REMARKS ON ω -CLOSED SETS IN SUNDARAM-SHEIK JOHN'S SENSE OF DIGITAL N-SPACES

H. Maki, S. Takigawa, M. Fujimoto, P. Sundaram and M. Sheik John

Received February 8, 2013

ABSTRACT. The aim of this paper is to study some topological properties, especially, ω -closed sets (in Sundaram-Sheik John's sense) of digital lines and digital *n*-spaces $(n \geq 2)$.

1 Introduction In 2000, the concept of ω -closed sets (in Sundaram-Sheik John's sense) of topological spaces was introduced and investigated by P. Sundaram and M. Sheik John [35] [36] [37] and some results on bitopological version were investigated by [12]. We note that, in 1982, Hdeibe [14] had defined the same named concept: ω -closed sets (e.g., [14]); but their definitions are different. Throughout the present paper, we call the ω -closed sets [35] the ω -closed sets in Sundaram-Sheik John's sense (cf. Definition 2.1). The concept of Λ_s -sets was introduced and investigated by [4]. In the present paper, for the digital *n*-space $(\mathbb{Z}^n, \kappa^n) (n \ge 1)$, we try to investigate properties on ω -closed sets in Sundaram-Sheik John's sense and Λ_s -sets. The concept of the digital line (\mathbb{Z}, κ) is initiated by Khalimsky [15], [16] and sometimes it is called the *Khalimsky line* (cf. [17] and references there, [33], [19, p.905], [20, p.175]; e.g., [11], [18]). We reference the naming of the digital *n*-space (\mathbb{Z}^n, κ^n) in [20, Definition 4]; (\mathbb{Z}^n, κ^n) is the topological product of *n* copies of the digital line (\mathbb{Z}, κ) (cf. Section 3).

The purpose of the present paper is to characterlize the ω -closedness in Sundaram-Sheik John's sense in (\mathbb{Z}^n, κ^n) (cf. Theorem 4.6). Namely, a subset A is an ω -closed set in Sundaram-Sheik John's sense of (\mathbb{Z}^n, κ^n) if and only if A is closed in (\mathbb{Z}^n, κ^n) (Theorem 4.6). In order to prove the result, we investigate the concept of semi-kernels of subsets in (\mathbb{Z}^n, κ^n) (cf. Theorem 4.5) after checking on some examples in (\mathbb{Z}^n, κ^n) (cf. Example 4.2). In Section 2 we recall some definitions and properties on topological spaces which are used in the present paper; moreover in Section 3 we recall the definitions of the digital lines and digital *n*-spaces $(n \geq 2)$ and we give a short survey of important properties which are used in the present paper. In Section 4 we give some examples and we prove a characterization of ω -closed sets in Sundaram-Sheik John's sense for (\mathbb{Z}^n, κ^n) (cf. Theorem 4.6). In order to prove Theorem 4.6, we need the construction of semi-open sets containing a point of (\mathbb{Z}^n, κ^n) (cf. Theorem 4.4). In the end of Section 4, using Theorem 4.4 and Theorem 4.9, we give an alternative and direct proof of [30, Theorem 4.2] which shows (\mathbb{Z}^n, κ^n) is semi- T_2 .

Throughout the present paper, (X, τ) represents a nonempty topological space on which no separation axioms are assumed, unless otherwise mentioned.

2 Preliminaries We recall some concepts and properties on topological spaces.

²⁰¹⁰ Mathematics Subject Classification. 50A05, 54D05, 54D10, 68U05.

Key words and phrases. ω -closed set; Semi-open set; Preopen set; Topological digital topology; Digital line; Digital plane; Digital n-space; Semi-T₂ separation axiom; Semi-kernel; Λ_s -set.

Definition 2.1 (i) ([22, Definition 2.1]) A subset A of a topological space (X, τ) is called *generalized closed* (shortly, g-closed) in (X, τ) if $Cl(A) \subset U$ whenever $A \subset U$ and U is open in (X, τ) .

(ii) ([35], [36]) A subset A of a topological space (X, τ) is called ω -closed in Sundaram-Sheik John's sense in (X, τ) if $Cl(A) \subset V$ whenever $A \subset V$ and V is semi-open in (X, τ) . The complement of an ω -closed set is called an ω -open set.

