
Scientiae Mathematicae Japonicae Online, e-2014, 87–96 87

SELBERG TYPE INEQUALITIES IN A HILBERT C∗-MODULE
AND ITS APPLICATIONS

Kyoko Kubo∗, Fumio Kubo∗∗ and Yuki Seo∗∗∗

Received December 10, 2013

Abstract. In this paper, we present a Selberg type inequality in a Hilbert C∗-
module, which ia simultaneous extensions of the Cauchy-Schwarz inequality and the
Bessel inequality in a Hibert C∗-module. As an application, we give a generalization
of the Selberg inequality in a Hilbert C∗-module.

1 Introduction The theory of Hilbert C∗-modules over non-commutative C∗-algebras
firstly appeared in Paschke [18] and Rieffel [19], and it has contributed greatly to the
developments of operator algebras. Recently, many researchers have studied geometric
properties of Hilbert C∗-modules from a viewpoint of the operator theory. For example,
Dragomir, Khosravi and Moslehian [4], and Bounader and Chahbi [3] showed several variants
of the Bessel inequality, the Selberg inequality and these generalizations in the framework
of a Hilbert C∗-module. We showed in [6] the new Cauchy-Schwarz inequality in a Hilberet
C∗-module by means of the operator geometric mean. From the viewpoint, we show a
Hilbert C∗-module version of the Selberg inequality which is simultaneous extensions of the
Cauchy-Schwarz inequality and the Bessel one in a Hilbert C∗-module.

We briefly review the Selberg inequality and its generalization in a Hilbert space.
Let H be a Hilbert space with the inner product 〈·, ·〉. The Selberg inequality [2, 17]

states that if y1, y2, . . . , yn and x are nonzero vectors in H, then

(1.1)
n∑

i=1

|〈yi, x〉|2∑n
j=1 |〈yj , yi〉|

≤‖x‖2 .

Moreover, Furuta [10] posed conditions enjoying the equality: The equality in (1.1) holds if
and only if x =

∑n
i=1 aiyi for some scalars a1, a2, . . . , an ∈ C such that for arbitrary i 6= j

(1.2) 〈yi, yj〉 = 0 or |ai| = |aj | with 〈aiyi, ajyj〉 ≥ 0,

also see [7]. Note that the Selberg inequality is simultaneous extensions of the Bessel
inequality and the Cauchy-Schwarz inequality.

Fujii and Nakamoto [9] showed a refinement of the Selberg inequality: If 〈y, yi〉 = 0 for
given nonzero vectors y1, . . . , yn ∈ H, then

(1.3) |〈x, y〉|2 +
n∑

i=1

|〈x, yi〉|2∑n
j=1 |〈yj , yi〉|

‖ y ‖2≤‖ x ‖2‖ y ‖2

holds for all x ∈ H. Also, Bombieri [1] showed the following generalization of the Bessel
inequality: If x, y1, . . . , yn are nonzero vectors in H, then

(1.4)
n∑

i=1

|〈x, yi〉|2 ≤‖ x ‖2 max
1≤i≤n

n∑
j=1

|〈yj , yi〉|.
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Moreover, Mitrinović, Pecǎrić and Fink [17, Theorem 5 in pp394] mentioned the following
inequality equivalent to Bombieri’s type: If x, y1, . . . , yn are nonzero vectors in H and
a1, . . . , an ∈ C, then

(1.5) |
n∑

i=1

ai〈x, yi〉|2 ≤‖ x ‖2
n∑

i=1

|ai|2
n∑

j=1

|〈yj , yi〉|.

In this paper, from a viewpoint of the operator theory, we propose a Selberg type inequal-
ity in a Hilbert C∗-module, which ia simultaneous extensions of the Bessel inequality and the
Cauchy-Schwarz inequality in a Hibert C∗-module. As applications, we show Hilbert C∗-
module versions of Fujii-Nakamoto type (1.3), Bombieri type (1.4) and Mitrinović, Pecǎrić
and Fink type (1.5). Moreover, we give a generalization of the Selberg inequality in a
Hilbert C∗-module.

