
Scientiae Mathematicae Japonicae Online, e-2014, 123–143 123

REMARKS ON ω-CLOSED SETS IN SUNDARAM-SHEIK JOHN’S SENSE
OF DIGITAL N-SPACES

H. Maki, S. Takigawa, M. Fujimoto,
P. Sundaram and M. Sheik John

Received February 8, 2013

Abstract. The aim of this paper is to study some topological properties, especially,
ω-closed sets (in Sundaram-Sheik John’s sense) of digital lines and digital n-spaces
(n ≥ 2).

1 Introduction In 2000, the concept of ω-closed sets (in Sundaram-Sheik John’s sense)
of topological spaces was introduced and investigated by P. Sundaram and M. Sheik John
[35] [36] [37] and some results on bitopological version were investigated by [12]. We note
that, in 1982, Hdeibe [14] had defined the same named concept: ω-closed sets (e.g., [14]);
but their definitions are different. Throughout the present paper, we call the ω-closed sets
[35] the ω-closed sets in Sundaram-Sheik John’s sense (cf. Definition 2.1). The concept of
Λs-sets was introduced and investigated by [4]. In the present paper, for the digital n-space
(Zn, κn)(n ≥ 1), we try to investigate properties on ω-closed sets in Sundaram-Sheik John’s
sense and Λs-sets. The concept of the digital line (Z, κ) is initiated by Khalimsky [15], [16]
and sometimes it is called the Khalimsky line (cf. [17] and references there, [33], [19, p.905],
[20, p.175]; e.g., [11], [18]). We reference the naming of the digital n-space (Zn, κn) in [20,
Definition 4]; (Zn, κn) is the topological product of n copies of the digital line (Z, κ) (cf.
Section 3).

The purpose of the present paper is to characterlize the ω-closedness in Sundaram-
Sheik John’s sense in (Zn, κn) (cf. Theorem 4.6). Namely, a subset A is an ω-closed set in
Sundaram-Sheik John’s sense of (Zn, κn) if and only if A is closed in (Zn, κn) (Theorem 4.6).
In order to prove the result, we investigate the concept of semi-kernels of subsets in (Zn, κn)
(cf. Theorem 4.5) after checking on some examples in (Zn, κn) (cf. Example 4.2). In Section 2
we recall some definitions and properties on topological spaces which are used in the present
paper; moreover in Section 3 we recall the definitions of the digital lines and digital n-spaces
(n ≥ 2) and we give a short survey of important properties which are used in the present
paper. In Section 4 we give some examples and we prove a characterization of ω-closed
sets in Sundaram-Sheik John’s sense for (Zn, κn) (cf. Theorem 4.6). In order to prove
Theorem 4.6, we need the construction of semi-open sets containing a point of (Zn, κn) (cf.
Theorem 4.4). In the end of Section 4, using Theorem 4.4 and Theorem 4.9, we give an
alternative and direct proof of [30, Theorem 4.2] which shows (Zn, κn) is semi-T2.

Throughout the present paper, (X, τ) represents a nonempty topological space on which
no separation axioms are assumed, unless otherwise mentioned.

2 Preliminaries We recall some concepts and properties on topological spaces.
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Definition 2.1 (i) ([22, Definition 2.1]) A subset A of a topological space (X, τ) is called
generalized closed (shortly, g-closed) in (X, τ) if Cl(A) ⊂ U whenever A ⊂ U and U is open
in (X, τ).

(ii) ([35], [36]) A subset A of a topological space (X, τ) is called ω-closed in Sundaram-
Sheik John’s sense in (X, τ) if Cl(A) ⊂ V whenever A ⊂ V and V is semi-open in (X, τ).
The complement of an ω-closed set is called an ω-open set.

A subset B of (X, τ) is said to be semi-open [21, Definition 1] in (X, τ), if there exists an
open set U such that U ⊂ B ⊂Cl(U). It is shown that [21, Theorem 1] a subset B is
semi-open if and only if B ⊂Cl(Int(B)) in (X, τ). A subset E of (X, τ) is said to be preopen
[25] in (X, τ), if E ⊂Int(Cl(E)) holds in (X, τ). Every open set is semi-open and preopen
in (X, τ). The complement of a semi-open set (resp. preopen set) is said to be semi-closed
(resp. preclosed). In the present paper, the famly of all semi-open sets (resp. preopen sets)
of (X, τ) is denoted by SO(X, τ) (resp. PO(X, τ)). Namely, for a topological space (X, τ),
as notation,
• SO(X, τ) := {B|B ⊂Cl(Int(B)), B ⊂ X}, PO(X, τ) := {E|E ⊂Int(Cl(E)), E ⊂ X}; and
τ ⊂ SO(X, τ) and τ ⊂ PO(X, τ) hold for any topological space (X, τ).

The following concept of semi-kernels is due to [4] and the concept of kernels is well
known (e.g., [28]).

Definition 2.2 Let E be a subset of a topological space (X, τ).
(i) ([4, Definition 1]) The following set τ -sKer(E) (or shortly sKer(E)) is called a semi-

kernel of E in (X, τ) (in [4], it is denoted by EΛs):
• τ -sKer(E) = EΛs :=

∩
{V |E ⊂ V and V is semi-open in (X, τ)}.

Note that, in the present paper, we use the symbol τ -sKer(E) or sKer(E).
(ii) (e.g., [28]) The following set τ -Ker(E) (or shortly Ker(E)) is called a kernel of E in

(X, τ):
• τ -Ker(E) :=

∩
{V |E ⊂ V and V is open in (X, τ)}.

Note that, in [28] (resp. [24]), the set τ -Ker(E) above is denoted by Kerτ (E) (resp. E∧).

Definition 2.3 ([4, Definition 2]) In a topological space (X, τ), a subset E is a Λs-set of
(X, τ) if E = EΛs (i.e., E =sKer(E)).

We recall the following property on semi-kernels.

Proposition 2.4 For a family {Ei|i ∈ Ω} of subsets of a topological space (X, τ), where Ω
is an index set,

(i) ([4, Proposition 3.1]) sKer(
∪
{Ei|i ∈ Ω}) =

∪
{sKer(Ei)|i ∈ Ω} holds; and

(ii) (e.g., [24, (2.5)]) Ker(
∪
{Ei|i ∈ Ω}) =

∪
{Ker(Ei)|i ∈ Ω} holds.

Theorem 2.5 t60 ([35], [36]) A subset A is ω-closed (in Sundaram-Sheik John’s sense) in
a topological space (X, τ) if and only if Cl(A) ⊂sKer(A).

Proposition 2.6 (i) ([4, Proposition 3.7]) A topological space (X, τ) is semi-T1 if and only
if every subset is a Λs-set.

(ii) ([4, Corollary 3.8]) Every semi-T1-space is a semi-R0-space.

We need the following notation.

Definition 2.7 (e.g., [10, p.166]; [39, Definition 2.1] [38, p.47] for the case where E := Zn)
For a subset E of (X, τ), we define the following subsets Eτ and EF :

Eτ := {x ∈ E | {x} is open in (X, τ), i.e., {x} ∈ τ };
EF := {x ∈ E | {x} is closed in (X, τ)}.
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3 Preliminaries-2 In the present section, we recall some foundamental definitions and
topological properties on digital lines and digital n-spaces (n ≥ 2); this includes a survey on
digital lines and digital n-spaces (n ≥ 2) on our topics. And the notation of Definition 3.11
and (∗ 20) in (II) below are used in the proofs of results in Section 4.

(I) (digital lines):
• Let us recall some definitions and topological properties on digital lines (cf. (∗1) - (∗11)
below).

Definition 3.1 (cf. [20, p.175], [19, p.905, p.908], [26, Section 2], [27, Example 4 in Section
2]; e.g., [11, Section 1], [33, Section 6 in p.9]) The digital line or so called the Khalimsky line
(Z, κ) is the set Z of all integers, equipped with the topology κ having {{2m− 1, 2m, 2m +
1}|m ∈ Z} as a subbase.

Remark 3.2 We put G := {{2m − 1, 2m, 2m + 1}|m ∈ Z} in Definition 3.1.
(i) By the definition of κ, a subset U of Z is open in (Z, κ) (i.e., U ∈ κ) if and only if

there exists a family of subsets of (Z, κ), say {B(U)
i | i ∈ I(U)}, where I(U) is an index set,

such that U =
∪
{B(U)

i | i ∈ I(U)} and B
(U)
i =

∩
{V (i)

j | j ∈ {1, 2, ...,m}} for some positive

integer m and some subsets V
(i)
j ∈ G(1 ≤ j ≤ m), here we assume that V

(i)
j 6= V

(i)
j1

if j 6= j1,
where j, j1 ∈ {1, 2, ...,m}).

(ii) For the set B
(U)
i =

∩
{V (i)

j | j ∈ {1, 2, ...,m}} above, we note that:

(∗)1 if m = 1 (resp. m = 2), then B
(U)
i = {2t − 1, 2t, 2t + 1} (resp. ={2u + 1} or ∅) for

some t ∈ Z (resp. for some u ∈ Z);
(∗)2 if m ≥ 3, then B

(U)
i =

∩
{V (i)

j |j ∈ {1, 2, ...,m}} = ∅.

• For examples, we first have some properties on singletons and two-pointed sets of (Z, κ)
(cf. (∗1) - (∗3) below): for an integer s,
· (∗1) a singleton {2s + 1} is open in (Z, κ); {2s + 1} is not closed in (Z, κ).
· (∗2) a singleton {2s} is not open in (Z, κ); but {2s} is closed in (Z, κ).
· (∗3) subsets {2s, 2s + 1} and {2s− 1, 2s} are not open in (Z, κ), where s ∈ Z (cf. (∗8)(iii)
below).

(Proof of (∗1)). (Proof of the opennness) It is shown that {2s + 1} = V1 ∩ V2, where
V1 := {2s− 1, 2s, 2s + 1} ∈ G and V2 := {2s + 1, 2s + 2, 2s + 3} ∈ G. Thus, {2s + 1} is open
in (Z, κ).
(Proof of the non-closedness) Suppose that {2s+1} is closed. Put U := Z\{2s+1}. Then,
U ∈ κ and so there exists a family of subsets: {B(U)

i | i ∈ I(U)}, where I(U) is an index set,
such that U =

∪
{B(U)

i | i ∈ I(U)} and B
(U)
i =

∩
{V (i)

j | j ∈ {1, 2, ...,m}} for some positive

integer m and some subsets V
(i)
j ∈ G(1 ≤ j ≤ m) (cf. Definition 3.1,Remark 3.2(i)). Pick a

point 2s ∈ U , where s ∈ Z. Then, we have
(∗)a 2s ∈ B

(U)
i′ =

∩
{V (i′)

j |j ∈ {1, 2, ...,m′}} and B
(U)
i′ ⊂ U for some i′ ∈ I(U) and positive

integer m′.
By Remark 3.2(ii), it is shown that m′ = 1 and B

(U)
i′ =

∩
{V (i′)

j |j ∈ {1, 2, ...,m′}}
={2s−1, 2s, 2s+1}. Thus, using (∗)a, we have 2s+1 ∈ U ; but this contradicts the definition
of U in the first setting. Therefore, the singleton {2s + 1} is not closed in (Z, κ). (◦)

(Proof of (∗2)). (Proof of the non-openness). Suppose that {2s} ∈ κ. We put U := {2s}.
By the definition of κ (cf. Remark 3.2(i)), there exists subsets B

(U)
i (i ∈ I(U)), where I(U)

is an index set, such that 2s ∈ B
(U)
i =

∩
{V (i)

j | j ∈ {1, 2, ...,m}} and B
(U)
i ⊂ U for some

positive integer m and V
(i)
j ∈ G(1 ≤ j ≤ m). By using Remark 3.2(ii), it is shown that

m = 1 and B
(U)
i =

∩
{V (i)

j | j ∈ {1, 2, ...,m}} = {2s− 1, 2s, 2s + 1} ⊂ U ; and so 2s + 1 ∈ U .
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This contradicts the definition of U := {2s}. Therefore, any singleton {2s} is not open in
(Z, κ).
(Proof of the closedness). It is shown that {2s} = Z \ E, where E :=

∪
{{2s − 2j − 1, 2s −

2j, 2s − 2j + 1}|j ∈ Z and j 6= 0}. Since E ∈ κ, Z \ E is closed; and so {2s} is closed in
(Z, κ). (◦)

(Proof of (∗3)) Suppose that {2s− 1, 2s} ∈ κ. Then, we have a contradiction. Put U :=
{2s− 1, 2s}. By Definition 3.1 (cf. Remark 3.2 (i)), there exists an index set I(U) and some
subsets B

(U)
i such that U =

∪
{B(U)

i | i ∈ I(U)}, where B
(U)
i =

∩
{V (i)

j | j ∈ {1, 2, ...,m}}
for some positive integer m and V

(i)
j ∈ G(1 ≤ j ≤ m) (cf. Remark 3.2). It is noted that

B
(U)
k ⊂ U for any k ∈ I(U). Then, we have:

(∗)a 2s ∈ B
(U)
a for some a ∈ I(U); (∗)b 2s − 1 ∈ B

(U)
b for some b ∈ I(U);

(∗)c B
(U)
a ∪ B

(U)
b ⊂ U , where U := {2s − 1, 2s}.

