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ELEMENTARY PROOFS OF OPERATOR MONOTONICITY OF SOME
FUNCTIONS II
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Abstract. In the previous paper we gave elementary proofs of operator monotonicity
of the representing function of the weighted arithmetic mean and some other related
functions. In this note, we show some extensions and applications of those results.

1 Introduction. A (bounded linear) operator A acting on a Hilbert space H is said to
be positive, denoted by A ≥ 0, if (Av, v) ≥ 0 for all v ∈ H. The definition of positivity
induces the order A ≥ B for self-adjoint operators A and B on H. A real-valued function f
on (0,∞) is operator monotone, if 0 ≤ f(A) ≤ f(B) for operators A and B on H such that
0 ≤ A ≤ B. Thus, throughout this paper, we assume that operator monotone functions
are positive and their domains are (0,∞). As a typical example, x 7→ xp (0 ≤ p ≤ 1) is an
operator monotone function, which is well-known as Löwner-Heinz theorem (LH).

For convenience sake, we state the main facts shown in our previous paper with elemen-
tary proofs:

Proposition 1.1 (cf. [11, Theorem 1.2], [1], [2], [3], [4], [5], [8], [9], [13]). The function

ap(x) =
(

1 + xp

2

) 1
p

, p 6= 0
(
a0(x) = x

1
2

)
is operator monotone if (and only if ) −1 ≤ p ≤ 1.

Proposition 1.2 (cf. [11, Theorem 1.1], [13], [1]). The function

sp(x) =
(

p(x − 1)
xp − 1

) 1
1−p

, p 6= 0, 1
(

s0(x)
(

= lim
p→0

sp(x)
)

=
x − 1
log x

, s1(x) =
1
e
x

x
x−1

)
is operator monotone if −2 ≤ p ≤ 2.

Proposition 1.3 ([11, Theorem 1.3], [5], [9], [6], [2], [3]). The function

kp(x) =
p − 1

p
· xp − 1
xp−1 − 1

, p 6= 0, 1
(

k0(x) =
x log x

x − 1
, k1(x) =

x − 1
log x

)
is operator monotone if −1 ≤ p ≤ 2.

In this paper, we give some extensions of those propositions and their applications. As
an application of the extension of Proposition 1.2, we give a slight extensions of Uchiyama’s
example in [15] related to Petz-Hasegawa theorem [14].
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2 Preliminaries. By Kubo-Ando theory [12], an operator mean σ is defined as a binary
relation of positive operators, satisfying the following properties in common:

(monotonicity) A ≤ C,B ≤ D =⇒ AσB ≤ CσD,
(transformer inequality) C(AσB)C ≤ (CAC)σ(CBC),
(normality) AσA = A,
(strong operator semi-continuity) An ↓ A,Bn ↓ B =⇒ AnσBn ↓ AσB.

Sometimes for the definition of an operator mean we must assume operators to be
invertible. Without any assumption for invertibility every mean is well-defined as the (strong
operator) limits of (A + εI)σ(B + εI) as ε ↓ 0 instead of AσB. (I is the identity operator.)

Every operator mean σ corresponds a unique operator monotone function, that is, its
representing function fσ which is defined by fσ(x) = 1σx. Conversely, if f is an operator
monotone function with f(1) = 1, then the definition of the operator mean corresponding
to f is given by

AσB = A
1
2 f

(
A− 1

2 BA− 1
2

)
A

1
2

for positive invertible operators A and B.
For our discussion, we use the following basic facts:
(I) For an operator mean σ and for two operator monotone functions g and h, if we

define gσh by

(gσh)(x) = g(x)fσ

(
h(x)
g(x)

)
,

then gσh is operator monotone.
(II) For a strictly positive function f on (0,∞), define f◦(x) := xf(1/x) (transpose),

f∗(x) := 1/f(1/x) (adjoint) and f⊥(x) := x/f(x) (dual), then the four functions
f, f◦, f∗, f⊥ are equivalent to one another with respect to operator monotonicity ([12],
[10]).

(III) For a continuous path ft (0 ≤ t ≤ 1) of operator monotone functions, its integral
mean f̃ defined by

f̃(x) =
∫ 1

0

ft(x)dt

is an operator monotone function ([2], [3]).

3 Main results. Applying (I) to the operator mean σap corresponding to the operator
monotone function ap(x) (notice ap(1) = 1), as an extension of Proposition 1.1, we showed
in [11]:

Lemma 3.1 (cf. [11, Lemma 3.1], [13]). Let f, g be operator monotone functions, then

fσapg =
(

fp+gp

2

) 1
p

(or equivalently, (fp + gp)
1
p ) is operator monotone for −1 ≤ p ≤

1, p 6= 0. Further, if f1, ..., fn are operator monotone functions, then (
∑n

i=1 fp
i )

1
p is operator

monotone. In particular, (
∑n

i=1(αi + βix)p)
1
p (αi, βi ≥ 0) is operator monotone.

Similarly as σap , let σsp and σkp be the operator means corresponding to the operator
monotone functions sp and kp, respectively. Then we obtain the following result:

Theorem 3.2 (cf. [11, Theorem 1.1], [13], [1]). For operator monotone functions f, g (f 6=
g), the function

fσspg =
(

p(f − g)
fp − gp

) 1
1−p

, p 6= 0, 1

(
fσs0g =

f − g

log f − log g
, fσs1g =

f

e
·
(

g

f

) f
g−f

)



ELEMENTARY PROOFS OF OPERATOR MONOTONICITY 119

is operator monotone if −2 ≤ p ≤ 2.

Proof. By Proposition 1.2 (for p 6= 0, 1, ) we have

fσspg = f ·
(

1σsp

g

f

)
= f ·

(
p( g

f − 1)

( g
f )p − 1

) 1
1−p

=
(

p(f − g)
fp − gp

) 1
1−p

.