2 Preliminaries Let A be a unital C∗-algebra with the unit element e. An element
a ∈ A is called positive if it is selfadjoint and its spectrum is contained in [0,∞). For
a ∈ A , we denote the absolute value of a by |a| = (a∗a)

1
2 . For positive elements a, b ∈ A ,

the operator geometric mean of a and b is defined by

a ] b = a
1
2

(
a− 1

2 ba− 1
2

) 1
2

a
1
2

for invertible a. If a and b are non invertible, then a ] b belongs to the double commutant
A ′′ in general. In fact, since a ] b satisfies the upper semicontinuity, it follows that a ] b =
limε→+0(a + εe) ] (b + εe) in the strong operator topology. If A is monotone complete in
the sense that every bounded increasing net in the self-adjoint part has a supremum with
respect to the usual partial order, then we have a ] b ∈ A , see [13]. The operator geometric
mean has the symmetric property: a ] b = b ] a. In the case that a and b commute, we
have a ] b =

√
ab. For more details on the operator geometric mean, see [12, 8].

A complex linear space X is said to be an inner product A -module (or a pre-Hilbert
A -module) if X is a right A -module together with a C∗-valued map (x, y) 7→ 〈x, y〉 :
X × X → A such that

(i) 〈x, αy + βz〉 = α〈x, y〉 + β〈x, z〉 (x, y, x ∈ X , α, β ∈ C),

(ii) 〈x, ya〉 = 〈x, y〉a (x, y ∈ X , a ∈ A ),

(iii) 〈y, x〉 = 〈x, y〉∗ (x, y ∈ X ),

(iv) 〈x, x〉 ≥ 0 (x ∈ X ) and if 〈x, x〉 = 0, then x = 0.

We always assume that the linear structures of A and X are compatible. Notice that (ii)
and (iii) imply 〈xa, y〉 = a∗〈x, y〉 for all x, y ∈ X , a ∈ A . If X satisfies all conditions for
an inner-product A -module except for the second part of (iv), then we call X a semi-inner
product A -module.

In this case, we write ‖x‖:=
√
‖〈x, x〉‖, where the latter norm denotes the C∗-norm of

A . If an inner-product A -module X is complete with respect to its norm, then X is called
a Hilbert C∗-module. In [6], from a viewpoint of operator theory, we presented the following
Cauchy-Schwarz inequality in the framework of a semi-inner product C∗-module over a
unital C∗-algebra: If x, y ∈ X such that the inner product 〈x, y〉 has a polar decomposition
〈x, y〉 = u|〈x, y〉| with a partial isometry u ∈ A , then

|〈x, y〉| ≤ u∗〈x, x〉u ] 〈y, y〉.(2.1)
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An element x of a Hilbert C∗-module X is called nonsingular if the element 〈x, x〉 ∈ A
is invertible. The set {xi} ⊂ X is called orthonormal if 〈xi, xj〉 = δije. For more details
on Hilbert C∗-modules, see [16].

In [4], Dragomir, Khosravi and Moslehian showed a version of the Bessel inequality and
some generalizations of this inequality in the framework of Hilbert C∗-modules. Moreover,
in [3], Bounader and Chahbi showed a type and refinement of Selberg inequality in Hilbert
C∗-modules. We shall show an improvement of the Selberg type inequality due to Bounader
and Chahbi.

3 Main theorem Fiest of all, we show the following Selberg type inequality in a Hilbert
C∗-module.

Theorem 1. Let X be an inner product C∗-module over a unital C∗-algbera A . If
x, y1, . . . , yn are nonzero vectors in X such that y1, . . . , yn are nonsingular, then

(3.1)
n∑

i=1

〈x, yi〉

 n∑
j=1

|〈yj , yi〉|

−1

〈yi, x〉 ≤ 〈x, x〉.

The equality in (3.1) holds if and only if x =
∑n

i=1 yiai for some ai ∈ A and i = 1, . . . , n
such that for arbitrary i 6= j 〈yi, yj〉 = 0 or |〈yj , yi〉|ai = 〈yi, yj〉aj.

Theorem 1 is simultaneous extensions of the Bessel inequality [4] and the Cauchy-
Schwarz inequality [6] in a Hilbert C∗-module. As a matter of fact, if {y1, . . . , yn} is
orthonormal in Theorem 1, then we have the Bessel inequality:

n∑
i=1

|〈yi, x〉|2 ≤ 〈x, x〉

holds for all x ∈ X . If n = 1 and y = y1 in Theorem 1 and 〈x, y〉 has a polar decomposition
〈x, y〉 = u|〈x, y〉| with a partial isometry u ∈ A , then we have u|〈x, y〉|〈y, y〉−1|〈y, x〉|u∗ ≤
〈x, x〉 and hence

|〈x, y〉| = |〈x, y〉|〈y, y〉−1|〈y, x〉| ] 〈y, y〉 ≤ u∗〈x, x〉u ] 〈y, y〉.