A subset B of (X, τ) is said to be *semi-open* [21, Definition 1] in (X, τ) , if there exists an open set U such that $U \subset B \subset Cl(U)$. It is shown that [21, Theorem 1] a subset B is semi-open if and only if $B \subset Cl(Int(B))$ in (X, τ) . A subset E of (X, τ) is said to be *preopen* [25] in (X, τ) , if $E \subset Int(Cl(E))$ holds in (X, τ) . Every open set is semi-open and preopen in (X, τ) . The complement of a semi-open set (resp. preopen set) is said to be *semi-closed* (resp. *preclosed*). In the present paper, the famly of all semi-open sets (resp. preopen sets) of (X, τ) is denoted by $SO(X, \tau)$ (resp. $PO(X, \tau)$). Namely, for a topological space (X, τ) , as notation,

• $SO(X,\tau) := \{B|B \subset Cl(Int(B)), B \subset X\}, PO(X,\tau) := \{E|E \subset Int(Cl(E)), E \subset X\}; and \tau \subset SO(X,\tau) and \tau \subset PO(X,\tau) hold for any topological space <math>(X,\tau).$

The following concept of *semi-kernels* is due to [4] and the concept of *kernels* is well known (e.g., [28]).

Definition 2.2 Let *E* be a subset of a topological space (X, τ) .

(i) ([4, Definition 1]) The following set τ -sKer(E) (or shortly sKer(E)) is called a *semi*kernel of E in (X, τ) (in [4], it is denoted by E^{Λ_s}):

• τ -sKer $(E) = E^{\Lambda_s} := \bigcap \{ V | E \subset V \text{ and } V \text{ is semi-open in } (X, \tau) \}.$

Note that, in the present paper, we use the symbol τ -sKer(E) or sKer(E).

(ii) (e.g., [28]) The following set τ -Ker(E) (or shortly Ker(E)) is called a *kernel of* E in (X, τ) :

• τ -Ker $(E) := \bigcap \{ V | E \subset V \text{ and } V \text{ is open in } (X, \tau) \}.$

Note that, in [28] (resp. [24]), the set τ -Ker(E) above is denoted by Ker_{τ}(E) (resp. E^{\wedge}).

Definition 2.3 ([4, Definition 2]) In a topological space (X, τ) , a subset E is a Λ_s -set of (X, τ) if $E = E^{\Lambda_s}$ (i.e., $E = \operatorname{sKer}(E)$).

We recall the following property on semi-kernels.

Proposition 2.4 For a family $\{E_i | i \in \Omega\}$ of subsets of a topological space (X, τ) , where Ω is an index set,

(i) ([4, Proposition 3.1]) sKer($\bigcup \{E_i | i \in \Omega\}$) = $\bigcup \{sKer(E_i) | i \in \Omega\}$ holds; and

(ii) (e.g., [24, (2.5)]) $\operatorname{Ker}(\bigcup \{E_i | i \in \Omega\}) = \bigcup \{\operatorname{Ker}(E_i) | i \in \Omega\}$ holds.

Theorem 2.5 t60 ([35], [36]) A subset A is ω -closed (in Sundaram-Sheik John's sense) in a topological space (X, τ) if and only if $Cl(A) \subset sKer(A)$.

Proposition 2.6 (i) ([4, Proposition 3.7]) A topological space (X, τ) is semi- T_1 if and only if every subset is a Λ_s -set.

(ii) ([4, Corollary 3.8]) Every semi- T_1 -space is a semi- R_0 -space.

We need the following notation.

Definition 2.7 (e.g., [10, p.166]; [39, Definition 2.1] [38, p.47] for the case where $E := \mathbb{Z}^n$) For a subset E of (X, τ) , we define the following subsets E_{τ} and $E_{\mathcal{F}}$:

 $E_{\tau} := \{x \in E \mid \{x\} \text{ is open in } (X, \tau), \text{ i.e., } \{x\} \in \tau \};$

 $E_{\mathcal{F}} := \{ x \in E \mid \{x\} \text{ is closed in } (X, \tau) \}.$

3 Preliminaries-2 In the present section, we recall some foundamental definitions and topological properties on digital lines and digital *n*-spaces $(n \ge 2)$; this includes a survey on digital lines and digital n-spaces $(n \ge 2)$ on our topics. And the notation of Definition 3.11 and (* 20) in (II) below are used in the proofs of results in Section 4.