Using (∗)a, (∗)b and (∗)c, we have: (∗)d U = B
(U)
a ∪ B

(U)
b .

Using Remark 3.2(ii), (∗)a and (∗)b above, we have B
(U)
a = {2s− 1, 2s, 2s + 1} and B

(U)
b =

{2s − 1}, {2s − 1, 2s, 2s + 1} or {2s − 3, 2s − 2, 2s − 1}. Thus, using (∗)d above, we have
U = {2s − 1, 2s, 2s + 1} or U = {2s − 3, 2s − 2, 2s − 1, 2s, 2s + 1}. These properties above
contradict the defininion of U = {2s − 1, 2s}. Therefore, {2s − 1, 2s} is not open in (Z, κ).
Similarly, it is proved that {2s+1, 2s} is not open in (Z, κ). In (∗8)(iii) below, we note that
they are semi-open in (Z, κ). (◦)
• For the digital line (Z, κ), the concept of the smallest open set, say U(x), containing a
point x of (Z, κ) is very important; throughout the present paper, we put:
· U(2s) := {2s − 1, 2s, 2s + 1}; · U(2s + 1) := {2s + 1}, where s ∈ Z.
We first recall the definition of the smallest open set containing a point x for a topological
space (X, τ).

Definition 3.3 (e.g., [29, Definition 2.4]) Let (X, τ) be a topological space and a point
x ∈ X. A subset E is called the smallest open set containing x if x ∈ E,E ∈ τ and A = E
holds for any open set A such that x ∈ A and A ⊂ E.

For an open set E and x ∈ E,E is the smallest open set containing x if and only if E ⊂ G
holds for every open set G containing the point x (e.g., [29, Remark 2.5 (ii)]).
• For the digital line (Z, κ), we recall the concept of the smallest open set, say U(x),
containing a point x of (Z, κ). Obviously, every subset belonging to G =: {{2m−1, 2m, 2m+
1}|m ∈ Z} is open in (Z, κ). Then, we have the following important property on U(x), where
x ∈ Z:
·(∗4) (i) U(2s) := {2s − 1, 2s, 2s + 1} is the smallest open set containing 2s. Namely,
U(2s) is an open set containing the point 2s and if A is an any open set such that 2s ∈ A
and A ⊂ U(2s), then A = U(2s). And, if G is any open set containing 2s in (Z, κ), then
U(2s) ⊂ G.

(ii) U(2s + 1) := {2s + 1} is the smallest open set containing 2s + 1.
(iii) For each point x of (Z, κ), there exists the smallest open set U(x) containing the

point x (cf. [20, p.175]). Namely, for the point x ∈ Z, U(x) is an open set containing the
point x and if A is an any open set such that x ∈ A and A ⊂ U(x), then A = U(x). And,
if G is any open set containing x in (Z, κ), then U(x) ⊂ G.

(Proof of (∗4)). (i) By (∗2) and (∗3) above, it is shown that:
(∗e) U(2s) is open in (Z, κ) and 2s ∈ U(2s) (because of U(2s) ∈ G); and
if A is any open subset of U(2s) such that 2s ∈ A, then A = U(2s).
Indeed, if A1 ⊂ U(2s) such that 2s ∈ A1 and A1 6= U(2s), then A1 = {2s}, {2s − 1, 2s} or
{2s, 2s + 1} and the subset A1 is not open in (Z, κ) (cf. (∗ 2), (∗ 3) above). Thus, we have
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A = U(2s) for any open subset A such that 2s ∈ A and A ⊂ U(2s). Moreover, we show:
(∗f ) U(2s) ⊂ G holds for any open set G containing the point 2s and 2s ∈ U(2s). (Indeed,
let G be any open set containing the point 2s. Then, we have 2s ∈ U(2s)∩G and U(2s)∩G
is an open set such that U(2s) ∩ G ⊂ U(2s); thus we have U(2s) ∩ G = U(2s) (cf. (∗e)
above). Namely, we have U(2s) ⊂ G.)

Therefore, by (∗e) or (∗f ), it is shown that U(2s) is the smallest open set containing 2s
(cf. Definition 3.3).

(ii) For an odd integer 2s + 1, where s ∈ Z, U(2s + 1) = {2s + 1} is the smallest open
set containing the point 2s + 1 (cf. (∗1)). (iii) Using (i) and (ii) above, the set U(x) is
the smallest open set containing the point x. (◦)

• We have the form of the κ-closure of {x}, the κ-interior of {x} and the κ-kernel of {x},
respectively, (cf. (∗5), (∗6) below): for an integer s,
· (∗5) (i) κ-Cl({2s + 1}) = {2s, 2s + 1, 2s + 2}, κ-Cl({2s}) = {2s};

(ii) κ-Int({2s + 1}) = {2s + 1};κ-Int({2s}) = ∅;
(iii) κ-Ker({2s + 1}) = {2s + 1}; κ-Ker({2s}) = {2s − 1, 2s, 2s + 1} = U(2s).
(Proof of (∗5)). (i) They are shown by (∗4)(i), (∗1) and (∗2) above, respectively. (ii)

They are shown by (∗1) and (∗2) above, respectively. (iii) They are shown by (∗1) and
(∗4)(i) above. (◦)
· (∗6)(i) In the digital line (Z, κ), a singleton {x} is open if and only if the integer x is odd
in Z.

(ii) A singleton {x} is closed in (Z, κ) if and only if the integer x is even in Z.
(Proof of (∗6)) (i). It is shown by (∗5)(ii) above. (ii) By the closure form in (∗5)(i)

above, (ii) is shown. (◦)
By (∗6) above, it is shown that:
· (∗7) (i) Every singleton of (Z, κ) is open or closed (cf. (∗6); or (∗1) and (∗2) above). This
shows that (Z, κ) is T1/2 (e.g., [8, Example 4.6]; cf. [22, Definition 5.1], [9, Theorem 2.5]).
We recall some topological properties; in general, the class of T1/2-spaces is properly placed
between the classes of T0-spaces and T1-spaces ([22, Corollary 5.6]). Furthermore, Dontchev
and Ganster [8, Example 4.6] proved that (Z, κ) is T3/4; in general, the class of T3/4-spaces
is properly placed between the classes of T1-spaces and T1/2-spaces ([8, Corollary 4.4 and
Corollary 4.7]). For the digital plane (Z2, κ2) (cf. Definition 3.4 below), it is well known
that (Z2, κ2) is not T1/2 ([26, Section 3]).

• We recall the semi-openness (resp. semi-closedness) (cf. Section 2) of singletons in (Z, κ)
and the semi-closure of {x}, the semi-interor of {x} and the semi-kernel (cf. Definition 2.2(i))
of {x} (cf. (∗8) and (∗9) below): for an integer s,
·(∗8)(i) every open singleton {2s + 1} is semi-open and semi-closed in (Z, κ);

(ii) every closed singleton {2s} is semi-closed in (Z, κ); but {2s} is not semi-open in
(Z, κ);

(iii) the subsets {2s, 2s + 1} and {2s − 1, 2s} are semi-open on (Z, κ).
(Proof of (∗8)). (i) Every open set is semi-open and so {2s + 1} is semi-open in (Z, κ)

(cf. (∗6)(i) above). And, since κ-Int(κ-Cl({2s + 1}))= κ-int({2s, 2s + 1, 2s + 2}) = {2s + 1}
hold, {2s + 1} is semi-closed (cf. (∗5)(i)(ii) above). (ii) Since κ-Int(κ-Cl({2s})) = κ-
Int({2s}) = ∅ ⊂ {2s}, {2s} is semi-closed in (Z, κ). And, we have Cl(Int({2s})) =Cl(∅) =
∅ 6⊃ {2s} and so {2s} is not semi-open in (Z, κ). (iii) It is easily shown that κ-Cl(κ-
Int({2s, 2s + 1})) = κ-Cl({2s + 1}) = {2s, 2s + 1, 2s + 2} ⊃ {2s, 2s + 1}; and so {2s, 2s + 1}
is semi-open in (Z, κ). Similarly, the subset {2s − 1, 2s} is semi-open in (Z, κ). (◦)
·(∗9) For an integer s, we have the following properties:

(i) κ-sCl({2s + 1}) = {2s + 1}; κ-sCl({2s}) = {2s};
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(ii) κ-sInt({2s + 1}) = {2s + 1}; κ-sInt({2s}) = ∅;
(iii) κ-sKer({2s + 1}) = {2s + 1}; κ-sKer({2s}) = {2s}.
(Proof of (∗9)). (i) (resp. (ii)) They are proved by (∗8)(i) (resp. (∗8)(ii)) above. (iii)

By (∗8)(iii) (resp. (∗8)(i)), it is obtained that κ-sKer({2s}) = {2s, 2s + 1} ∩ {2s − 1, 2s} =
{2s} (resp. κ-sKer({2s + 1}) = {2s + 1}). (◦)

• We recall more topological properties on (Z, κ):
· (∗10) (i) For (Z, κ), κ = PO(Z, κ), PO(Z, κ) ⊂ SO(Z, κ) and κα = κ hold ([10, Theorem
2.1 (i)(a)(b)]), where κα := {V | V is α-open in (Z, κ)}. For topological spaces, the concept
of the α-open set was introduced by Nj̊astad [31] who called it the α-set. A subset A of a
topological space (X, τ) is said to be α-open in (X, τ) if A ⊂Int(Cl(Int(A))) holds.

(ii) The digital line (Z, κ) is submaximal. This fact may be known in folklore; however,
we are able to read one of the proof ([10, Theorem 1.1(i)]). Furthermore, it is noted that,
by [10, Theorem 1.1(ii)(iii)], the digital plane (Z2, κ2) (cf. (II) below) is not submaximal
but it is quasi-submaximal. Al-Nashef [1, Definition 3.2] introduced the concept of quasi-
submaximal topological spaces which is weaker than one of submaximal spaces (e.g., [3,
Definition 1.1], [13, p.137]).