This implies the Cauchy-Schwarz inequality (2.1).

To prove Theorem 1, we need the following two lemmas:

Lemma 2. If a ∈ A , then the operator matrix on A ⊕ A

A =
(
|a∗| −a
−a∗ |a|

)

is positive, and
(

ξ
η

)
∈ N(A) if and only if |a∗|ξ = aη, where N(A) is the kernel of A.

Proof. Let a = u|a| be the polar decomposition of a, where u is the partial isometry in the
double commutant A

′′
. Since it follows that |a∗| = u|a|u∗, we have

A =
(

u|a|u∗ −u|a|
−|a|u∗ |a|

)
=

(
u|a|1/2 0

0 |a|1/2

)(
1 −1
−1 1

)(
u|a|1/2 0

0 |a|1/2

)∗

≥ 0.
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Next, it is obvious that
(

ξ
η

)
∈ Ker(A) if and only if |a|η = a∗ξ and |a∗|ξ = aη. Moreover,

it follows that |a|η = a∗ξ if and only if |a∗|ξ = aη. In fact, if |a|η = a∗ξ, then we
have aη = u|a|η = ua∗ξ = u|a|u∗ξ = |a∗|ξ. Conversely, if |a∗|ξ = aη, then we have
a∗ξ = u∗|a∗|ξ = u∗aη = u∗u|a|η = |a|η.

Lemma 3. For any y1, y2, . . . , yn ∈ X

(3.2)

〈y1, y1〉 · · · 〈y1, yn〉
. . .

〈yn, y1〉 · · · 〈yn, yn〉

 ≤


∑n

j=1 |〈yj , y1〉| 0
. . .

0
∑n

j=1 |〈yj , yn〉|

 .

Proof. The difference between both sides of (3.2) is the following form:

n∑
i,j=1


0 0

|〈yj , yi〉| −〈yi, yj〉

−〈yi, yj〉 |〈yi, yj〉|
0 0


and for each pair i, j it is positive by Lemma 2.

Proof of Theorem 1 For each i = 1, . . . , n, put ci =
∑n

j=1 |〈yj , yi〉|. Since yi is nonsin-
gular, it follows that ci is invertible in A . It follows from Lemma 3 that

n∑
i=1

〈x, yi〉c−1
i 〈yi, yj〉c−1

j 〈yj , x〉

= (〈x, y1〉c−1
1 · · · 〈x, yn〉c−1

n )

〈y1, y1〉 · · · 〈y1, yn〉
. . .

〈yn, y1〉 · · · 〈yn, yn〉


c−1

1 〈y1, x〉
...

c−1
n 〈yn, x〉


≤ (〈x, y1〉c−1

1 · · · 〈x, yn〉c−1
n )

c1 0
. . .

0 cn


c−1

1 〈y1, x〉
...

c−1
n 〈yn, x〉


=

n∑
i=1

〈x, yi〉c−1
i 〈yi, x〉

and this implies

0 ≤ 〈x −
n∑

i=1

yic
−1
i 〈yi, x〉, x −

n∑
i=1

yic
−1
i 〈yi, x〉〉

= 〈x, x〉 − 2
n∑

i=1

〈x, yi〉c−1
i 〈yi, x〉 +

n∑
i=1

〈x, yi〉c−1
i 〈yi, yj〉c−1

j 〈yj , x〉

≤ 〈x, x〉 −
n∑

i=1

〈x, yi〉c−1
i 〈yi, x〉.

Hence we have the desired inequality (3.1).
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The equality in (3.1) holds if and only if the following (3.3) and (3.4) are satisfied:

(3.3) x =
n∑

i=1

yic
−1
i 〈yi, x〉

and for arbitrary i 6= j

(3.4) (〈x, yi〉c−1
i 〈x, yj〉c−1

j )
(
|〈yj , yi〉| −〈yi, yj〉
−〈yj , yi〉 |〈yi, yj〉|

)(
c−1
i 〈yi, x〉

c−1
j 〈yj , x〉

)
= 0.

