Then, it holds that∣∣∣∣∫ t

0

∫
Ω

ut

(
φt − 3φ2φt

)
dxds

∣∣∣∣ ≤ CH2

∫ t

0

(
‖ut‖2

2 + ‖φt‖2
2

)
ds.

Thus (13) becomes

1
2
‖ut‖2

2 +
ε2κ

2τ
‖∆u‖2

2 +
(

κ +
ε2

τ

)∫ t

0

‖∇ut‖2
2 ds

≤ 1
2
‖(u0)t‖2

2 +
ε2κ

2τ
‖∆u0‖2

2 +
lCH2

2τ

∫ t

0

(
‖ut‖2

2 + ‖φt‖2
2

)
ds.(14)

Finally, we obtain
‖∆u‖2 ≤ CH2 and ‖ut‖2 ≤ CH2(15)

by (7) and (8). After all, (12) and (15) imply the conclusion of proposition. 2

Proposition 7 (Global existence in H3) Suppose that φ0, u0 ∈ H3
N (Ω). Then, (1) ad-

mits a unique global solution (φ, u) such that

φ, u ∈ C
(
(0, +∞);H4

N (Ω)
)
∩ C

(
[0, +∞);H3

N (Ω)
)
∩ C1

(
(0, +∞); H2

N (Ω)
)
.

Proof of Proposition 7: We derive the a priori estimates for H3 norm. We have

τ

2
d

dt

∫
Ω

|∇φt|2 dx =
∫

Ω

∇φt · ∇
(
ε2∆φ + φ − φ3 + 2u

)
t
dx

≤
∫

Ω

(
2 |∇φt|2 + |∇ut|2

)
dx + 3

∫
Ω

∆φtφ
2φtdx

=
∫

Ω

(
2 |∇φt|2 + |∇ut|2

)
dx +

3
ε2

∫
Ω

φ2φt

(
τφt − φ + φ3 − 2u

)
t
dx

≤ 2 ‖∇φt‖2
2 + ‖∇ut‖2

2 + CH2 ‖φtt‖2
2 + CH2 ‖φt‖2

2 + CH2 ‖ut‖2
2
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and

1
2

d

dt

∫
Ω

|∇ut|2 dx =
∫

Ω

∇ut · ∇
(

κ∆u − l

2
φt

)
t

dx

≤ l

2

∫
Ω

∆utφttdx

=
l

2κ

∫
Ω

(
ut +

l

2
φt

)
t

φttdx

≤ l

4κ
‖utt‖2

2 +
l(l + 1)

4κ
‖φtt‖2

2 .

We integrate these inequalities with respect to t and obtain

τ

2

∫
Ω

|∇φt|2 dx ≤ τ

2
‖∇(φ0)t‖2

2 + CH2

∫ t

0

‖φtt‖2
2 ds

+
∫ t

0

(
2 ‖∇φt‖2

2 + ‖∇ut‖2
2 + CH2 ‖φt‖2

2 + CH2 ‖ut‖2
2

)
ds

and
1
2

∫
Ω

|∇ut|2 dx ≤ 1
2
‖∇(u0)t‖2

2 +
l

4κ

∫ t

0

‖utt‖2
2 ds +

l(l + 1)
4κ

∫ t

0

‖φtt‖2
2 ds.

Now we have only to estimate
∫ t

0
‖utt‖2

2 ds and
∫ t

0
‖φtt‖2

2 ds for t > 0 owing to (7), (8), (11)
and (14). It holds that

τ

∫ t

0

∫
Ω

φ2
ttdxds =

∫ t

0

∫
Ω

φtt

(
ε2∆φ + φ − φ3 + 2u

)
t
dxds

≤ ε2

2
‖∇(φ0)t‖2

2 +
1
2
‖φt‖2

2 +
∫ t

0

∫
Ω

√
1
τ

(
3φ2 |φt| + 2 |ut|

)
·
√

τ |φtt| dxds

≤ ε2

2
‖∇(φ0)t‖2

2 +
1
2
‖φt‖2

2 +
9
τ
‖φ‖4

∞

∫ t

0

‖φt‖2
2 ds +

4
τ

∫ t

0

‖ut‖2
2 ds

+
τ

2

∫ t

0

∫
Ω

φ2
ttdxds.