(iii) The digital line (Z, κ) is s-normal ([11, Section 3, Theorem B]). In 1978, Maheshwari
and Prasad [23] introduced the concept of s-normal topological spaces using semi-open sets.
The digital plane is also a geometric example of s-normal spaces ([11, Section 5, Theorem
D]).

• Using Definition 2.7 for (X, τ) = (Z, κ), we can define the following subsets Zκ := {x ∈
Z | {x} ∈ κ}, ZF := {x ∈ Z | {x} is closed in (Z, κ)}; for a nonempty subset E of (Z, κ),
Eκ := {x ∈ E| {x} ∈ κ} and EF := {x ∈ E| {x} is closed in (Z, κ)}.
· (∗11) (i) Let A ⊂ Z. Then we have that Zκ = {2m + 1 ∈ Z | m ∈ Z}; Aκ = {2m + 1 ∈
A | m ∈ Z} (cf. (∗6)(i) above);
ZF = {2m ∈ Z| m ∈ Z}; AF = {2m ∈ A | m ∈ Z} (cf. (∗6)(ii) above).

(ii) Aκ is open in (Z, κ) for any subset A of (Z, κ); and Aκ = Zκ ∩ A.
(iii) Z = Zκ ∪ ZF (Zκ ∩ ZF = ∅) and A = Aκ ∪ AF (Aκ ∩ AF = ∅) for any subset A of

(Z, κ) (cf. (∗6) above).
(iv) For any subset A of (Z, κ), AF = A \ Aκ holds and AF is closed in (Z, κ); and

AF = ZF ∩ A.
(v) If E ⊂ F ⊂ Z, then Eκ ⊂ Fκ and EF ⊂ FF hold in (Z, κ).
(Proof of (∗11)) (iv). (Proof of the closedness of AF ). Let x ∈ Z \ AF .
Case 1. x = 2s + 1, where s ∈ Z: for this case, we have x ∈ Zκ (cf. (∗6)(i) above); and

so {x} ∩ AF = ∅ (cf. (iii) above). Thus, there exists an open set {x}, say Ux, containing x
such that Ux ⊂ Z \ AF .

Case 2. x = 2t, where t ∈ Z: for this case, we have x ∈ ZF and x 6∈ AF (cf. (iii) above and
(∗6)(ii) above). Hence, for the point x ∈ ZF \AF , there exists an open set {x− 1, x, x+1},
say Ux, containing x and {x− 1, x + 1} ⊂ Zκ; and so Ux ∩AF = {x− 1, x, x + 1}∩AF = ∅,
i.e., Ux ⊂ Z \ AF .
Thus, for each point x ∈ Z \AF , the subset Ux above is an open set containing x such that
Ux ⊂ Z \ AF . We have Z \ AF =

∪
{Ux|x ∈ Z \ AF} and so Z \ AF ∈ κ. Namely, AF is

closed in (Z, κ). (◦)

(II) (digital n-spaces (n ≥ 2)):
• In the final stage of the present section, we recall some structures of the digital n-space
(n ≥ 2) ([20, Definition 4]; e.g., [26, Section 3], [39], [38], [11]; for n = 2, [10], [5, Section 6],
[34, Section 5], [7, Section 7], [6], [32, Section 6]).
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Definition 3.4 ([20, Definition 4]) Let n be an integer with n ≥ 2. The digital n-space
or Khalimsky n-space is the Cartesian product of n-copies of the digital line (Z, κ). This
topological space is denoted by (Zn, κn), where Zn :=

∏n
i=1 Xi, where Xi = Z for all integers

i with 1 ≤ i ≤ n, and κn :=
∏n

i=1 τi, where τi := κ for all integers i with 1 ≤ i ≤ n. For
n = 2, (Z2, κ2) is called the digital plane or Khalimsky plane.

Since κn is the product topology of n-copies of κ, it is shown that: for a point x :=
(x1, x2, ..., xn) of (Zn, κn),
· (∗12) (a) κn-Cl({x}) =

∏n
i=1 κ-Cl({xi}); (b) κn-Int({x}) =

∏n
i=1 κ-Int({xi});

(c) κn-Ker({x}) =
∏n

i=1 κ-Ker({xi}).
(Note on (c)). Let (X, τ) :=

∏n
i=1(Xi, τi) be a product topological space of topological

spaces (Xi, τi)(1 ≤ i ≤ n). In general, for a point x := (x1, x2, ..., xn) of (X, τ), it is shown
that τ -Ker({x}) =

∏n
i=1(τi-Ker({xi})), where τ =

∏n
i=1 τi. ◦

We use the following well known property; we recall shortly the proof.

Proposition 3.5 Let x := (x1, x2, ..., xn) be a point of (Zn, κn).
(i) If all the coordinates of the point x is odd, say xi = 2si + 1 ∈ Z (si ∈ Z) for each

integer i with 1 ≤ i ≤ n, then for the point x = (2s1 + 1, 2s2 + 1, ..., 2sn + 1)
(a) κn-Cl({x})=

∏n
i=1{2si, 2si + 1, 2si + 2}.

(b) κn-Int({x})=
∏n

i=1{2si + 1} = {x}; and so the singleton {x} is open in (Zn, κn).
(c) κn-Ker({x})=

∏n
i=1{2si + 1} = {x}.

(ii) If all the coordinates of the point x is even, say xi = 2si ∈ Z (si ∈ Z) for each
integer i with 1 ≤ i ≤ n, then for the point x = (2s1, 2s2, ..., 2sn)

(a) κn-Cl({x})=
∏n

i=1{2si} = {x}; and so the singleton {x} is closed in (Zn, κn).
(b) κn-Int({x})=

∏n
i=1 ∅ = ∅.

(c) κn-Ker({x})=
∏n

i=1{2si − 1, 2si, 2si + 1} =
∏n

i=1 U(2si).
(iii) (a) A singleton {x} is closed in (Zn, κn) if and only if all the coordinates of x, say

xi(1 ≤ i ≤ n), are even.
(b) A singleton {x} is open in (Zn, κn) if and only if all the coordinates of x, say xi(1 ≤
i ≤ n), are odd.

Proof. (i) (ii) The properties are shown by (∗5) in (I), (∗12) in (II) and definitions.
(iii) (a) (Necessity) It follows from assumption that κn-Cl({x}) = {x}. Using (∗12)(a)

in (II), it is shown that κ-Cl({xi}) = {xi} for each integer i with 1 ≤ i ≤ n. Then, using
(∗6)(ii) in (I), we have that xi is even for each i with 1 ≤ i ≤ n. (Sufficiency) It is
obtained by (ii)(a) above. (iii) (b) (Necessity) By using (∗12)(b) in (II) and (∗6)(i)
in (I) above, (iii)(b) is proved. (Sufficiency) It is obtained by (i)(b) above. ¤

Example 3.6 (i) Especially, for the case where n = 2, we have the following forms of
κ2-closures of singletons: for integers s, t ∈ Z,

κ2-Cl({(2s + 1, 2t + 1)}) = {2s, 2s + 1, 2s + 2} × {2t, 2t + 1, 2t + 2};
κ2-Cl({(2s, 2t)}) = {(2s, 2t)};
κ2-Cl({(2s, 2t + 1)}) = {2s} × {2t, 2t + 1, 2t + 2};
κ2-Cl({(2s + 1, 2t)}) = {2s, 2s + 1, 2s + 2} × {2t}.
(ii) By the following figure, the closure κ2-Cl({(2s+1, 2t+1)}) is illustrated; the singleton

{(2s+1, 2t+1)} is denoted by a symbol ◦ and the closure κ2-Cl({(2s+1, 2t+1)}) contains
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the 9-points only denoted by the symbols ◦, ?, •:
• ? • 2t+2

κ2-Cl({(2s + 1, 2t + 1)})= Cl(◦)= ? ◦ ? 2t+1
• ? • 2t
2s 2s+1 2s+2

(iii) By the following figure, the closures κ2-Cl({(2s, 2t + 1)}) is illustrated:
• 2t+2

κ2-Cl({(2s, 2t + 1)})= Cl(?)= ? 2t+1
• 2t
2s

(iv) By the following figure, the closure κ2-Cl({(2s + 1, 2t)}) is illustrated:
κ2-Cl({(2s + 1, 2t)})= Cl(?)= • ? • 2t

2s 2s+1 2s+2

We give the concept of the smallest open set containing a point of (Zn, κn).

Definition 3.7 (e.g., [39, p.602], [38, p.47], [11, p.47]) For a point x := (x1, x2,
..., xn) of (Zn, κn), the following subset Un(x) is called the smallest open set containing the
point x (cf. Theorem 3.9, Definition 3.3):

Un(x) :=
∏n

i=1 U(xi), where U(xi) is the smallest open set (cf. (∗4) in (I)) in (Z, κ)
containing the i-th coordinate xi of x(1 ≤ i ≤ n).

Example 3.8 (i) For examples, in the case where n = 2 of Definition 3.7, we have the
following forms U2(x) for the following points x ∈ Z2:
U2((2s + 1, 2t + 1)) = {(2s + 1, 2t + 1)};
U2((2s, 2t)) = {2s − 1, 2s, 2s + 1} × {2t − 1, 2t, 2t + 1};
U2((2s, 2t + 1)) = {2s − 1, 2s, 2s + 1} × {2t + 1} and
U2((2s + 1, 2t)) = {2s + 1} × {2t − 1, 2t, 2t + 1}.

(ii) In the figure below, a subset U2((2s, 2t)) is illustrated; the singleton {(2s, 2t)} is
denoted by a symbol • and U2((2s, 2t)) is the set of the 9-points only denoted by the
symbols •, ◦, ?:

· · · · ·
· ◦ ? ◦ · 2t+1

U2((2s, 2t))= U2(•) = · ? • ? · 2t
· ◦ ? ◦ · 2t-1
· · · · ·

2s − 1 2s 2s + 1
(iii) In the figure below, a subset U2((2s, 2t+1)) is illustrated; the singleton {(2s, 2t+1)}

is denoted by a symbol ? and U2((2s, 2t + 1)) is the set of the 3-points only denoted by the
symbols ◦ and ?:

· · · · ·
· ◦ ? ◦ · 2t+1

U2((2s, 2t + 1))= U2(?) = · · · · · 2t
· · · · · 2t-1
· · · · ·

2s − 1 2s 2s + 1
(iv) In the figure below, a subset U2((2s+1, 2t)) is illustrated; the singleton {(2s+1, 2t)}

is denoted by a symbol ? and U2((2s + 1, 2t)) is the set of the 3-points only denoted by the
symbols ◦ and ?:
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· · · · ·
· · · ◦ · 2t+1

U2((2s + 1, 2t))= U2(?) = · · · ? · 2t
· · · ◦ · 2t-1
· · · · ·

2s − 1 2s 2s + 1

The following property is folklore, but we give its proof. The following theorem shows
the well definedness of Un(x) of Definition 3.7.

Theorem 3.9 Let x be a point of (Zn, κn) and Un(x) the subset defined by Definition 3.7.
Then, we have the following properties.

(i) x ∈ Un(x) and Un(x) ∈ κn.
(ii) If A is an open set containing the point x in (Zn, κn) such that A ⊂ Un(x), then

A = Un(x).
(iii) If G is any open set containing the point x in (Zn, κn), then Un(x) ⊂ G.