(I) (digital lines):

• Let us recall some definitions and topological properties on digital lines (cf. (*1) - (*11) below).

Definition 3.1 (cf. [20, p.175], [19, p.905, p.908], [26, Section 2], [27, Example 4 in Section 2]; e.g., [11, Section 1], [33, Section 6 in p.9]) The digital line or so called the Khalimsky line (\mathbb{Z},κ) is the set \mathbb{Z} of all integers, equipped with the topology κ having $\{\{2m-1,2m,2m+1\}\}$ $1\}|m \in \mathbb{Z}\}$ as a subbase.

Remark 3.2 We put $\mathcal{G} := \{\{2m - 1, 2m, 2m + 1\} | m \in \mathbb{Z}\}$ in Definition 3.1.

(i) By the definition of κ , a subset U of Z is open in (\mathbb{Z}, κ) (i.e., $U \in \kappa$) if and only if there exists a family of subsets of (\mathbb{Z}, κ) , say $\{B_i^{(U)} | i \in I^{(U)}\}$, where $I^{(U)}$ is an index set, such that $U = \bigcup \{B_i^{(U)} | i \in I^{(U)}\}$ and $B_i^{(U)} = \bigcap \{V_j^{(i)} | j \in \{1, 2, ..., m\}\}$ for some positive integer m and some subsets $V_j^{(i)} \in \mathcal{G}(1 \le j \le m)$, here we assume that $V_j^{(i)} \ne V_{j_1}^{(i)}$ if $j \ne j_1$, where $j, j_1 \in \{1, 2, ..., m\}$). (ii) For the set $B_i^{(U)} = \bigcap\{V_j^{(i)} | j \in \{1, 2, ..., m\}\}$ above, we note that: (*)₁ if m = 1 (resp. m = 2), then $B_i^{(U)} = \{2t - 1, 2t, 2t + 1\}$ (resp. $=\{2u + 1\}$ or \emptyset) for

some $t \in \mathbb{Z}$ (resp. for some $u \in \mathbb{Z}$);

(*)₂ if $m \ge 3$, then $B_i^{(U)} = \bigcap \{ V_j^{(i)} | j \in \{1, 2, ..., m\} \} = \emptyset$.

• For examples, we first have some properties on singletons and two-pointed sets of (\mathbb{Z}, κ) (cf. (*1) - (*3) below): for an integer s,

 \cdot (*1) a singleton $\{2s+1\}$ is open in (\mathbb{Z},κ) ; $\{2s+1\}$ is not closed in (\mathbb{Z},κ) .

• (*2) a singleton $\{2s\}$ is not open in (\mathbb{Z}, κ) ; but $\{2s\}$ is closed in (\mathbb{Z}, κ) .

(*3) subsets $\{2s, 2s+1\}$ and $\{2s-1, 2s\}$ are not open in (\mathbb{Z}, κ) , where $s \in \mathbb{Z}$ (cf. (*8)(iii)below).

(Proof of (*1)). (Proof of the openness) It is shown that $\{2s+1\} = V_1 \cap V_2$, where $V_1 := \{2s - 1, 2s, 2s + 1\} \in \mathcal{G} \text{ and } V_2 := \{2s + 1, 2s + 2, 2s + 3\} \in \mathcal{G}.$ Thus, $\{2s + 1\}$ is open in (\mathbb{Z}, κ) .

(Proof of the non-closedness) Suppose that $\{2s+1\}$ is closed. Put $U := \mathbb{Z} \setminus \{2s+1\}$. Then, $U \in \kappa$ and so there exists a family of subsets: $\{B_i^{(U)} | i \in I^{(U)}\}$, where $I^{(U)}$ is an index set, such that $U = \bigcup \{B_i^{(U)} | i \in I^{(U)}\}$ and $B_i^{(U)} = \bigcap \{V_j^{(i)} | j \in \{1, 2, ..., m\}\}$ for some positive integer *m* and some subsets $V_j^{(i)} \in \mathcal{G}(1 \le j \le m)$ (cf. Definition 3.1,Remark 3.2(i)). Pick a point $2s \in U$, where $s \in \mathbb{Z}$. Then, we have

 $(*)_a \ 2s \in B_{i'}^{(U)} = \bigcap \{V_i^{(i')} | j \in \{1, 2, ..., m'\}\}$ and $B_{i'}^{(U)} \subset U$ for some $i' \in I^{(U)}$ and positive integer m'.