Hence, we have ∫ t

0

‖φtt‖2
2 ds ≤ ε2

τ
‖∇(φ0)t‖2

2 + CH2

from (7), (8) and (12). Next, we have∫ t

0

∫
Ω

u2
ttdxds =

∫ t

0

∫
Ω

utt

(
κ∆u − l

2
φt

)
t

dxds

≤ −κ

2

∫ t

0

d

ds
‖∇ut‖2

2 ds +
∫ t

0

∫
Ω

|utt| ·
l

2
|φtt| dxds

≤ κ

2
‖∇(u0)t‖2

2 +
1
2

∫ t

0

∫
Ω

u2
ttdxds +

l2

8

∫ t

0

∫
Ω

φ2
ttdxds

and ∫ t

0

‖utt‖2
2 ds ≤ κ ‖∇(u0)t‖2

2 +
l2ε2

4τ
‖∇(φ0)t‖2

2 + CH2 ,

which yields the desired estimates. 2
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5 Dynamical system For (φ0, u0) ∈ Hγ(Ω) × Hγ(Ω), we show that (1) has a global
solution

φ, u ∈ C
(
(0,+∞);H1(Ω)

)
∩ C ([0, +∞); Hγ(Ω)) ∩ C1

(
(0, +∞);H−1(Ω)

)
.

By T (t), we denote a nonlinear semigroup (φ0, u0) 7→ (φ(t), u(t)) acting on Hγ(Ω)×Hγ(Ω).

Proof of Theorem 1 By Proposition 1, we have a local solution φ, u in [0, T γ
φ0,u0

] with
the estimate

‖φ(t)‖Hγ + ‖u(t)‖Hγ ≤ CHγ

for t ∈ [0, T γ
φ0,u0

] by Theorem 5. Let any small t1 ∈ (0, T γ
φ0,u0

) be fixed. Then, it holds that
φ(t1), u(t1) ∈ H1(Ω). By Proposition 5, there exists a global solution

φ, u ∈ C
(
(t1,+∞);H2

N (Ω)
)
∩ C

(
[t1, +∞);H1(Ω)

)
∩ C1

(
(t1, +∞);L2(Ω)

)
with the estimate

‖φ(t)‖H1 + ‖u(t)‖H1 ≤ CH1(16)

for t ≥ t1 with initial functions φ0 = φ(t1), u0 = u(t1). Then, we have

‖φ(t)‖Hγ + ‖u(t)‖Hγ ≤ CH1

for t ≥ t1. Again, according to Theorem 5,

t1−β
1 (‖φ(t1)‖H1 + ‖u(t1)‖H1) ≤ CHγ .

Finally, we have
‖φ(t)‖Hγ + ‖u(t)‖Hγ ≤ CHγ

for t ≥ 0. By Theorems 6 and 8, we can extend a time local solution globally in the space

φ, u ∈ C
(
(0, +∞);H1(Ω)

)
∩ C ([0, +∞);Hγ(Ω)) ∩ C1

(
(0,+∞); H−1(Ω)

)
and have a continuous mapping T (t) from [0, +∞) × Hγ(Ω) to Hγ(Ω), which shows that
T (t) defines a dynamical system in Hγ(Ω) × Hγ(Ω). 2

Proof of Theorem 2 For any η > 0, we have φ(η), u(η) ∈ H1(Ω). By the same argument
as proof of Theorem 1, we have a global solution

φ, u ∈ C
(
(η, +∞);H2

N (Ω)
)
∩ C

(
[η, +∞);H1(Ω)

)
∩ C1

(
(η, +∞);L2(Ω)

)
with the estimate (16) for t ≥ η with initial functions φ0 = φ(η), u0 = u(η). Hence, the
compactness of the orbit in Hγ(Ω) × Hγ(Ω) follows. Differentiating (1) with respect to t
successively and making similar energy estimates to the proof of Proposition 7, we have the
uniform boundedness of the orbit ∪t≥ηT (t)(φ0, u0) in Hm

N (Ω)×Hm
N (Ω) for any small η > 0

and m = 4, 5, · · ·. We use the standard bootstrap argument to prove that

(φ, u) ∈ C∞ (
(0,+∞);C∞(Ω)

)
× C∞ (

(0, +∞); C∞(Ω)
)
.

2

Proof of Theorem 3 We have a unique global solution φ, u ∈ H1(Ω) and Lyapunov
function L (φ, u) (t). Therefore, the ω-limit set ω(φ0, u0) of φ0 and u0 is nonempty, compact,
invariant and connected in H1(Ω)×H1(Ω) according to Theorem 4.3.3 in [9]. And it holds
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that ω(φ0, u0) ⊂ E by Theorem 4.3.4 in [9]. For any η > 0, we have φ(η), u(η) ∈ H2
N (Ω)

by Proposition 2. By the estimates in Proposition 7, ∪t≥ηT (t) (φ0, u0) is precompact in
H2

N (Ω) × H2
N (Ω). As mentioned in Proposition 1, A is supposed to be a positive operator

in L2(Ω) × L2(Ω) with domain H2
N (Ω) × H2

N (Ω). The similar computation to Lemma 2
shows that

− d

dt
L (φ, u) (t) ≥ l(4τ − lδ)

32

∫
Ω

φ2
t dx +

δ(4τ − lδ)
8τ

∫
Ω

u2
t dx.