Proof. We put x := (x1, x2, ..., xn). (i) By Definition 3.7, (i) is shown.
(ii) Since x ∈ A and A ∈ κn, there exist open sets Ai ∈ κ(1 ≤ i ≤ n) such that

∏n
i=1 Ai ⊂ A

and xi ∈ Ai for each integer i with 1 ≤ i ≤ n. Since Ai is open in (Z, κ) such that xi ∈ Ai,
we have xi ∈ U(xi) ⊂ Ai for each integer i with 1 ≤ i ≤ n (cf. (∗4)(iii) in (I)); and
so Un(x) :=

∏n
i=1 U(xi) ⊂

∏n
i=1 Ai ⊂ A. Therefore, we have Un(x) ⊂ A. By using

assumption that A ⊂ Un(x), it is shown that A = Un(x) holds. (iii) Since G ∈ κn and
Un(x) ∈ κn, we see G ∩ Un(x) ∈ κn. Put A := G ∩ Un(x). Then, we have x ∈ A,A ∈ κn

and A ⊂ Un(x). By (ii) above, it is shown that A = G ∩ Un(x) = Un(x) holds. Namely,
we have Un(x) ⊂ G. ¤

Remark 3.10 Using Theorem 3.9, we can investigate topological properties of κn-Cl(A), κn-
Int(A) and κn-Ker(A), where A is a subset of (Zn, κn).

• (Some notation) In the present paper, we use the following notation (cf. Definition 3.11,
(∗20) below) for (Zn, κn)(n ≥ 2) (they are used in [39], [38], [11] for an integer n ≥ 1); cf.
(∗11) in (I) for n = 1.

Definition 3.11 ([39, Definition 2.1], [38, Section 2], [11, Section 6])
(i) The following subsets (Zn)κn , (Zn)Fn and (Zn)mix(r) of (Zn, κn) are well defined,

where r ∈ Z with 1 ≤ r ≤ n:
(i-1) (Zn)κn := {(x1, x2, ..., xn) ∈ Zn| xi is odd for each integer i with 1 ≤ i ≤ n}; by
Proposition 3.5(i)(b) in (II), it is shown that: (Zn)κn = {x ∈ Zn| {x} is open in (Zn, κn)}.
(i-2) (Zn)Fn := {(x1, x2, ..., xn) ∈ Zn| xi is even for each integer i with 1 ≤ i ≤ n}; by
Proposition 3.5(ii)(a), it is shown that: (Zn)Fn = {x ∈ Zn| {x} is closed in (Zn, κn)}.
(i-3) (Zn)mix(r) := {(x1, x2, ..., xn) ∈ Zn| #{i ∈ {1, 2, ..., n}| xi is even}= r }, where
1 ≤ r ≤ n and #A denotes the cardinality of a set A. Especially, for the case where r = n,
we note (Zn)Fn = (Zn)mix(n) holds.

(ii) For a nonempty subset E of (Zn, κn), the following subsets Eκn , EFn and Emix(r)

of (Zn, κn) are well defined, where 1 ≤ r ≤ n:
(ii-1) Eκn := E ∩ ((Zn)κn) (cf. (i-1) above);
(ii-2) EFn := E ∩ ((Zn)Fn) (cf. (i-2) above);
(ii-3) Emix(r) := E ∩ ((Zn)mix(r)) (cf. (i-3) above); we note Emix(n) = EFn .

It is well known that: for any nonempty subset E of (Zn, κn),
· (∗20) (i) Eκn = {x ∈ E | {x} is open in (Zn, κn)} ={(x1, x2, ..., xn) ∈ E | xi is odd for
each i ∈ Z with 1 ≤ i ≤ n}.
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(ii) EFn = {x ∈ E | {x} is closed in (Zn, κn)} ={(x1, x2, ..., xn) ∈ E | xi is even for
each i ∈ Z with 1 ≤ i ≤ n}.

(iii) The subset (Zn)κn and Eκn are open in (Zn, κn).
(iv) We have the following decomposition of Zn and one of a nonempty set E, respec-

tively, as follows (Note: n ≥ 2),
· Zn = (Zn)κn ∪ (Zn)Fn ∪ (

∪
{(Zn)mix(r)| 1 ≤ r ≤ n − 1}) (disjoint union);

· E = Eκn ∪ EFn ∪ (
∪
{Emix(r)| 1 ≤ r ≤ n − 1}) (disjoint union).

(Note: in the above decomposition of Zn (resp. E), we should take (Zn)mix(r) (resp. Emix(r))
with 1 ≤ r ≤ n − 1.)

(v) Especially, for n = 2 and r = 1, Emix(1) = {(x1, x2) ∈ E | x1 is even and x2 is odd}
∪{(x1, x2) ∈ E | x1 is odd and x2 is even}; we have the following decompositions:
· Z2 = (Z2)κ2 ∪ (Z2)F2 ∪ (Z2)mix(1) (disjoint union) and E = Eκ2 ∪EF2 ∪Emix(1) (disjoint
union).

(vi) If E ⊂ F ⊂ Zn, then Eκn ⊂ Fκn , EFn ⊂ FFn and Emix(r) ⊂ Fmix(r)(1 ≤ r ≤ n−1)
hold in (Zn, κn).

In Section 4, we need the following property Theorem 3.12 (cf. Theorem 4.9, Corollary 4.10
below).

Theorem 3.12 ([39, Lemma 2.3]) Let x = (x1, x2, ..., xn) ∈ (Zn)mix(a′) and y = (y1, y2, ...,
yn) ∈ (Zn)mix(a), where a′ and a are integers such that a′ ≤ a, 1 ≤ a′ ≤ n and 1 ≤ a ≤ n.

Suppose that Un(x)∩Un(y) contains exactly the 2a′
open singletons, say {q(1), q(2), ..., q(2a′

)}.
Then, the following properties holds.

(i) {q(1), q(2), ..., q(2a′
)} = (Un(x))κn = (Un(x) ∩ Un(y))κn ⊆ (Un(y))κn .

(ii) {i| xi is even (1 ≤ i ≤ n)} ⊆ {i| yi is even (1 ≤ i ≤ n)}.
(ii)’ If a′ = a especially, then {i| xi is even (1 ≤ i ≤ n)} = {i| yi is even (1 ≤ i ≤ n)}.
(iii) x ∈ Un(y) holds.
(iii)’ If a′ = a especially, then x = y.

4 ω-closed sets in Sundaram-Sheik John’s sense and Λs-sets in (Zn, κn) In
the present section, we investigate the concept of ω-closed sets (in Sundaram-Sheik John’s
sense) in (Zn, κn) and we give a characterization of the ω-closedness in the digital n-spaces
(cf. Theorem 4.6). In (Zn, κn), we first give an example of a Λs-set, say B(n), where
n ≥ 2, (cf. Definition 2.3, Example 4.2) which is not ω-closed (in Sundaram-Sheik John’s
sense) (cf. Example 4.2(ii-1)); this example informs us general properties on (Zn, κn) (cf.
Theorem 4.5). In order to explain the example, we prove the following proposition. We use
the notations of Definition 3.11 and (II)(∗20) etc in Section 3, i.e., some notation and well
known properties in (Zn, κn).

Proposition 4.1 Let V be an open set of (Zn, κn).
(i) If n ≥ 2, then VFn ∪ (

∪
{Vmix(r)| 1 ≤ r ≤ n − 1}) ⊂ Cl(Vκn).

(ii) If n = 1, then VFn ⊂ Cl(Vκn).

Proof. (i) Let y ∈ VFn∪(
∪
{Vmix(r)| 1 ≤ r ≤ n− 1}) (cf. Definition 3.11(ii), (II)(∗20) etc in

Section 3 above). Since y ∈ V and V is open in (Zn, κn), there exists the smallest open set
Un(y) (cf. Definition 3.7) containing y such that
(∗1) Un(y) ⊂ V (cf. Theorem 3.9(iii)) and so (Un(y))κn ⊂ Vκn (cf. Definition 3.11(ii)(ii-1),
(II)(∗20)(vi) above).
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Case 1. y ∈ VFn , i.e., y = (2s1, 2s2, ..., 2sn) and y ∈ V , where si ∈ Z (1 ≤ i ≤ n)
(cf. Definition 3.11(ii)(ii-2)): since Un(y) =

∏n
i=1{2si − 1, 2si, 2si + 1} for this point y ,

we have
∏n

i=1{2si − 1, 2si, 2si + 1} ⊂ V (cf. Definition 3.7, Theorem 3.9(iii) and (I)(∗4)
in Section 3). We pick a point p(y) := (2s1 + 1, 2s2 + 1, ..., 2sn + 1) ∈ (Un(y))κn and so
p(y) ∈ Vκn (cf. Proposition 3.5(iii)(b)). Then, since Cl({p(y)}) =

∏n
i=1{2si, 2si +1, 2si +2}

(cf. Proposition 3.5(i)(a)), we have y = (2s1, 2s2, ..., 2sn) ∈ Cl({p(y)}) ⊂ Cl(Vκn). It is
proved that VFn ⊂ Cl(Vκn). We note that the above proof is done for the case where n ≥ 1
(cf. (I)(∗1), (∗4), (∗11)(v) in Section3).

Case 2. y ∈ Vmix(r), where 1 ≤ r ≤ n − 1 (n ≥ 2) (cf. Definition 3.11(ii)(ii-3)): for
this point y, we set y = (y1, y2, ..., yn); then by definition, r = #{i | yi is an even integer
(1 ≤ i ≤ n)}. We put Ir := {i | yi is even } = {e(1), e(2), ..., e(r)}
(e(1) < e(2) < ... < e(r)) and Jn−r := {j | yj is odd } = {o(1), o(2), ..., o(n − r)} (o(1) <
o(2) < ... < o(n − r)); then {1, 2, ..., n} = Ir ∪ Jn−r (disjoint union). For the present case,
we claim that y ∈ Cl(Vκn). Indeed, we recall that:
(∗2) Un(y) =

∏n
i=1 U(yi), where U(ye) := {ye − 1, ye, ye + 1} if e ∈ Ir; and U(yo) := {yo}

if o ∈ Jn−r (cf. (I)(∗4) in Section 3, Definition 3.7).
For this point y ∈ Vmix(r) (1 ≤ r ≤ n − 1 and n ≥ 2), we pick a point p(y) ∈ Un(y) such
that p(y) ∈ (Un(y))κn as follows:
(∗3) let p(y) := (p1, p2, ..., pn), where pe := ye − 1 if e ∈ Ir; po := yo if o ∈ Jn−r.
Then by (∗2) and (∗3) above, it is shown that the components of the point p(y) are odd
and so (∗4) p(y) ∈ (Un(y))κn , because the components have the forms of ye − 1 ∈ U(ye)
or yo ∈ U(yo).
Thus, using (∗1), (∗4) above and (II)(∗20)(vi) above, we see that p(y) ∈ Vκn ; and so
(∗5) Cl({p(y)}) ⊂Cl(Vκn).
We note that : Cl({p(y)}) =Cl({(p1, p2, ..., pn)}) =

∏n
i=1Cl({pi}) in (Zn, κn), where Cl({pe})

= {pe−1, pe, pe+1} = {ye−2, ye−1, ye} if e ∈ Ir; and Cl({po}) = {po−1, po, po+1} = {yo−
1, yo, yo+1} if o ∈ Jn−r (cf. Proposition 3.5). Thus, we have y = (y1, y2, ..., yn) ∈Cl({p(y)}).
Moreover, using (∗5) above, we conclude that y ∈Cl(Vκn) for a point y ∈ Vmix(r). Namely,
it is proved that Vmix(r) ⊂Cl(Vκn) for each r with 1 ≤ r ≤ n − 1 (n ≥ 2).