By Remark 3.2(ii), it is shown that m' = 1 and $B_{i'}^{(U)} = \bigcap \{V_j^{(i')} | j \in \{1, 2, ..., m'\}\}$ = $\{2s-1, 2s, 2s+1\}$. Thus, using $(*)_a$, we have $2s+1 \in U$; but this contradicts the definition

of U in the first setting. Therefore, the singleton $\{2s+1\}$ is not closed in (\mathbb{Z}, κ) . (\circ)

(Proof of (*2)). (Proof of the non-openness). Suppose that $\{2s\} \in \kappa$. We put $U := \{2s\}$. By the definition of κ (cf. Remark 3.2(i)), there exists subsets $B_i^{(U)}(i \in I^{(U)})$, where $I^{(U)}$ is an index set, such that $2s \in B_i^{(U)} = \bigcap\{V_j^{(i)} | j \in \{1, 2, ..., m\}\}$ and $B_i^{(U)} \subset U$ for some positive integer m and $V_j^{(i)} \in \mathcal{G}(1 \le j \le m)$. By using Remark 3.2(ii), it is shown that m = 1 and $B_i^{(U)} = \bigcap\{V_j^{(i)} | j \in \{1, 2, ..., m\}\} = \{2s - 1, 2s, 2s + 1\} \subset U$; and so $2s + 1 \in U$. This contradicts the definition of $U := \{2s\}$. Therefore, any singleton $\{2s\}$ is not open in $(\mathbb{Z},\kappa).$

(Proof of the closedness). It is shown that $\{2s\} = \mathbb{Z} \setminus E$, where $E := \bigcup \{\{2s - 2j - 1, 2s - 2j - 1\}$ 2j, 2s - 2j + 1 $j \in \mathbb{Z}$ and $j \neq 0$. Since $E \in \kappa, \mathbb{Z} \setminus E$ is closed; and so $\{2s\}$ is closed in $(\mathbb{Z},\kappa).$ (\circ)

(Proof of (*3)) Suppose that $\{2s-1, 2s\} \in \kappa$. Then, we have a contradiction. Put U := $\{2s-1,2s\}$. By Definition 3.1 (cf. Remark 3.2 (i)), there exists an index set $I^{(U)}$ and some subsets $B_i^{(U)}$ such that $U = \bigcup \{B_i^{(U)} | i \in I^{(U)}\}$, where $B_i^{(U)} = \bigcap \{V_j^{(i)} | j \in \{1,2,...,m\}\}$ for some positive integer m and $V_i^{(i)} \in \mathcal{G}(1 \le j \le m)$ (cf. Remark 3.2). It is noted that $B_{k}^{(U)} \subset U \text{ for any } k \in I^{(U)}. \text{ Then, we have:} \\ (*)^{a} \quad 2s \in B_{a}^{(U)} \text{ for some } a \in I^{(U)}; \ (*)^{b} \quad 2s - 1 \in B_{b}^{(U)} \text{ for some } b \in I^{(U)}; \\ (*)^{c} \quad B_{a}^{(U)} \cup B_{b}^{(U)} \subset U, \text{ where } U := \{2s - 1, 2s\}.$

Using $(*)^a$, $(*)^b$ and $(*)^c$, we have: $(*)^d$ $U = B_a^{(U)} \cup B_b^{(U)}$.

Using Remark 3.2(ii), $(*)^a$ and $(*)^b$ above, we have $B_a^{(U)} = \{2s - 1, 2s, 2s + 1\}$ and $B_b^{(U)} =$ $\{2s-1\}, \{2s-1, 2s, 2s+1\}$ or $\{2s-3, 2s-2, 2s-1\}$. Thus, using $(*)^d$ above, we have $U = \{2s - 1, 2s, 2s + 1\}$ or $U = \{2s - 3, 2s - 2, 2s - 1, 2s, 2s + 1\}$. These properties above contradict the definition of $U = \{2s - 1, 2s\}$. Therefore, $\{2s - 1, 2s\}$ is not open in (\mathbb{Z}, κ) . Similarly, it is proved that $\{2s+1, 2s\}$ is not open in (\mathbb{Z}, κ) . In (*8)(iii) below, we note that they are semi-open in (\mathbb{Z}, κ) . (\circ)

• For the digital line (\mathbb{Z}, κ) , the concept of the smallest open set, say U(x), containing a point x of (\mathbb{Z}, κ) is very important; throughout the present paper, we put:

 $U(2s) := \{2s - 1, 2s, 2s + 1\}; U(2s + 1) := \{2s + 1\}, \text{ where } s \in \mathbb{Z}.$

We first recall the definition of the smallest open set containing a point x for a topological space (X, τ) .

