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ABSTRACT. In this paper, we present a Selberg type inequality in a Hilbert C*-
module, which ia simultaneous extensions of the Cauchy-Schwarz inequality and the
Bessel inequality in a Hibert C*-module. As an application, we give a generalization
of the Selberg inequality in a Hilbert C*-module.

1 Introduction The theory of Hilbert C*-modules over non-commutative C*-algebras
firstly appeared in Paschke [18] and Rieffel [19], and it has contributed greatly to the
developments of operator algebras. Recently, many researchers have studied geometric
properties of Hilbert C*-modules from a viewpoint of the operator theory. For example,
Dragomir, Khosravi and Moslehian [4], and Bounader and Chahbi [3] showed several variants
of the Bessel inequality, the Selberg inequality and these generalizations in the framework
of a Hilbert C*-module. We showed in [6] the new Cauchy-Schwarz inequality in a Hilberet
C*-module by means of the operator geometric mean. From the viewpoint, we show a
Hilbert C*-module version of the Selberg inequality which is simultaneous extensions of the
Cauchy-Schwarz inequality and the Bessel one in a Hilbert C*-module.

We briefly review the Selberg inequality and its generalization in a Hilbert space.

Let H be a Hilbert space with the inner product (-,-). The Selberg inequality [2, 17]
states that if y1,¥2,...,y, and x are nonzero vectors in H, then

(L.1) I

yza
Zz] 1|<y]7yz>| <l=

Moreover, Furuta [10] posed conditions enjoying the equality: The equality in (1.1) holds if
and only if x = Y"1 | a;y; for some scalars a1, as, ..., a, € C such that for arbitrary i # j

(1.2) (Yi,y;) =0 or |a;| =|a;| with (a;ys,a;y;) >0,

also see [7]. Note that the Selberg inequality is simultaneous extensions of the Bessel
inequality and the Cauchy-Schwarz inequality.

Fujii and Nakamoto [9] showed a refinement of the Selberg inequality: If (y,y;) = 0 for
given nonzero vectors yi,...,yn, € H, then

x Z/z 2 2 2
(1.3) (z,y)]> + ly IF<llz "Iy
ZZJ 1 <y]7yz>|

holds for all z € H. Also, Bombieri [1] showed the following generalization of the Bessel
inequality: If x,y1,...,¥y, are nonzero vectors in H, then

. . 2< 2 . N,
(14) >l sl <l 1P e 3 o)
1= J=
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Moreover, Mitrinovié, Pecari¢ and Fink [17, Theorem 5 in pp394] mentioned the following

inequality equivalent to Bombieri’s type: If x,¥1,...,y, are nonzero vectors in H and
ai,...,a, € C, then

n n n
(1.5) 1> aie,y)l <l = 12D lal® > Ky 90l

i=1 i=1 j=1

In this paper, from a viewpoint of the operator theory, we propose a Selberg type inequal-
ity in a Hilbert C*-module, which ia simultaneous extensions of the Bessel inequality and the
Cauchy-Schwarz inequality in a Hibert C*-module. As applications, we show Hilbert C*-
module versions of Fujii-Nakamoto type (1.3), Bombieri type (1.4) and Mitrinovié, Pecarié
and Fink type (1.5). Moreover, we give a generalization of the Selberg inequality in a
Hilbert C*-module.

2 Preliminaries Let &/ be a unital C*-algebra with the unit element e. An element
a € o is called positive if it is selfadjoint and its spectrum is contained in [0,00). For
a € o/, we denote the absolute value of a by |a| = (a*a)z. For positive elements a,b € <7,
the operator geometric mean of a and b is defined by
1
allb= a? (a_%ba_%> a2

for invertible a. If @ and b are non invertible, then a # b belongs to the double commutant
" in general. In fact, since a f b satisfies the upper semicontinuity, it follows that a f b =
lim.,o(a +ce) § (b+ ce) in the strong operator topology. If & is monotone complete in
the sense that every bounded increasing net in the self-adjoint part has a supremum with
respect to the usual partial order, then we have a § b € 7, see [13]. The operator geometric
mean has the symmetric property: a f b = b § a. In the case that a and b commute, we
have a § b = vab. For more details on the operator geometric mean, see [12, 8].