Therefore we have the required inclusion: VFn ∪ (
∪
{Vmix(r)| 1 ≤ r ≤ n − 1}) ⊂Cl(Vκn)

.
(ii) For the case where n = 1, we may consider the case 1 only of the proof of (i) above;

the proof is omitted (cf. (I)(∗1), (∗4), (∗11)(v) in Section3). ¤

Example 4.2 Throughout the present example, let B(n) := (Zn)Fn ∪ {x(1), x(2), ... ,
x(s)} be an infinite subset of (Zn, κn), where n ≥ 1 and s is a positive integer, {x(j)} is
an open singleton of (Zn, κn) for each integer j with 1 ≤ j ≤ s. We have the following
properties on the subset B(n): namely,

(i) B(n) is a Λs-set of (Zn, κn) for each n ≥ 1 (cf. Proof of (i) below and Definition 2.3).
(ii) (ii-1) If n ≥ 2, then B(n) is not an ω-closed set (in Sundaram-Sheik John’s sense)

of (Zn, κn) (cf. Proof of (ii-1) below and Definition 2.1);
(ii-2) For n = 1, B(n) is a closed set of (Z, κ) and so it is an ω-closed set (in Sundaram-

Sheik John’s sense) in (Z, κ) (cf. Proof of (ii-2) below and Definition 2.1).
(iii) Let A be a subset of (Zn, κn) such that B(n) ⊂ A ⊂ Cl(B(n)). Then, A is not

semi-open in (Zn, κn).
For the case where n = 2, the following figure illustrates the subset B = (Z2)F2 ∪

{x(1), x(2)} in (Z2, κ2); each symbol • means a point in (Z2)F2 and two symbols ◦ mean
x(1) = (1, 1) and x(2) = (3, 1) respectively.
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Z
↑

· · · · · · · · ·
· · · • · • · • · • · • · • · • · • · · · ·
· · · · · · · · · · · · ◦ · ◦ · · · · · · ·
· · · • · • · • · • · • · • · • · • · → Z
· · · · · · · · · · · · · · · · · · · · · ·
· · · • · • · • · • · • · • · • · • · · · ·
· · · · · · · · ·

In order to prove (i) above, we need the following property (∗∗):
(∗∗) Suppose n ≥ 1. Let F1(n) := B(n) ∪ E1(n) and F2(n) := B(n) ∪ E2(n), where

E1(n) = {(s1, s2, ..., sn) ∈ Zn | si ≡ 1 mod 4 (1 ≤ i ≤ n)} and E2(n) := {(s1, s2, ..., sn) ∈
Zn| sj ≡ 3 mod 4 (1 ≤ j ≤ n)}. Then, E1(n) ∩ E2(n) = ∅ holds and F1(n) and F2(n) are
semi-open sets including B(n) such that F1(n) ∩ F2(n) = B(n).

Proof of (∗∗). We first recall the following expressions of (Zn)Fn := {(x1, x2, ..., xn)| xi

is even (1 ≤ i ≤ n)} as follows:
(∗1) (Zn)Fn=

∪
{
∏n

i=1{xi}| xi is even (1 ≤ i ≤ n)}=
∪
{
∏n

i=1{si−1, si +1}|(s1, s2, ..., sn) ∈
Zn, si ≡ 1 mod 4 (1 ≤ i ≤ n)}; and
(∗1)′ (Zn)Fn=

∪
{
∏n

i=1{si − 1, si + 1}|(s1, s2, ..., sn) ∈ Zn, si ≡ 3 mod 4 (1 ≤ i ≤ n)}.
We secondly claim that

(∗2) Cl(Ei(n)) ⊃ (Zn)Fn ∪ Ei(n) for each i ∈ {1, 2}.
Indeed, we have Cl(E1(n)) =Cl(

∪
{
∏n

i=1{si}| (s1, s2, ..., sn) ∈ Zn, si ≡ 1 mod 4 (1 ≤ i ≤
n)}) ⊃

∪
{Cl(

∏n
i=1{si})| (s1, s2, ..., sn) ∈ Zn, si ≡ 1 mod 4 (1 ≤ i ≤ n)} =

∪
{
∏n

i=1Cl({si})|
(s1, s2, ..., sn) ∈ Zn, si ≡ 1 mod 4 (1 ≤ i ≤ n)}=

∪
{
∏n

i=1{si−1, si, si +1}| (s1, s2, ..., sn) ∈
Zn, si ≡ 1 mod 4 (1 ≤ i ≤ n)} ⊃

∪
{
∏n

i=1{si − 1, si + 1}| (s1, s2, ..., sn) ∈ Zn, si ≡ 1 mod
4 (1 ≤ i ≤ n)}=(Zn)Fn (cf. (∗1) above, (I)(∗5)(i) in Section 3) and Cl(E1(n)) ⊃ E1(n).
Hence, we have Cl(E1(n)) ⊃ (Zn)Fn ∪E1(n). In the same way, using (∗1)′ in place of (∗1),
we have Cl(E2(n)) ⊃ (Zn)Fn ∪ E2(n). Moreover, we claim that
(∗3) Fi(n) is semi-open in (Zn, κn) for each i ∈ {1, 2}.
Indeed, by using (∗2) and definitions, it is shown that, for each i ∈ {1, 2}, Cl (Int(Fi(n))) ⊃Cl
(Int((B(n))κn∪Ei(n)))= Cl((B(n))κn∪Ei(n)) ⊃ (B(n))κn∪Cl(Ei(n)) ⊃ {x(1), x(2), ..., x(s)
} ∪ ((Zn)Fn ∪ Ei(n)) = B(n) ∪ Ei(n) = Fi(n). Namely, Fi(n) is semi-open in (Zn, κn) for
each i ∈ {1, 2}.

Finally, (∗4) F1(n) ∩ F2(n) = B(n) ∪ (E1(n) ∩ E2(n)) = B(n) hold, because E1(n) ∩
E2(n) = ∅. (◦)

Proof of (i). We first claim that sKer(B(n)) ⊂ B(n). Indeed, we recall (∗∗) above
and so F1(n) and F2(n) are semi-open sets in (Zn, κn)(n ≥ 1) such that B(n) ⊂ Fi(n)
for each i ∈ {1, 2}. Thus, by definitions, it is shown that sKer(B(n)) ⊂ F1(n) ∩ F2(n) (cf.
Definition 2.2(i)); and so sKer(B(n)) ⊂ B(n), because F1(n)∩F2(n) = B(n) (cf. (∗∗) above).
This concludes that sKer(B(n)) = B(n), because B(n) ⊂ sKer(B(n)) holds. Namely, B(n)
is a Λs-set of (Zn, κn), where n ≥ 1.

Proof of (ii)(ii-1). Suppose n ≥ 2. We first show that:
(∗5) (Cl(B(n)))mix(r) 6= ∅, for each integer r with 1 ≤ r ≤ n − 1. Indeed, since
Cl(B(n)) = Cl((Zn)Fn) ∪ (

∪
{(Cl({x(i)}))|1 ≤ i ≤ s}), it is shown that (Cl(B(n)))mix(r) ⊃

(Cl({x(1)}))mix(r) (cf. (II)(∗20) in Section 3). We can put x(1) := (t1, t2, ..., tn), where tj
is odd for each j with 1 ≤ j ≤ n, because x(1) ∈ (Zn)κn (cf. Definition 3.11(i)(i-1)). Then,
we show Cl({x(1)}) =

∏n
j=1 Cl({tj}) =

∏n
j=1{tj − 1, tj , tj + 1} (cf. Proposition 3.5(i)(a))

and so
(Cl({x(1)}))mix(r) 6= ∅ for each integer r with 1 ≤ r ≤ n − 1, because we can take a point
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p := (p1, p2, ..., pn), where pj := tj − 1 is even for each j with 1 ≤ j ≤ r and pj := tj is odd
for each j with r + 1 ≤ j ≤ n; and hence p ∈ (Cl({x(1)}))mix(r) (cf. Definition 3.11(i)(i-3))
and so p ∈ (Cl(B(n)))mix(r) (cf. (II)(∗20) in Section 3). Thus, we prove the property (∗5).

We secondly have the following property: (∗6) Cl(B(n)) 6⊂ F1(n) holds.
Indeed, for a contradiction, we suppose Cl(B(n)) ⊂ F1(n); then (Cl(B(n)))mix(r)

⊂ (F1(n))mix(r) and so (Cl(B(n)))mix(r) = ∅ because of (F1(n))mix(r) = ∅ for each integer
r with 1 ≤ r ≤ n − 1. This contradicts (∗5) above.

For a contradiction, we finally suppose that B(n) is ω-closed in Sundaram-Sheik John’s
sense, i.e., Cl(B(n)) ⊂sKer(B(n)) (cf. Theorem 2.5). Then, using (∗∗) above, we have
sKer(B(n)) ⊂ F1(n) and so Cl(B(n)) ⊂ F1(n); this contradicts (∗6) above. Therefore,
B(n) is not ω-closed (in Sundaram-Sheik John’s sense) in (Zn, κn), where n ≥ 2.

Proof of (ii)(ii-2) Suppose n = 1. First, it is shown that B(n) = B(1) is closed in
Zn, where n = 1. Indeed, we have Z \ B(1) = Zκ \ {x(j)|1 ≤ j ≤ s} and so Z \ B(1) =∪
{{z}|z ∈ Zκ and z 6∈ {x(j)|1 ≤ j ≤ s}}, i.e., Z\B(1) is the union of some open singletons

{z}, and hence Z \ B(1) ∈ κ (cf. Definition 3.1). Thus, the set B(1) is closed and so it is
ω-closed in Sundaram-Sheik John’s sense.

Proof of (iii). For a contradiction, we suppose that A is semi-open in (Zn, κn). Then,
there exists an open set V such that V ⊂ A ⊂ Cl(V ) and so V ⊂ Cl(B(n)). First we claim
that: (∗7) Cl(V ) ⊂Cl(Vκn) holds for each n ≥ 1.
Proof of (∗7). Case (I). n ≥ 2: for this case, we have V = Vκn ∪VFn ∪ (

∪
{Vmix(r)| 1 ≤ r ≤

n−1}) (cf. (II)(∗20)(iv) in Section 3). Since V is open, by Proposition 4.1(i), it is shown that
Cl(V ) = Cl(Vκn)∪Cl(VFn∪(

∪
{Vmix(r)| 1 ≤ r ≤ n−1})) ⊂ Cl(Vκn)∪Cl(Cl(Vκn)) = Cl(Vκn);

and so Cl(V ) ⊂Cl(Vκn).
Case (II). n = 1: for this case, we have V = Vκ ∪ VF (cf. (I)(∗11)(iii) in Section 3). Since
V is open, by Proposition 4.1(ii), it is shown that
Cl(V ) = Cl(Vκ) ∪ Cl(VF ) ⊂ Cl(Vκ) ∪ Cl(Cl(Vκ)) = Cl(Vκ); and so Cl(V ) ⊂Cl(Vκ). (◦)

We proceed the proof of (iii). We put Vκn := {p(k) ∈ V | {p(k)} ∈ κn, k ∈ ν}, where
ν ⊂ Z is an index set (cf. Definition 3.11(i)(i-1)). Since p(k) ∈ Vκn ⊂ V ⊂ Cl(B(n)) and
so p(k) ∈Cl(B(n)), it is shown that {p(k)} ∩ B(n) 6= ∅ and so p(k) ∈ B(n) for each k ∈ ν.
Namely, we have:
(∗8) Vκn ⊂ (B(n))κn (cf. Definition 3.11(i)(i-1),(ii)(ii-1) and (I)(∗11)(v), (II)
(∗20)(vi)). Then, using (∗7) and (∗8) above, we conclude that Cl(V ) ⊂ Cl(Vκn) ⊂ Cl((B(n)
)κn)=Cl({x(1), x(2), ..., x(s)}) =

∪
{Cl({x(j)})|1 ≤ j ≤ s}; and hence Cl(V ) is a finite subset

of (Zn, κn), because Cl({y}) is a finite subset of Z for every point y ∈ Z (cf. (I)(∗5)(i) in
Section 3) and so Cl({x(j)}) is a finite subset of Zn for each j with 1 ≤ j ≤ s (cf. (II)(∗12)(a)
in Section 3). Therefore, we have A is a finite subset of (Zn, κn), because of V ⊂ A ⊂Cl(V );
and so B(n) is also finite, because of B(n) ⊂ A; this contradicts the definition of the set
B(n) (i.e., B(n) is not finite). Therefore, A is not semi-open in (Z, κ).