Hence, we can apply Theorem 1.1 in [10] to deduce that ω(φ0, u0) is a single point in E.
By the second equation in (1), (φ, u) satisfies

d

dt

∫
Ω

(
u +

l

2
φ

)
dx = κ

∫
Ω

∆udx = 0.

Hence, we have ∫
Ω

(
u +

l

2
φ

)
dx =

∫
Ω

(
u0 +

l

2
φ0

)
dx = m

for some m ∈ R. The stationary solution Φ = Φ(x) is satisfies{
ε2∆Φ + Φ − Φ3 + 2

|Ω|
(
m − l

2

∫
Ω

Φdx
)

= 0 x ∈ Ω,
∂Φ
∂ν = 0 x ∈ ∂Ω

because the stationary solution satisfies ∆U = 0 in Ω and U = U(x) is constant in Ω. 2

6 Exponential attractor First, we derive the estimate for H3 norm to obtain an ab-
sorbing set in H3. Next, we construct an exponential attractor in H1 × H1.

Proof of Theorem 4: If (φ0, u0) ∈ Hk, then we have

‖φ‖H1 + ‖u‖H1 ≤

√(
k +

5l

64
|Ω|

){
min

(
lε2

8
,

l

16

)− 1
2

+ min
(

1
2
,
κδ

2

)− 1
2
}

(17)

for all t ≥ 0 by Proposition 5. By Theorem 5, Propositions 2 and 3, we have φ( t1
2 ), u( t1

2 ) ∈
H2

N (Ω) and φ(t1), u(t1) ∈ H3
N (Ω) for small t1 > 0 with the estimate(

t1
2

) 1
2

(∥∥∥∥φ

(
t1
2

)∥∥∥∥
H2

+
∥∥∥∥u

(
t1
2

)∥∥∥∥
H2

)
≤ CH1 ≤ Ck

with initial functions φ0 = φ(0), u0 = u(0) by (17) and(
t1
2

) 1
2

(‖φ(t1)‖H3 + ‖u(t1)‖H3) ≤ CH2

with initial functions φ0 = φ
(

t1
2

)
, u0 = u

(
t1
2

)
, where Ck > 0 is a constant depending only

on the fixed k, the measure |Ω| and physical constants τ, l, κ, ε. Hence, we have

‖φ(t)‖H3 + ‖u(t)‖H3 ≤ Ck

for all t > t1 by Proposition 7. For any bounded set B ⊂ Hk, we have

∪t≥t1T (t)B ⊂ B ≡ {(φ, u) ∈ Hk | ‖φ‖H3 + ‖u‖H3 ≤ Ck}
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for some Ck > 0. In particular, T (t)B ⊂ B for all t ≥ t1. This set B shows us the existence
of an absorbing set in Hk, which implies that the dynamical system T (t) is dissipative in Hk.
We apply Theorem 1.1 in [14] to guarantee the existence of global attractor A ⊂ Hk. Let
X = ∪t≥t1T (t)B. Then, X is a compact, invariant and absorbing set in H1(Ω) × H1(Ω).
From now on, we consider the subdynamical system T (t) : X → X . To construct an

exponential attractor, we apply Theorem 9. Let U = T (t)U0 =
(

φ
u

)
∈ X , V = T (t)V0 =(

ψ
v

)
∈ X and s, t ∈ [0, T ] for any T > 0. The first inequality follows at once from

Propositions 2 and 3. Next, we prove the second inequality. We have

‖U(t) − V (s)‖H1 ≤ ‖U(t) − V (t)‖H1 + ‖V (t) − V (s)‖H1

≤ ‖U(t) − V (t)‖H1 +
∫ t

s

∥∥∥∥dV

dt
(p)

∥∥∥∥
H1

dp

≤ ‖U(t) − V (t)‖H1 +
∫ t

s

(‖AV ‖H1 + ‖F (V )‖H1) dp

for s ≤ t. Since it holds the estimate in Theorem 8 and AV,F (V ) ∈ H1(Ω) × H1(Ω) for
V (t) ∈ X ,

‖U(s) − V (t)‖H1 ≤ Ck ‖U0 − V0‖H1 + Ck |t − s| ,

which completes the proof of Theorem 4. 2
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