A complex linear space 2" is said to be an inner product &/-module (or a pre-Hilbert

o/-module) if 2" is a right «/-module together with a C*-valued map (z,y) — (z,y) :
X x X — o such that

(i) (z,ay + Bz) = afz,y) + B(z,2) (v,y,0€ X, 0,0 €C),
(i) (z,ya) = (x,y)a (z,y € Z,a € ),
(il) (y,2) = (z,9)* (z,y€ Z),
(iv) (z,2) >0 (z € 2) and if (z,z) = 0, then z = 0.

We always assume that the linear structures of &/ and 2 are compatible. Notice that (ii)
and (iii) imply (za,y) = a*(z,y) for all x,y € Z",a € &7. If 2 satisfies all conditions for
an inner-product o7-module except for the second part of (iv), then we call 2" a semi-inner
product «7-module.

In this case, we write ||z ||:= /|| (z,z) ||, where the latter norm denotes the C*-norm of
&/ . If an inner-product «7-module 2" is complete with respect to its norm, then 2" is called
a Hilbert C*-module. In [6], from a viewpoint of operator theory, we presented the following
Cauchy-Schwarz inequality in the framework of a semi-inner product C*-module over a
unital C*-algebra: If z,y € £ such that the inner product (x, y) has a polar decomposition
(x,y) = ul{x,y)| with a partial isometry u € <, then

(2.1) @,y < u(z,x)ut (y,).
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An element z of a Hilbert C*-module 2 is called nonsingular if the element (z,z) € o
is invertible. The set {z;} C 2 is called orthonormal if (x;,z;) = d;je. For more details
on Hilbert C*-modules, see [16].

In [4], Dragomir, Khosravi and Moslehian showed a version of the Bessel inequality and
some generalizations of this inequality in the framework of Hilbert C*-modules. Moreover,
in [3], Bounader and Chahbi showed a type and refinement of Selberg inequality in Hilbert
C*-modules. We shall show an improvement of the Selberg type inequality due to Bounader
and Chahbi.

3 Main theorem Fiest of all, we show the following Selberg type inequality in a Hilbert
C*-module.

Theorem 1. Let Z  be an inner product C*-module over a wunital C*-algbera <. If
TyY1, - - -, Yn are nonzero vectors in X such that yi,...,y, are nonsingular, then
-1

n

(3.1) > (@) Z (yi vl | (yiz) < (,2).

i=1
The equality in (3.1) holds if and only if x = Y ;| yia; for some a; € & andi=1,...,n
such that for arbitrary i # j (yi,y;) =0 or [y, yi)|ai = (v, y;)a;.

Theorem 1 is simultaneous extensions of the Bessel inequality [4] and the Cauchy-
Schwarz inequality [6] in a Hilbert C*-module. As a matter of fact, if {y1,...,yn} is
orthonormal in Theorem 1, then we have the Bessel inequality:

n

S o) < ()

=1

holds for all z € 2". If n =1 and y = y; in Theorem 1 and (z, y) has a polar decomposition
(z,y) = u|(x,y)| with a partial isometry u € <, then we have ul{z, y)|{y,v) " |{y, z)|u* <
(x,z) and hence

[, )| = [ ) [y, u) ™ Ky, )| 8 (yy) < u (@, a)u i (y,y).

This implies the Cauchy-Schwarz inequality (2.1).

To prove Theorem 1, we need the following two lemmas:

Lemma 2. Ifa € o/, then the operator matriz on o & of

e la*] —a
—a* |af

is positive, and (5) € N(A) if and only if |a*|¢ = an, where N(A) is the kernel of A.