In order to state Theorem 4.4, we need the following definition on Ir(x) and Jn−r(x), where
x ∈ Zn.

Definition 4.3 (cf. Definition 3.11(i)(i-3),(II)(∗20)(iv) in Section 3; [39, Definiton 2.1(ii)])
Let x := (x1, x2, ..., xn) ∈ (Zn)mix(r), where n ≥ 2 and r is the cardinality of a set {k| xk is
even} with 1 ≤ r ≤ n − 1 (cf. Definition 3.11(i-3),(II)(∗20)(iv) in Section 3; in the present
definition, we note the assumption that 1 ≤ r ≤ n−1 and n ≥ 2; and so (Zn)mix(r) 6= ∅). Let
xe(1), xe(2), ..., xe(r) be all the components of x which are even; and xo(1), xo(2), ..., xo(n−r)

be all the components of x which are odd, where e(k)(1 ≤ k ≤ r) and o(j)(1 ≤ j ≤ n − r)
are positive integers with 1 ≤ e(1) < e(2) < ... < e(r) ≤ n and 1 ≤ o(1) < o(2) < ... <
o(n− r) ≤ n. Then, for this point x = (x1, x2, ..., xn), we define the following subsets Ir(x)
and Jn−r(x) of {1, 2, ..., n} as follows:
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• Ir(x) := {k| xk is even}; and so Ir(x) = {e(1), e(2), ..., e(r)} holds;
• Jn−r(x) := {j| xj is odd}; and so
Jn−r(x) = {o(1), o(2), ..., o(n − r)}, {1, 2, ..., n} = Ir(x) ∪ Jn−r(x) (Ir(x) ∩ Jn−r(x) =
∅), Ir(x) 6= ∅ and Jn−r(x) 6= ∅ hold, where n ≥ 2 and 1 ≤ r ≤ n − 1.

We construct some semi-open sets containing a point of (Zn, κn) where n ≥ 1.

Theorem 4.4 Let x := (x1, x2, ..., xn) ∈ Zn.
(i) Suppose n ≥ 1. If x ∈ (Zn)κn ,i.e., all the components x1, x2, ..., xn of the point x are

odd (cf. Definition 3.11(i)(i-1)), then {x} is a semi-open set containing x in (Zn, κn).
(ii) Suppose n ≥ 1 and x := (x1, x2, ..., xn) ∈ (Zn)Fn , i.e., all the components x1, x2, ..., xn

of the point x are even (cf. Definition 3.11(i)(i-2)). Then, we have the following properties.
(ii-1) We set A(x) := {(x1 + i1, x2 + i2, ..., xn + in) ∈ Zn|ik ∈ {+1,−1}(1 ≤ k ≤ n)} for

the point x = (x1, x2, ..., xn) ∈ (Zn)Fn . Then, #A(x) = 2n holds. And, for each point of
A(x), say p(x, u)(1 ≤ u ≤ 2n), the singleton {p(x, u)} is open in (Zn, κn).

(ii-2) In (Zn, κn), {p(x, u)|1 ≤ u ≤ 2n} = (Un(x))κn holds, where Un(x) is the smallest
open set (cf. Definition 3.7,Theorem 3.9) containing the point x ∈ (Zn)Fn .

(ii-3) The subset {x} ∪ {p(x, u)} is a semi-open set containing the point x ∈ (Zn)Fn for
each u with 1 ≤ u ≤ 2n.

(iii) Suppose n ≥ 2 and x := (x1, x2, ..., xn) ∈ (Zn)mix(r) where 1 ≤ r ≤ n − 1 (cf.
Definition 3.11(i)(i-3),(II)(∗20)(iv) in Section 3). Let Ir(x) = {e(1), e(2),
..., e(r)} and Jn−r(x) = {o(1), o(2), ..., o(n − r)} (cf. Definition 4.3). Then, we have the
following properties.

(iii-1) We set B(x) := {(z1, z2, ..., zn) ∈ Zn| ze(k) ∈ {xe(k) − 1, xe(k) + 1} (1 ≤ k ≤
r), zo(j) = xo(j) (1 ≤ j ≤ n − r)} for the point x = (x1, x2, ..., xn) ∈ (Zn)mix(r). Then,
#B(x) = 2r. And, for each point of B(x), say p(x, u)(1 ≤ u ≤ 2r), the singleton {p(x, u)}
is open in (Zn, κn).

(iii-2) In (Zn, κn), {p(x, u)|1 ≤ u ≤ 2r} = (Un(x))κn holds, where Un(x) is the smallest
open set containing the point x ∈ (Zn)mix(r).

(iii-3) The subset {x} ∪ {p(x, u)} is a semi-open set containing the point x ∈ (Zn)mix(r)

for each u with 1 ≤ u ≤ 2r.

Proof. (i) For the point x ∈ (Zn)κn , the singleton {x} is open in (Zn, κn) (cf. Proposi-
tion 3.5(iii)(b)) ; and so it is semi-open.

(ii) (ii-1) Obviously, the cardinality of A(x) is 2n. The point p(x, u), where 1 ≤ u ≤ 2n,
is expressible as p(x, u) = (x1 + i1, x2 + i2, ..., xn + in) for some integers ik ∈ {+1,−1}(1 ≤
k ≤ n) and so all the components of p(x, u) are odd, because all the components x1, x2, ..., xn

are even. Thus, {p(x, u)} is open in (Zn, κn) (cf. Proposition 3.5(iii)(b)).
(ii-2) For the point x ∈ (Zn)Fn , we set x = (2s1, 2s2, ..., 2sn) for some integers si(1 ≤

i ≤ n). Then, Un(x) =
∏n

i=1 U(2si) =
∏n

i=1{2si − 1, 2si, 2si + 1} is the smallest open
set containing x (cf. Definition 3.7 and (I)(∗4)(i) in Section 3). Since (Un(x))κn = {z ∈
Un(x)|{z} is open in (Zn, κn)} = {(z1, z2, ..., zn) ∈

∏n
i=1{2si − 1, 2si, 2si + 1}|z1, z2, ..., zn

are odd }, we have (Un(x))κn = {(2s1 + i1, 2s2 + i2, ..., 2sn + in) ∈ Zn|ik ∈ {+1,−1}(1 ≤
k ≤ n)} = A(x); and so we have (Un(x))κn = {p(x, u)|1 ≤ u ≤ 2n} (cf. Definition 3.11(i)(i-
1),(ii)(ii-1) and (ii-1) above).

(ii-3) We first claim that x ∈Cl({p(x, u)}) for each u with 1 ≤ u ≤ 2n. Indeed, we have
Cl({p(x, u)}) =

∏n
k=1 Cl({xk +ik}) =

∏n
k=1{xk +ik−1, xk +ik, xk +ik +1} (cf. (II)(∗12)(a)

in Section 3, Proposition 3.5(i)(a)); and so x = (x1, x2, ..., xn) ∈
∏n

k=1 Cl({xk + ik}) =
Cl({p(x, u)}). Thus, we show that {x}∪{p(x, u)} ⊂Cl({p(x, u)}) =Cl(Int({p(x, u)})) ⊂Cl(Int
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({x}∪{p(x, u)})) (cf. (ii-1) above), i.e., {x}∪{p(x, u)} ⊂ Cl(Int({x}∪{p(x, u)})). Namely,
{x} ∪ {p(x, u)} is semi-open in (Zn, κn) for each u with 1 ≤ u ≤ 2n.

(iii) (iii-1) By the definition of B(x), it is obviously shown that #B(x) = 2r. A point
p(x, u) of B(x) is expressible as p(x, u) = (z(u)1, z(u)2, ..., z(u)n), where z(u)e(k) ∈ {xe(k) −
1, xe(k) + 1} (1 ≤ k ≤ r) and z(u)o(j) = xo(j) (1 ≤ j ≤ n − r). We recall that the r compo-
nents xe(1), xe(2), ..., xe(r) are all even and the n−r components xo(1), xo(2), ..., xo(n−r) are all
odd, because we assume that x = (x1, x2, ..., xn) ∈ (Zn)mix(r) where 1 ≤ r ≤ n − 1(n ≥ 2)
and Ir(x) := {k| xk is even}={e(1), e(2), ..., e(r)} (e(1) < e(2) < ... < e(r)); and
Jn−r(x) := {j|xj is odd }= {o(1), o(2), ..., o(n−r)} (o(1) < o(2) < ... < o(n−r)) (cf. Defini-
tion 3.11(i)(i-3),(II)(∗20)(iv) in Section 3 and Definition 4.3 above). Then, since the integers
xe(k) − 1, xe(k) + 1 and xo(j) are odd, all the components z(u)1, z(u)2, ..., z(u)n are odd for
each u with 1 ≤ u ≤ 2r. We have that the singleton {p(x, u)} = {(z(u)1, z(u)2, ..., z(u)n)}
is open in (Zn, κn) (cf. Proposition 3.5(iii)(b)).

(iii-2) We recall that, for this point x ∈ (Zn)mix(r), Un(x) =
∏n

i=1 U(xi), where
U(xe(k)) = {xe(k) −1, xe(k), xe(k) +1}(1 ≤ k ≤ r) and U(xo(j)) = {xo(j)}(1 ≤ j ≤ n− r) (cf.
Definition 4.3,Definition 3.7,(I)(∗4)(i)(ii) in Section 3). Thus, we have that (z1, z2, ..., zn) ∈
(Un(x))κn if and only if ze(k) ∈ {xe(k) − 1, xe(k) +1} and zo(j) = xo(j) for integers k, j with
1 ≤ k ≤ r and 1 ≤ j ≤ n − r (cf. Proposition 3.5(iii)(b), Definition 4.3). Namely, we have
(Un(x))κn = B(x) for the point x ∈ (Zn)mix(r) and so (Un(x))κn = {p(x, u)|1 ≤ u ≤ 2r}
(cf. (iii-1) above).

(iii-3) We first claim that (∗) {x} ∪ {p(x, u)} ⊂Cl({p(x, u)}) holds in (Zn, κn) for each
u with 1 ≤ u ≤ 2r. Indeed, for the point p(x, u), we set p(x, u) := (z(u)1, z(u)2, ..., z(u)n)
(cf. (iii-1) above). Then, for each positive integers k, j with 1 ≤ k ≤ r and 1 ≤ j ≤ n − r,
it is shown that: in (Z, κ),
if z(u)e(k) = xe(k) − 1, then Cl({z(u)e(k)}) = {xe(k) − 2, xe(k) − 1, xe(k)} holds;
if z(u)e(k) = xe(k) + 1, then Cl({z(u)e(k)}) = {xe(k), xe(k) + 1, xe(k) + 2} holds;
if z(u)o(j) = xo(j), then Cl({z(u)o(j)}) = {xo(j) − 1, xo(j), xo(j) + 1} holds, (cf. (I)(∗5)(i) in
Section 3). Thus, we show that xe(k) ∈Cl({z(u)e(k)}) and xo(j) ∈Cl({z(u)o(j)}) (1 ≤ k ≤ r
and 1 ≤ j ≤ n− r); and so {x} ⊂

∏n
i=1Cl({z(u)i}) holds in (Zn, κn). Since Cl({p(x, u)}) =∏n

i=1 Cl({z(u)i}) in (Zn, κn) (cf. (II)(∗12) in Section 3), we show that {x} ⊂Cl({p(x, u)})
and {x} ∪ {p(x, u)} ⊂
Cl({p(x, u)}) hold in (Zn, κn).