Put A =
(
|〈yj , yi〉| −〈yi, yj〉
−〈yj , yi〉 |〈yi, yj〉|

)
and it follows that the condition (3.4) holds if and only if

A1/2

(
c−1
i 〈yi, x〉

c−1
j 〈yj , x〉

)
=

(
0
0

)
⇐⇒ A

(
c−1
i 〈yi, x〉

c−1
j 〈yj , x〉

)
=

(
0
0

)
.

Hence it follows from Lemma 2 that the condition (3.4) is equivalent to the following (3.5)
and (3.6): For arbitrary i 6= j

(3.5) 〈yi, yj〉 = 0

or

(3.6) |〈yj , yi〉|c−1
i 〈yi, x〉 = 〈yi, yj〉c−1

j 〈yj , x〉.

Conversely, suppose that x =
∑n

i=1 yiai for some ai ∈ A and for i 6= j 〈yi, yj〉 = 0 or
|〈yj , yi〉|ai = 〈yi, yj〉aj . Then

n∑
i=1

〈x, yi〉

 n∑
j=1

|〈yj , yi〉|

−1

〈yi, x〉 =
n∑

i=1

〈x, yi〉

 n∑
j=1

|〈yj , yi〉|

−1
n∑

j=1

〈yi, yj〉aj

=
n∑

i=1

〈x, yi〉

 n∑
j=1

|〈yj , yi〉|

−1
n∑

j=1

|〈yj , yi〉|ai

=
n∑

i=1

〈x, yi〉

 n∑
j=1

|〈yj , yi〉|

−1  n∑
j=1

|〈yj , yi〉|

 ai

=
n∑

i=1

〈x, yi〉ai

= 〈x, x〉.

Whence the proof is complete.

Remark 4. (1) In the case that X is a Hilbert space, the equality condition |〈yj , yi〉|ai =
〈yi, yj〉aj in Theorem 1 implies the condition (1.2). In fact, for some scalars ai, aj ∈ C, it
follows that 〈aiyi, ajyj〉 = a∗

i 〈yi, yj〉aj = a∗
i |〈yj , yi〉|ai ≥ 0, and |〈yj , yi〉| = |〈yj , yi〉∗| implies

|ai| = |aj |.
(2) In the Hilbert space setting, K. Kubo and F. Kubo [15] showed another proof of Selberg’s
inequality (1.1) using Geršgorin’s location of eigenvalues [14, Theorem 6.1.1] and a diagonal
domination theorem of positive semidefinite matrix.
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4 Applications In this section, by using Theorem 1, we consider several Hilbert C∗-
module versions of the Selberg inequality and the Bessel inequality.

Bounader and Chahbi in [3, Theorem 3.1] showed that if X is an inner product C∗-
module and y1, . . . , yn are nonzero vectors in X , and x ∈ X , then

(4.1)
n∑

i=1

|〈yi, x〉|2∑n
j=1 ‖ 〈yj , yi〉 ‖

≤ 〈x, x〉.

By Theorem 1, we have the following corollary, which is an improvement of (4.1):

Corollary 5. Let X be an inner product C∗-module over a unital C∗-algbera A . If
x, y1, . . . , yn are nonzero vectors in X such that y1, . . . , yn are nonsingular, then

n∑
i=1

|〈yi, x〉|2

‖
∑n

j=1 |〈yj , yi〉| ‖
≤ 〈x, x〉.

Proof. By assumption it follows that
∑n

i=1 |〈yj , yi〉| is invertible in A and hence(
n∑

i=1

|〈yj , yi〉|

)−1

≥‖
n∑

i=1

|〈yj , yi〉| ‖−1 .

Therefore, Theorem 1 implies Corollary 5.

Moreover, Bounader and Chahbi showed a Hilbert C∗-module version of Fujii-Nakamoto
type (1.3), which is a refinement of (4.1): If y and y1, . . . , yn are nonzero vectros in X such
that 〈y, yi〉 = 0 for i = 1, . . . , n, and x ∈ X , then

(4.2) |〈y, x〉|2 +
n∑

i=1

|〈yi, x〉|2∑n
j=1 ‖ 〈yi, yj〉 ‖

‖ 〈y, y〉 ‖≤‖ 〈y, y〉 ‖ 〈x, x〉.