Proof. Let a = u|a| be the polar decomposition of a, where u is the partial isometry in the
double commutant 27" . Since it follows that |a*| = u|a|u*, we have

~ (ulalu* —ula]\ _ (ula'/? 0 1 =1\ (ula*? 0\~
A_<—|au* a|>_< 0 fa['?)\-1 1 0 Ja2) ="



90 K. KUBO, F. KUBO AND Y. SEO

£

Next, it is obvious that 77) € Ker(A) if and only if |a|n = a*¢ and |a*|§ = an. Moreover,

it follows that |a|n = a*¢ if and only if |a*|( = an. In fact, if |a|n = a*¢, then we
have an = ula|ln = wa*{ = ulalu™é = |a*|{. Conversely, if |a*|¢ = an, then we have
a*§ =u*la*|¢ = uan = u*ulaln = |aln. O

Lemma 3. For any y1,Y2,---,Yn € L

(iy) - (Y1, un) e Ky y)l 0
(3.2) < L
<yn7y1> T <yn7yn> 0 Z;:l ‘<yj7yn>‘

Proof. The difference between both sides of (3.2) is the following form:

0 0
Zn: Kyioui)l = (wis )
i.j=1 —ioyi) (Wi )]
0 0
and for each pair i, j it is positive by Lemma 2. O

Proof of Theorem 1 For eachi=1,...,n, put ¢; = 22;1 [{y;,v:)|- Since y; is nonsin-
gular, it follows that ¢; is invertible in 7. It follows from Lemma 3 that

n

> (@yide Hyi yi)e; Hyj, )

(yi,y1) -~ (y1,9n) Cf1<yla$>
(zoyer - (zyn)e, ) g :
Wnsy1) o Wnoyn)) \enHyns )
c1 0 oy, @)
< ({wyy)er - (@ yn)en ) g :
0 cn) \eu'(Yn, @)

_nyz Nyi, @)

and this implies

l'fzyz yza SE*Z% yz,

n n

1‘ x —22 x Z/z yu >+Z<x yz> <yuy]> <yja >

i=1
n

< (z,z) - Z<$ y1> <yu z).

i=1

Hence we have the desired inequality (3.1).
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The equality in (3.1) holds if and only if the following (3.3) and (3.4) are satisfied:

(33) T = Z Yic; yza
and for arbitrary i # j

Vel g ety (Wi g —=(yis ) ¢ Ny z)\
(3.4) (@w)ert (@) >(_<yj’yi> <yi’yj>|)(cjl<yjjx>>o.

|
—(ivi) Kyi, v

(i) =0) = a(e)-6)
Ny;, ) ¢; Nyj, ) 0
Hence it follows from Lemma 2 that the condition (3.4) is equivalent to the following (3.5)
and (3.6): For arbitrary i # j

Put A= <|<yj’ vl =y, y;|>> and it follows that the condition (3.4) holds if and only if
)

(3.5) (Yiry;) =0
(3.6) [{ys. yidler yinx) = (ya yshes " (v, ).

Conversely, suppose that z = Y1 | y;a; for some a; € & and for i # j (y;,y;) = 0 or
|<ijyi>|ai = <yi,yj>aj. Then

n - n
Z z, i) Z v udl | o) =Y (@) ZI (i) Z Yi,yj)a
i=1 Jj=1

n a n
7235% |yjayz Z|yjayz |CL1
7j=1 J=1
-1
n n n
:nyz |yjayz Z|yy,yz a;
=1 j=1 j=1
- :TJ yz
i=1
= (z,z)
Whence the proof is complete. 0

Remark 4. (1) In the case that 2" is a Hilbert space, the equality condition |(y;,y;)|a; =
(¥i,y;)a; in Theorem 1 implies the condition (1.2). In fact, for some scalars a;,a; € C, it
|f011|0WS| th|at (i, ay;) = ai{yi,y5)a; = ail{y;, yi)la; = 0, and [(y;,y:)| = [(y;,y:)"| implies
a;| = |aj|.

(2) In the Hilbert space setting, K. Kubo and F. Kubo [15] showed another proof of Selberg’s
inequality (1.1) using Gersgorin’s location of eigenvalues [14, Theorem 6.1.1] and a diagonal
domination theorem of positive semidefinite matrix.
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4 Applications In this section, by using Theorem 1, we consider several Hilbert C*-
module versions of the Selberg inequality and the Bessel inequality.