We finally finish the proof of (iii-3): there exists an open set {p(x, u)} such that
{p(x, u)} ⊂ {x} ∪ {p(x, u)} ⊂Cl({p(x, u)}), i.e., {x} ∪ {p(x, u)} is a semi-open in (Zn, κn)
for each u with 1 ≤ u ≤ 2r. ¤

Theorem 4.5 For the digital n-space (Zn, κn) where n ≥ 1, we have the following proper-
ties.

(i) For any point x of (Zn, κn), sKer({x}) = {x}.
(ii) For any subset E of (Zn, κn), sKer(E) = E.

Proof. (i) We first note that: for the case where n = 1,
· Zn = (Zn)κn ∪ (Zn)Fn (disjoint union) holds, where n = 1 (cf. (I)(∗11)(iii) in Section 3);
for the case where n ≥ 2,
· Zn = (Zn)κn ∪ (Zn)Fn ∪ (

∪
{(Zn)mix(r)|1 ≤ r ≤ n− 1}) (disjoint union) and (Zn)mix(r) 6=

∅(1 ≤ r ≤ n − 1) hold, where n ≥ 2 (cf. Definition 3.11, (II)(∗20)(iv) in Section 3).
Let x ∈ Zn. It is enough to consider the following three cases for the point x ∈ Zn.

Case 1. x ∈ (Zn)κn (cf. Definition 3.11(i)(i-1)): since {x} is open in (Zn, κn), it is semi-
open. Then, it is obvious that sKer({x}) = {x} in (Zn, κn) (cf. Definition 2.2(i)). We note
this result is true for the case where n ≥ 1.
Case 2. x ∈ (Zn)Fn (cf. Definition 3.11(i)(i-2)): we put x = (2s1, 2s2, ..., 2sn) where
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si ∈ Z (1 ≤ i ≤ n). Note that, for the point x ∈ (Zn)Fn , Un(x) :=
∏n

i=1{2si−1, 2si, 2si+1}
is the smallest open set containing x (cf. Definition 3.7,(I)(∗4)(i) in Section 3,Theorem 3.9).
Then, by Theorem 4.4(ii), there exist 2n semi-open sets {x} ∪ {p(x, u)}(1 ≤ u ≤ 2n)
containing the point x ∈ (Zn)Fn such that {p(x, u)|1 ≤ u ≤ 2n} = (Un(x))κn ={(2s1 +
i1, 2s2 + i2, ..., 2sn + in)|ik ∈ {+1,−1}(1 ≤ k ≤ n)} and #((Un(x))κn) = 2n. Thus, we have
sKer({x}) ⊂

∩
{{x} ∪ {p(x, u)}| 1 ≤ u ≤ 2n}; moreover,

∩
{{x} ∪ {p(x, u)}| 1 ≤ u ≤ 2n} =

{x}, because
∩
{{p(x, u)}| 1 ≤ u ≤ 2n} = ∅. We conclude that sKer({x}) = {x} holds for

this case. We note the result above is true for the case where n ≥ 1.
Case 3. x ∈ (Zn)mix(r) where 1 ≤ r ≤ n − 1(n ≥ 2) (cf. Definition 3.11(i)(i-3)): for
this point x, we set x = (x1, x2, ..., xn); then by definition, r = #{i| xi is an even integer
(1 ≤ i ≤ n)}. We recall the following subsets Ir(x) and Jn−r(x) as follows (cf. Definition 4.3
above):
Ir(x) := {k| xk is even}={e(1), e(2), ..., e(r)} (e(1) < e(2) < ... < e(r)); and
Jn−r(x) := {j|xj is odd }= {o(1), o(2), ..., o(n − r)} (o(1) < o(2) < ... < o(n − r)); and
{1, 2, ..., n} = Ir(x) ∪ Jn−r(x) (disjoint union), Ir(x) 6= ∅, Jn−r(x) 6= ∅.
For the point x ∈ (Zn)mix(r), U

n(x) =
∏n

i=1 U(xi) is the smallest open set containing x,
where U(xe(k)) = {xe(k)−1, xe(k), xe(k) +1}(1 ≤ k ≤ r) and U(xo(j)) = {xo(j)}(1 ≤ j ≤ n−
r) (cf. Definition 3.7,(I)(∗4) in Section 3,Theorem 3.9). Then, using Theorem 4.4(iii), there
exist the 2r semi-open sets {x} ∪ {p(x, u)}(1 ≤ u ≤ 2r) containing the point x ∈ (Zn)mix(r)

such that {p(x, u)|1 ≤ u ≤ 2r} = (Un(x))κn ={(z1, z2, ..., zn)|ze(k) ∈ {xe(k) + 1, xe(k) −
1}(1 ≤ k ≤ r), zo(j) = xo(j)(1 ≤ j ≤ n− r)} and #((Un(x))κn) = 2r. Thus, it is shown that
sKer({x}) ⊂

∩
{{x} ∪ {p(x, u)}| 1 ≤ u ≤ 2r} = {x} ∪ (

∩
{{p(x, u)}| 1 ≤ u ≤ 2r}) = {x},

because
∩
{{p(x, u)}| 1 ≤ u ≤ 2r} = ∅. Then, we show that sKer({x}) = {x} holds for this

case.
Therefore, for all cases above, we have proved that sKer({x}) = {x} holds in (Zn, κn),

n ≥ 1.
(ii) Since E =

∪
{{x}|x ∈ E}, by Proposition 2.4(i.e., [4, Proposition 3.1]) and (i), it is

shown that sKer(E) =
∪
{sKer({x})|x ∈ E} =

∪
{{x}|x ∈ E} = E. ¤

The following result is a characterization of the ω-closed sets in Sundaram-Sheik John’s
sense of (Zn, κn).

Theorem 4.6 For a subset A of (Zn, κn), where n ≥ 1, A is closed in (Zn, κn) if and only
if A is an ω-closed set in Sundaram-Sheik John’s sense of (Zn, κn).

Proof. By Theorem 2.5, it is obtained that a subset A is an ω-closed in Sundaram-Sheik
John’s sense of (Zn, κn) if and only if Cl(A) ⊂sKer(A). Then, by Theorem 4.5 (ii), it is well
known that A=sKer(A) holds. Thus, A is ω-closed in Sundaram-Sheik John’s sense if and
only if Cl(A) ⊂ A (i.e., A is closed in (Zn, κn)). ¤

Remark 4.7 (i) Every subset of (Zn, κn) is a Λs-set in (Zn, κn). Indeed, let E be a subset
of (Zn, κn). By Theorem 4.5 (ii) and Definition 2.3, it is shown that E=sKer(E) holds, i.e.,
E is a Λs-set of (Zn, κn).

(ii) By (i) and Proposition 2.6, it is obtained that (Zn, κn) is a semi-T1 topological
space. However, we note that, in 2004, S.I. Nada [30, Theorem 4.2, Theorem 4.1] proved
that (Zn, κn) is semi-T2; the proof is very elegantly done, using the semi-T2 separation
property of (Z, κ) and the product topology of κ; and hence their product space (Zn, κn)
is semi-T2; in 2006, present authors [11, Theorem 2.3, Theorem 4.8 (i)] proved that (Z, κ)
and (Z2, κ2) are semi-T2. But, in the end of the present paper (Corollary 4.10 below), we
shall mention an alternative proof of the result ([30, Theorem 4.2]) using Theorem 4.4 and
ideas in [39].
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Example 4.8 In general, ω-closed sets in Sundaram-Sheik John’s sense of a topological
space are placed between closed sets and g-closed sets (cf. Definition 2.1(ii) (i.e.,[35])).
The following example shows that there is a g-closed sets which is not an ω-closed set
in Sundaram-Sheik John’s sense of (Zn, κn) (i.e., closed set in (Zn, κn), cf. Theorem 4.6).
Suppose n ≥ 2. Let A := Zn \ (

∪
{(Zn)mix(r)| 1 ≤ r ≤ n − 1}), i.e., A = (Zn)Fn ∪ (Zn)κn

and A 6= ∅. We consider the following figure which is shown by the symbols • ∈ (Zn)Fn

and ◦ ∈ (Zn)κn in Z2. The figure shows the subset A above for n = 2.
Z
↑

· · · · · · · · ·
· · · • · • · • · • · • · • · • · • · · · ·
· · · · ◦ · ◦ · ◦ · ◦ · ◦ · ◦ · ◦ · ◦ · · ·
· · · • · • · • · • · • · • · • · • · → Z
· · · · ◦ · ◦ · ◦ · ◦ · ◦ · ◦ · ◦ · ◦ · · ·
· · · • · • · • · • · • · • · • · • · · · ·
· · · · · · · · ·

Let V be an open set containing A. Then, in below, it is proved that V = Zn; and hence
the set A is g-closed in (Zn, κn) (cf. Definition 2.1(i), i.e., [22, Definition 2.1]).
(Proof of the property: V ⊃ Zn). Let x := (x1, x2, ..., xn) ∈ Zn such that x 6∈ A. For this
point x, we have x ∈ (Zn)mix(r) for some integer r with 1 ≤ r ≤ n − 1. The component
xe(k) is even, where e(k) ∈ Ir(x) (1 ≤ k ≤ r) and xo(j) is odd, where o(j) ∈ Jn−r(x)
(1 ≤ j ≤ n − r) (cf. the notation in Definition 4.3, the proof (Case 3) of Theorem 4.5(i) or
in the proof (Case 2) of Proposition 4.1(i)). We pick a point y := (y1, y2, ..., yn) as follow:
ye(k) := xe(k)(1 ≤ k ≤ r) and yo(j) := xo(j) + 1(1 ≤ j ≤ n − r). Then, y ∈ (Zn)Fn ⊂ A
and x ∈ Un(y). Since y ∈ A ⊂ V and V is open, we have Un(y) ⊂ V (cf. Definition 3.7,
(I)(∗4)(i)(ii) in Section 3,Theorem 3.9(iii)); and so x ∈ V . (◦)
Thus, we have Cl(A) ⊂ Zn = V for an open set V such that A ⊂ V ,i.e., A is g-closed.
On the other hand, it is shown that Cl(A) = Zn and so A is not closed in (Zn, κn) (cf.
Theorem 4.6).

We mention an alternative proof of the result [30, Theorem 4.2] (cf. Remark 4.7(ii)
above). For (Zn, κn) (n ≥ 2), we can construct directly two disjoint semi-open sets sep-
arating two given distinct points (cf. Corollary 4.10). We need the following property
Theorem 4.9 on the smallest open sets and Theorem 4.4.

Theorem 4.9 Let x, x′ ∈ Zn, where 1 ≤ n. If x 6= x′ in (Zn, κn), then (Un(x))κn 6=
(Un(x′))κn holds.