We show a Hilbert C∗-module version of a refinement of the Selberg inequality due to Fujii
and Nakamoto, which is another version of (4.2):

Theorem 6. Let X be an inner product C∗-module over a unital C∗-algbera A . If
x, y, y1, . . . , yn are nonzero vectors in X such that y1, . . . , yn are nonsingular, 〈y, yi〉 = 0
for i = 1, · · · , n and 〈x, y〉 = u|〈x, y〉| is a polar decomposition in A , i.e., u ∈ A is a partial
isometry, then

|〈y, x〉| ≤ u∗〈y, y〉u ]

〈x, x〉 −
n∑

i=1

〈x, yi〉

 n∑
j=1

|〈yj , yi〉|

−1

〈yi, x〉

(4.3)

(
≤ u∗〈y, y〉u ] 〈x, x〉

)
.

Proof. Put z = x−
∑n

i=1 yi

(∑n
j=1 |〈yj , yi〉|

)−1

〈yi, x〉 . By the proof of Theorem 1, we have

〈z, z〉 ≤ 〈x, x〉 −
n∑

i=1

〈x, yi〉

 n∑
j=1

|〈yj , yi〉|

−1

〈yi, x〉.
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Since 〈y, z〉 = 〈y, x〉, it follows from the monotonicity of the operator geometric mean that

|〈y, x〉| = |〈y, z〉| ≤ u∗〈y, y〉u ] 〈z, z〉 by the Cauchy-Schwarz inequality (2.1)

≤ u∗〈y, y〉u ]

〈x, x〉 −
n∑

i=1

〈x, yi〉

 n∑
j=1

|〈yj , yi〉|

−1

〈yi, x〉

 .

In [3, Corollary 3.5], Bounader and Chahbi showed a Hilbert C∗-module version of
Bombieri type (1.4): If y1, . . . , yn are nonzero vectors in X and x ∈ X , then

(4.4)
n∑

i=1

|〈yi, x〉|2 ≤ 〈x, x〉 max
1≤i≤n

n∑
j=1

‖ 〈yi, yj〉 ‖ .

We show a Hilbert C∗-module version of Bombieri type, which is an improvement of
(4.4):

Theorem 7. Let X be an inner product C∗-module over a unital C∗-algbera A . If
x, y1, . . . , yn are nonzero vectors in X such that y1, . . . , yn are nonsingular, then

n∑
i=1

|〈yi, x〉|2 ≤ 〈x, x〉 max
1≤i≤n

‖
n∑

j=1

|〈yj , yi〉| ‖ .

Proof. Since for i = 1, . . . , n

n∑
j=1

|〈yj , yi〉| ≤‖
n∑

j=1

|〈yj , yi〉| ‖≤ max
1≤i≤n

‖
n∑

j=1

|〈yj , yi〉| ‖,

we have this theorem by virtue of Theorem 1.

As a corollary, we have the following Boas-Bellman type inequality [3, Corollary 3.6]:

Corollary 8. Let X be an inner product C∗-module over a unital C∗-algbera A . If
x, y1, . . . , yn are nonzero vectors in X such that y1, . . . , yn are nonsingular, then

n∑
i=1

|〈yi, x〉|2 ≤ 〈x, x〉
(

max
1≤i≤n

‖ 〈yi, yi〉 ‖ +(n − 1)max
j 6=i

‖ 〈yj , yi〉 ‖
)

.

Finally, we show a Mitrinović-Pečarić-Fink type inequality [17, Theorem 5 in pp394] in
Hilbert C∗-modules, which is another version of [4, Theorem 3.8]:

Theorem 9. Let X be an inner product C∗-module over a unital C∗-algbera A . If
x, y1, . . . , yn are nonzero vectors in X and a1, · · · , an ∈ A such that y1, . . . , yn are nonsin-
gular and 〈x,

∑n
i=1 yiai〉 = u|〈x,

∑n
i=1 yiai〉| is a polar decomposition in A , i.e., u ∈ A is

a partial isometry, then

|
n∑

i=1

〈x, yi〉ai| ≤ u∗〈x, x〉u ]

 n∑
i=1

a∗
i

 n∑
j=1

|〈yj , yi〉|

 ai

 .
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Proof. By the Cauchy-Schwarz inequality (2.1), we have

|
n∑

i=1

〈x, yi〉ai| = |〈x,
n∑

i=1

yiai〉|

≤ u∗〈x, x〉u ]

(
〈

n∑
i=1

yiai,
n∑

i=1

yiai〉

)

= u∗〈x, x〉u ]

 n∑
i,j=1

a∗
i 〈yi, yj〉aj


≤ u∗〈x, x〉u ]

 n∑
i=1

a∗
i

 n∑
j=1

|〈yj , yi〉|

 ai

 by Lemma 3.