Similarly, we can show:

Theorem 3.3 (cf. [11, Theorem 1.3], [5], [9], [6], [2], [3]). For operator monotone functions
f, g (f 6= g), the function

fσkpg =
p − 1

p
· fp − gp

fp−1 − gp−1
, p 6= 0, 1,

(
fσk0g =

f(log f − log g)
f − g

, fσk1g =
f − g

log f − log g

)
is operator monotone if −1 ≤ p ≤ 2.

In [11], the following fact was shown, as an extension of Proposition 1.3:

Lemma 3.4 (cf. [11, Theorem 3.2]). For −1 ≤ p ≤ 1, 0 ≤ s ≤ 1, the function

up,s(x) =
p

p + s
· xp+s − 1

xp − 1
, p 6= 0,−s

(
u0,s(x) =

xs − 1
log xs

, u−s,s(x) =
log x−s

x−s − 1

)
is operator monotone.

For the operator mean corresponding to the function up,s, we can obtain the following
theorem which is an extension of Theorem 3.3 (and also Lemma 3.4):

Theorem 3.5. For operator monotone functions f, g (f 6= g), and for −1 ≤ p ≤ 1, 0 ≤
s ≤ 1, the function

(∗) fσup,sg =
p

p + s
· fp+s − gp+s

fp − gp
, p 6= 0,−s(

fσu0,sg =
fs − gs

log fs − log gs
, fσu−s,sg =

f−s − g−s

log f−s − log g−s

)
is operator monotone.

Example (cf. [15, Example 2.4]). For −1 ≤ p ≤ 1, 0 ≤ q − p ≤ 1, p 6= 0, q 6= 0 (and for
a ≥ 0),

p

q
· xq − aq

xp − ap
is operator monotone.

We can obtain this fact, by putting f = x, g = a, and q = p + s in (∗).
As an application of Proposition 1.2, we showed an alternative proof of the following

result due to Petz and Hasegawa [14], [6]:

Proposition 3.6 (cf. [11, Theorem 3.4]). For −1 ≤ p ≤ 2

hp(x) =
p(1 − p)(x − 1)2

(xp − 1)(x1−p − 1)
, p 6= 0, 1

(
h0(x) = h1(x) =

x − 1
log x

)
is operator monotone.
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As an extension of this fact and an application of Theorem 3.2, though the range of p
is reduced, we have:

Theorem 3.7. If f, g, k, l (f 6= g, k 6= l) are operator monotone functions, then for 0 <
p < 1,

(f − g)(k − l)
(fp − gp)(k1−p − l1−p)

is operator monotone.

Proof. Since fσspg and kσs1−p l are operator monotone, we see 1
p(1−p) ·(fσspg)]p(kσs1−p l) =

(f−g)(k−l)
(fp−gp)(k1−p−l1−p) is operator monotone.

Example (cf. [15, Theorem 2.7]). Putting f = k = x and g = a, l = b (a, b ≥ 0), we see
that (x−a)(x−b)

(xp−ap)(x1−p−b1−p) is operator monotone.

Further, we have:

Theorem 3.8. For −1 ≤ p ≤ 2, a, b ≥ 0

(∗∗) hp(a, b;x) =
p(1 − p)(x − a)(x − b)
(xp − ap)(x1−p − b1−p)

is operator monotone.

Proof. We may prove the theorem for p 6= 0,±1, 2 and a, b > 0. For the case 0 < p < 1,
then (∗∗) is clear. There remain the two cases:

(i) If 1 < p < 2, then we put p = q + 1, so that 0 < q < 1. We have:

hp(a, b; x) = hq+1(a, b; x) = (−q)(q + 1) · (x − a)(x − b)
(xq+1 − aq+1)(x−q − b−q)

=
q(q + 1)bqxq(x − a)(x − b)

(xq+1 − aq+1)(xq − bq)
.

Now since 0 < q < 1, we see that
(

q(x−b)
xq−bq

) 1
1−q

is operator monotone by Proposition 1.2.
Further, since 1 < q + 1 < 2, we see that

(η(a, b; x) :=)
(

(q + 1)(x − a)
xq+1 − aq+1

) 1
1−(q+1)

=
(

(q + 1)(x − a)
xq+1 − aq+1

)− 1
q

is operator monotone by Proposition 1.2, so that its dual

(η⊥(a, b; x) =) x ·
(

(q+1)(x−a)
xq+1−aq+1

) 1
q

is operator monotone. Hence

{(
q(x − b)
xq − bq

) 1
1−q

]q x ·
(

(q + 1)(x − a)
xq+1 − aq+1

) 1
q

}
× bq = hp(a, b; x)

is operator monotone.
(ii) If −1 < p < 0, then putting p = −q, we can similarly prove (∗∗).
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Inequalities, Element, Zagreb, 2005.

[9] F. Hiai and H. Kosaki, Means for matrices and comparison of their norms, Indiana Univ.
Math. J., 48 (1999), 899-936.

[10] F. Hiai and K. Yanagi, Hilbert spaces and linear operators, Makino Syoten, (1995), (in
Japanese).

[11] S. Izumino and N. Nakamura, Elementary proofs of operator monotonicity of some func-
tions, Sci. Math. Japon., Online, e-2013, 679-686.

[12] F. Kubo and T. Ando, Means of positive linear operators, Math. Ann., 246 (1980), 205-224.

[13] Y. Nakamura, Classes of operator monotone functions and Stieltjes functions, In: Dym H.
et al., (eds) The Gohberg Anniversary Collection, Vol. II: Topics in Analysis and Operator
Theory, Operator Theory: Advances and Appl., Vol. 41 Birkhäuser, Basel, (1989), 395-404.
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