Proof. We first recall that Zn = (Zn)κn ∪ (Zn)Fn ∪ (
∪
{(Zn)mix(r)|1 ≤ r ≤ n− 1}) (disjoint

union) holds and (Zn)mix(r) 6= ∅(1 ≤ r ≤ n − 1) if n ≥ 2 (cf. (II)(∗20)(iv) in Section 3).
Since {x, x′} ⊂ Zn, we should check the cases below, Case i (1 ≤ i≤ 3), in order to prove
(Un(x))κn 6= (Un(x′))κn . We secondly suppose, for a contradiction, that
(∗1) (Un(x))κn = (Un(x′))κn holds.

Case 1. x ∈ (Zn)κn and x′ ∈ (Zn)κn (cf. Definition 3.11(i)(i-1)): for these points x and
x′, we have that {x} and {x′} are open singletons and Un(x) = {x} and Un(x′) = {x′}
(cf. Definition 3.7, (I)(∗4)(ii) in Section 3); and so, by (∗1) above, {x} = (Un(x))κn =
(Un(x′))κn = {x′}. This contradicts the first setting of the given points x and x′ (i.e.,
x′ 6= x).

Case 2. x ∈ (Zn)κn and x′ ∈ (Zn)Fn ∪ (
∪
{(Zn)mix(r′)|1 ≤ r′ ≤ n − 1}) (cf. Defini-

tion 3.11(i)): for this case, {x} = Un(x) holds (cf. Definition 3.7(I)(∗4)(ii) in Section 3); and
by Theorem 4.4(ii)(iii), it is obtained that #(Un(x′))κn = 2R′

, where R′ := n if x′ ∈ (Zn)Fn
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and R′ := r′ if x′ ∈ (Zn)mix(r′)(1 ≤ r′ ≤ n − 1). And so, by (∗1), we have that 2R′
= 1

holds, i.e., 2n = 1 or 2r′
= 1. These contradict the first setting of the given integers n with

n ≥ 1 and r′ with 1 ≤ r′ ≤ n − 1.
Case 3. {x, x′} ⊂ (Zn)Fn ∪ (

∪
{(Zn)mix(r)|1 ≤ r ≤ n− 1}) (cf. Definition 3.11(i)(i-2)(i-

3)):
By Theorem 4.4(ii) and (iii) for the point x, there exist the open singletons {p(x, u)}(1 ≤

u ≤ R) such that (Un(x))κn = {p(x, u)|1 ≤ u ≤ R} holds, where R := n if x ∈ (Zn)Fn

and R := r if x ∈ (Zn)mix(r)(1 ≤ r ≤ n − 1, n ≥ 2). Moreover, for the point x′, there exist
the open singletons {p(x′, u′)}(1 ≤ u′ ≤ R′) such that (Un(x′))κn = {p(x′, u′)|1 ≤ u′ ≤ R′}
holds, where R′ := n if x′ ∈ (Zn)Fn and R′ := r′ if x′ ∈ (Zn)mix(r′)(1 ≤ r′ ≤ n − 1 and
n ≥ 2). We may assume that R′ ≤ R. Then, {p(x′, u′)|1 ≤ u′ ≤ 2R′} = (Un(x′))κn=
(Un(x))κn ∩ (Un(x′))κn = (Un(x) ∩ Un(x′))κn ⊂ Un(x) ∩ Un(x′). Namely, Un(x) ∩ Un(x′)
contains exactly the 2R′

open singletons {p(x′, u′)} (1 ≤ u′ ≤ 2R′
). This shows that

the assumptions of Theorem 3.12 (i.e., [39, Lemma 2.3]) are satisfied. And, using (∗1)
above, we have 2R′

= #((Un(x′))κn) = #((Un(x))κn) = 2R and so R′ = R. Then,
under the assumption (∗1) above, we do not have the case where that (R′, R) = (r′, n)
or (n, r), because r, r′ ∈ {1, 2, ..., n − 1} hold. Namely, under (∗1), the following case
does not occurs : x ∈ (Zn)Fn and x′ ∈ (Zn)mix(r′)(1 ≤ r′ ≤ n − 1) (or x′ ∈ (Zn)Fn

and x ∈ (Zn)mix(r)(1 ≤ r ≤ n − 1)). For other all cases where (R′, R) = (n, n) (i.e.,
{x, x′} ⊂ (Zn)Fn) or (R′, R) = (r′, r) (i.e., x ∈ (Zn)mix(r) and x′ ∈ (Zn)mix(r′)) with
r, r′ ∈ {1, 2, ..., n− 1}, using Theorem 3.12(iii)’ (i.e.,[39, Lemma 2.3 (iii)’]), we have x′ = x;
this contradicts the first setting of the given points x and x′ (i.e., x′ 6= x).

Therefore, we show the required property that (∗2) (Un(x))κn 6= (Un(x′))κn holds if
x 6= x′ in (Zn, κn). ¤

Corollary 4.10 (Namda [30, Theorem 4.2] for any n ≥ 1; [11] for n = 1, 2) The digital
n-space (Zn, κn) is a semi-T2-space.

Proof. Suppose n ≥ 2 in the present proof; and so we have (Zn)mix(r) 6= ∅ for each integer r
with 1 ≤ r ≤ n− 1 (cf. Definition 3.11(i)(i-3)). We use Theorem 4.4 on the construction of
semi-open sets in (Zn, κn) and Theorem 4.9; and we prove that (Zn, κn) is semi-T2, where
n ≥ 2, as follows.

Let x and x′ be any distinct points of (Zn, κn). We set x = (x1, x2, ..., xn) and x′ =
(x′

1, x
′
2, ..., x

′
n), where xi ∈ Z and x′

i ∈ Z(1 ≤ i ≤ n). Since {x, x′} ⊂ Zn = (Zn)κn ∪
(Zn)Fn ∪ (

∪
{(Zn)mix(r)|1 ≤ r ≤ n− 1}) (disjoint union) (cf. (II)(∗20)(iv) in Section 3), we

consider the required proof for the following cases.
For the points x and x′, we first use Theorem 4.9; we have that:

(∗2) (Un(x))κn 6= (Un(x′))κn holds, where Un(y) is the smallest open set containing each
point y ∈ {x, x′}. Namely, we have that:
• (∗a) there exists a point z ∈ (Un(x))κn and z 6∈ (Un(x′))κn ; or,
• (∗b) there exists a point z′ ∈ (Un(x′))κn and z′ 6∈ (Un(x))κn .

Case 1. x ∈ (Zn)κn and x′ ∈ (Zn)κn : it is obviouse that {x} and {x′} are the required
disjoint semi-open sets, because every open set is semi-open.

Case 2. {x, x′} ⊂ (Zn)Fn ∪ (
∪
{(Zn)mix(r)|1 ≤ r ≤ n − 1}):

• For Case (∗a) above, by Theorem 4.4(ii) and (iii) for the point x, it is shown that
z = p(x, u0) holds for some point p(x, u0) ∈ (Un(x))κn(1 ≤ u0 ≤ 2R), where R := n if
x ∈ (Zn)Fn and R := r if x ∈ (Zn)mix(r), because (Un(x))κn = {p(x, u)|1 ≤ u ≤ 2R} holds.
Moreover, we have that {x}∪{z} is a semi-open set containing the point x (cf. Theorem 4.4
(ii-3) and (iii-3)). Using Theorem 4.4 (ii) and (iii) for the point x′, we can take any semi-
open sets {x′} ∪ {p(x′, u′)} containing x′, where {p(x′, u′)|1 ≤ u′ ≤ 2R′} = (Un(x′))κn and
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the integer R′ is defined by R′ := n if x′ ∈ (Un(x′))Fn and R′ := r′ if x′ ∈ (Un(x′))mix(r′)

with 1 ≤ r′ ≤ n − 1. Then, we have that ({x} ∪ {z}) ∩ ({x′} ∪ {p(x′, u′)}) =({x} ∩ {x′}) ∪
({x} ∩ {p(x′, u′)}) ∪ ({z} ∩ {x′}) ∪ ({z} ∩ {p(x′, u′)}) ⊂ (V ∩ (Zn)κn) ∪ ((Un(x))κn ∩ V ) ∪
({z} ∩ (Un(x′))κn) = ∅, where V := (Zn)Fn ∪ (

∪
{(Zn)mix(r)|1 ≤ r ≤ n − 1}), because of

the decomposition of Zn and the property in (∗a) (i.e., z 6∈ (Un(x′))κn). Thus, for Case
(∗a), {x}∪{z} and {x′}∪{p(x′, u′)} are the required disjoint semi-open sets containing the
points x and x′, respectively.

• For Case (∗b) above, by Theorem 4.4(ii) and (iii) for the point x′, it is shown that
z′ = p(x′, u′

0) for some point p(x′, u′
0) ∈ (Un(x′))κn , because (Un(x′))κn = {p(x′, u′)|1 ≤

u′ ≤ R′} holds, where R′ := n if x′ ∈ (Zn)Fn and R′ := r′ if x′ ∈ (Zn)mix(r′) with
1 ≤ r′ ≤ n − 1. Here we note that z′ 6∈ (Un(x))κn . It is shown that {x′} ∪ {z′} (i.e.,
{x′} ∪ {p(x′, u′

0)}) is the required semi-open set containing x′ (cf. Theorem 4.4(ii-3) and
(iii-3) for the point x′). Using Theorem 4.4 (ii) and (iii) for the point x, we can take any
semi-open sets {x} ∪ {p(x, u)} containing x, where {p(x, u)|1 ≤ u ≤ 2R} = (Un(x))κn

for the integer R with R := n if x ∈ (Un(x))Fn and R := r if x ∈ (Un(x))mix(r) with
1 ≤ r ≤ n − 1. Thus, the above semi-open sets {x} ∪ {p(x, u)} and {x′} ∪ {z′} are the
required disjoint semi-open sets containing the point x and x′, respectively. Indeed, we have
that ({x} ∪ {p(x, u)}) ∩ ({x′} ∪ {z′})= ({x} ∩ {x′}) ∪ ({x} ∩ {z′}) ∪ ({p(x, u)} ∩ {x′}) ∪
({p(x, u)} ∩ {z′}) ⊂ (V ∩ (Zn)κn) ∪ ((Un(x))κn ∩ V ) ∪ ((Un(x))κn ∩ {z′}) = ∅, where
V := (Zn)Fn ∪ (

∪
{(Zn)mix(r)|1 ≤ r ≤ n − 1}), because of the setting that x 6= x′, the

decomposition of Zn and z′ 6∈ (Un(x))κn for the Case (∗b).
Case 3. x ∈ (Zn)κn and x′ ∈ (Zn)Fn ∪ (

∪
{(Zn)mix(r)|1 ≤ r ≤ n− 1}): for this case, we

have that {x} = Un(x) and {x} ∩ (Un(x′))κn = ∅ and so {x} is the required semi-open set
containing the point x. We can construct the required semi-open set containing x′ using
Theorem 4.4; the construction is done by an argument similar to that in Case 2.

Therefore, by Case 1, Case 2, Case 3 above for distinct points x and x′, there exist
disjoint semi-open sets containing the point x and x′, respectively; and so (Zn, κn) is semi-
T2. ¤

Remark 4.11 (cf. Remark 4.7(ii)) The digital n-space (Zn, κn) is semi-T2, where n ≥ 1
[30]; (Z, κ) and (Z2, κ2) are semi-T2 [11]. The results are confirmed directly by Corol-
lary 4.10 above. Moreover, since the semi-T2 separation axiom implies the semi-T1 sep-
aration axiom, using Proposition 2.6(i), we have an alternative proof of Theorem 4.5(ii)
(cf. Definition 2.3). The above proof of Corollary 4.10 is done constructively; the present
authors believe that we applies the same method to other topological properties on (Zn, κn)
which are not proved by arguments preserving of topological products of (Z, κ) and we have
further applications.
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