5 Generalization In this section, we present a generalization of the Selberg inequality
in a Hilbert C∗-module.

We review the basic concepts of adjointable operators on a Hilbert C∗-moduleX over
a unital C∗-algebra A . We define L(X ) to be the set of all maps T : X 7→ X for
which there is a map T ∗ : X 7→ X such that 〈Tx, y〉 = 〈x, T ∗y〉 for all x, y ∈ X . For
T ∈ L(X ), we denote the kernel of T by N(T ). A closed submodule M of X is said to
be complemented if X = M ⊕ M⊥. Suppose that the closures of the ranges of T and
T ∗ are both complemented. Then it follows from [16, Proposition 3.8] that T has a polar
decomposition T = U |T | with a partial isometry U ∈ L(X ) and N(U) = N(|T |), and the
following hold:

(i) N(|T |) = N(T ).

(ii) |T ∗|q = U |T |qU∗ for any positive number q > 0.

(iii) N(Sq) = N(S) for any positive operator S ∈ L(X ) and q > 0,

also see [5, 20].

Theorem 10. Let T be an operator in L(X ) such that the closures of the ranges of T and
T ∗ are both complemented. If y1, . . . , yn 6∈ N(T ∗) are nonsingular, then

(5.1)
n∑

i=1

〈Tx, yi〉

 n∑
j=1

|〈|T ∗|2β)yj , yi〉|

−1

〈yi, Tx〉 ≤ 〈|T |2αx, x〉

holds for every x 6∈ N(T ) and for any α, β ∈ [0, 1] with α + β = 1. In particular,

(5.2)
n∑

i=1

〈Tx, yi〉

 n∑
j=1

|〈TT ∗yj , yi〉|

−1

〈yi, Tx〉 ≤ 〈U∗Ux, x〉

and

(5.3)
n∑

i=1

〈Tx, yi〉

 n∑
j=1

|〈UU∗yj , yi〉|

−1

〈yi, Tx〉 ≤ 〈T ∗Tx, x〉.
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Moreover, the equality in (5.1) holds if and only if Tx =
∑n

i=1 |T ∗|2βyiai for some a1, . . . , an

∈ A such that for arbitrary i 6= j, 〈|T ∗|2βyi, yj〉 = 0 or |〈|T ∗|2βyj , yi〉|ai = 〈|T ∗|2βyi, yj〉aj.

Proof. Let T = U |T | be the polar decomposition of T , where U is the partial isometry.
In the case of α = 0 or 1, it follows from Theorem 1 that replacing x by U∗Ux (resp.
|T |x) and yi by |T |U∗yi (resp. U∗yi) for all i = 1, . . . , n, it follows that 〈U∗Ux, |T |U∗yi〉 =
〈Ux,U |T |U∗yi〉 = 〈x,U∗|T ∗|yi〉 = 〈x, T ∗yi〉 = 〈Tx, yi〉 and we have (5.2) (resp. (5.3)).
In the case of 0 < α < 1, we replace x by |T |αx and also replace yi by |T |βU∗yi for all
i = 1, . . . , n. Then we have

〈|T |βU∗yi, |T |βU∗yj〉 = 〈U |T |2βU∗yi, yj〉 = 〈|T ∗|2βyi, yj〉

and y1, . . . , yn 6∈ N(T ∗) = N(|T ∗|) = N(|T ∗|β). Thus we have (5.1) by Theorem 1.
Next, we consider the equality condition in (5.1). By (iii), we have

|T |αx =
n∑

i=1

|T |βU∗yiai ⇐⇒ |T |2αx =
n∑

i=1

|T |U∗yiai =
n∑

i=1

T ∗yiai.

Hence we have the following implication:

|T |αx =
n∑

i=1

|T |βU∗yiai ⇐⇒ |T |x = |T |α+βx =
n∑

i=1

|T |2βU∗yiai by (iii)

⇐⇒ U |T |x =
n∑

i=1

U |T |2βU∗yiai by (i) and (iii)

⇐⇒ Tx =
n∑

i=1

|T ∗|2βyiai. by (ii).

Whence the proof is complete.
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