Bounader and Chahbi in [3, Theorem 3.1] showed that if £ is an inner product C*-
module and ¥y, ..., ¥, are nonzero vectors in 2, and z € 2, then

(4.1) Z 5 [y, @ < (z,1).

=1 vaZJz) (-
By Theorem 1, we have the following corollary, which is an improvement of (4.1):

Corollary 5. Let Z be an inner product C*-module over a unital C*-algbera of . If

T,Y1,-- -, Yn are nonzero vectors in Z such that yi,...,y, are nonsingular, then
yla
< (z,z).
ZH > e 1|<ygayz>\|| ’

Proof. By assumption it follows that >_: ; [(y;,y;)| is invertible in & and hence

<Z|<yj,yi>|) 2 w7

Therefore, Theorem 1 implies Corollary 5. O

Moreover, Bounader and Chahbi showed a Hilbert C*-module version of Fujii-Nakamoto
type (1.3), which is a refinement of (4.1): If y and y1, . .., y, are nonzero vectros in 2" such
that (y,y;) =0fori=1,...,n, and z € 2, then

(4.2) g, ‘2+Zz o @)™y 1<l ) | ).

=1 1 i us) |

We show a Hilbert C*-module version of a refinement of the Selberg inequality due to Fujii
and Nakamoto, which is another version of (4.2):

Theorem 6. Let Z° be an inner product C*-module over a unital C*-algbera of . If
T, Y, Y1, - -+, Yn are nonzero vectors in X such that yy,...,y, are nonsingular, (y,y;) = 0
fori=1,--+ ,n and (x,y) = ul{x,y)| is a polar decomposition in &, i.e., u € & is a partial
isometry, then

-1

(4.3) (ool < w(ysy)u s | (o) =D o) | 2 Hwswadl | (o)

3

(< myyut @.a)).

Proof. Put z =x—3 """ | y; (2?21 I(y;, yl>|> (yi, x) . By the proof of Theorem 1, we have

-1

(2,2) < (x Z ,yi) Z|<yj,yi>\ (yi, ).
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Since (y, z) = (y, x), it follows from the monotonicity of the operator geometric mean that

Ky, z)| = {y, 2)| < u™(y,y)u t (z,z) by the Cauchy-Schwarz inequality (2.1)
-1

<u(yyut | (@)=Y @) | D [l | (i)
i—1 j=1

O

In [3, Corollary 3.5], Bounader and Chahbi showed a Hilbert C*-module version of
Bombieri type (1.4): If y1,...,y, are nonzero vectors in £ and z € £, then

n n
2
. ; < AN
(44) >l < o) e 3 1 o) |
1= J:

We show a Hilbert C*-module version of Bombieri type, which is an improvement of
(4.4):

Theorem 7. Let Z be an inner product C*-module over a wunital C*-algbera <. If

T, Y1, .-, Yn are nonzero vectors in X such that yy, ..., Yy, are nonsingular, then
n
3 ) < o) | Z| R
Proof. Since fori=1,...,n
n n n
;\ Yi»yi)| < ;I(yg»wl I< max | ;I(ijyﬁl I,
we have this theorem by virtue of Theorem 1. O

As a corollary, we have the following Boas-Bellman type inequality [3, Corollary 3.6]:

Corollary 8. Let 2 be an inner product C*-module over a unital C*-algbera <. If
T, Y1, - -, Yn are nonzero vectors in X such that yy, ..., Yy, are nonsingular, then

) 2 < s _ o )
> ol < ) (e 1 i) 1+ 1) maxc | o) 1)

Finally, we show a Mitrinovié-Pecari¢-Fink type inequality [17, Theorem 5 in pp394] in
Hilbert C*-modules, which is another version of [4, Theorem 3.8]:

Theorem 9. Let Z be an inner product C*-module over a unital C*-algbera <. If
T Y1, - - -, Yn are nonzero vectors in & and ay,--- ,a, € & such that yy,...,y, are nonsin-
gular and (x, > | yia;) = ul{z, Y i, yia;)| is a polar decomposition in <, i.e., uw € o is
a partial isometry, then

n

n n
> wyal <u@wayut | Y af Z iyl | ai
i=1 =

i=1
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Proof. By the Cauchy-Schwarz inequality (2.1), we have

n

‘Z@‘ yi)ai| = [(z Zyzaz
= n n
'Ll,ﬁ ( Zyzauzyzaz >
n
ut | Y ai (i ys)a

1,j=1

n n

z)u f Za Z| (s, yi)| | i by Lemma 3.
i=1 j=1

O

5 Generalization In this section, we present a generalization of the Selberg inequality
in a Hilbert C*-module.

We review the basic concepts of adjointable operators on a Hilbert C*-moduleZ” over
a unital C*-algebra o/. We define £(Z") to be the set of all maps T' : 2~ +— 2 for
which there is a map T* : 2" — 2 such that (T'z,y) = (x,T*y) for all z,y € Z . For
T € L(Z), we denote the kernel of T by N(T'). A closed submodule .# of 2 is said to
be complemented if 2~ = .# © .#~+. Suppose that the closures of the ranges of T and
T* are both complemented. Then it follows from [16, Proposition 3.8] that 7" has a polar
decomposition T' = U|T| with a partial isometry U € £(Z") and N(U) = N(|T|), and the
following hold:

() N(TI) = N(T),

(if) |T*|9 =U|T|9U* for any positive number g > 0.

(iii) N(S9) = N(S) for any positive operator S € L(Z") and ¢ > 0,
also see [5, 20].

Theorem 10. Let T be an operator in L(Z") such that the closures of the ranges of T and
T* are both complemented. If y1,...,yn & N(T™) are nonsingular, then

-1
(5.1) STy (ST P00l | (0 To) < (7.
i=1

j=1

holds for every x € N(T') and for any o, 8 € [0,1] with « + 8 = 1. In particular,

-1

(5.2) > (T, y;) Z (TT*y;,y)| | (i, Ta) < (U*Usz,z)
i=1 j=1
and
-1
n n
(5.3) S T,y [ D NUUyu)l | (i Tx) < (T*Tw, ).
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Moreover, the equality in (5.1) holds if and only if Tx = >, |T*|*Py,a; for some ay, ..., ay,
€ o such that for arbitrary i # j, (|T*|*Pyi,y;) = 0 or [{|T**Py;, vi)la; = (| T*[*Pyi, y;)a;.

Proof. Let T = U|T| be the polar decomposition of T, where U is the partial isometry.
In the case of & = 0 or 1, it follows from Theorem 1 that replacing = by U*Ux (resp.
|T|x) and y; by |T|U*y; (resp. U*y;) for all i = 1,...,n, it follows that (U*Uw, |T|U*y;) =
Uz, U|T\U*y;) = (x,U*|T*|y;) = (x,T*y;) = (Tx,y;) and we have (5.2) (resp. (5.3)).
In the case of 0 < o < 1, we replace = by |T'|*z and also replace y; by |T|°U*y; for all
i =1,...,n. Then we have

(IT1PUy;, |T)PU*y;) = (UITI*PU* i, y;5) = (1T P ys, y5)

and y1,...,yn € N(T*) = N(|T*|) = N(|]T*|?). Thus we have (5.1) by Theorem 1.

Next, we consider the equality condition in (5.1). By (iii), we have

|T|*x = Z IT)PU*yia; <= |T)*%z = Z T\ U y;a; = ZT*yiai.
i=1

i=1 i=1

Hence we have the following implication:

T*e = > TP U yia; <= |Tle=|T|""z =" |T*’Ury;a; by (i)

i=1 i=1

= UlTlz =) U|T*U*y;a; by (i) and (i)

=1

= Tx= Z IT*|*Pya;. by (ii).
i=1

Whence the proof is complete. O
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