Definition 3.3 (e.g., [29, Definition 2.4]) Let (X, τ) be a topological space and a point $x \in X$. A subset E is called the smallest open set containing x if $x \in E, E \in \tau$ and A = Eholds for any open set A such that $x \in A$ and $A \subset E$.

For an open set E and $x \in E, E$ is the smallest open set containing x if and only if $E \subset G$ holds for every open set G containing the point x (e.g., [29, Remark 2.5 (ii)]).

• For the digital line (\mathbb{Z}, κ) , we recall the concept of the smallest open set, say U(x), containing a point x of (\mathbb{Z}, κ) . Obviously, every subset belonging to $\mathcal{G} =: \{\{2m-1, 2m, 2m+1\}\}$ 1 $|m \in \mathbb{Z}$ is open in (\mathbb{Z}, κ) . Then, we have the following important property on U(x), where $x \in \mathbb{Z}$:

 \cdot (*4) (i) $U(2s) := \{2s - 1, 2s, 2s + 1\}$ is the smallest open set containing 2s. Namely, U(2s) is an open set containing the point 2s and if A is an any open set such that $2s \in A$ and $A \subset U(2s)$, then A = U(2s). And, if G is any open set containing 2s in (\mathbb{Z}, κ) , then $U(2s) \subset G.$

(ii) $U(2s+1) := \{2s+1\}$ is the smallest open set containing 2s+1.

(iii) For each point x of (\mathbb{Z},κ) , there exists the smallest open set U(x) containing the point x (cf. [20, p.175]). Namely, for the point $x \in \mathbb{Z}$, U(x) is an open set containing the point x and if A is an any open set such that $x \in A$ and $A \subset U(x)$, then A = U(x). And, if G is any open set containing x in (\mathbb{Z}, κ) , then $U(x) \subset G$.

(*Proof of* (*4)). (i) By (*2) and (*3) above, it is shown that:

 $(*^e)$ U(2s) is open in (\mathbb{Z}, κ) and $2s \in U(2s)$ (because of $U(2s) \in \mathcal{G}$); and

if A is any open subset of U(2s) such that $2s \in A$, then A = U(2s).

Indeed, if $A_1 \subset U(2s)$ such that $2s \in A_1$ and $A_1 \neq U(2s)$, then $A_1 = \{2s\}, \{2s-1, 2s\}$ or $\{2s, 2s+1\}$ and the subset A_1 is not open in (\mathbb{Z}, κ) (cf. (*2), (*3) above). Thus, we have A = U(2s) for any open subset A such that $2s \in A$ and $A \subset U(2s)$. Moreover, we show: $(*^f) U(2s) \subset G$ holds for any open set G containing the point 2s and $2s \in U(2s)$. (Indeed, let G be any open set containing the point 2s. Then, we have $2s \in U(2s) \cap G$ and $U(2s) \cap G$ is an open set such that $U(2s) \cap G \subset U(2s)$; thus we have $U(2s) \cap G = U(2s)$ (cf. $(*^e)$ above). Namely, we have $U(2s) \subset G$.)

Therefore, by $(*^e)$ or $(*^f)$, it is shown that U(2s) is the smallest open set containing 2s (cf. Definition 3.3).

(ii) For an odd integer 2s + 1, where $s \in \mathbb{Z}, U(2s + 1) = \{2s + 1\}$ is the smallest open set containing the point 2s + 1 (cf. (*1)). (iii) Using (i) and (ii) above, the set U(x) is the smallest open set containing the point x. (\circ)

• We have the form of the κ -closure of $\{x\}$, the κ -interior of $\{x\}$ and the κ -kernel of $\{x\}$, respectively, (cf. (*5), (*6) below): for an integer s,

• (*5) (i) κ -Cl({2s+1}) = {2s, 2s+1, 2s+2}, \kappa-Cl({2s}) = {2s};

(ii) κ -Int({2s+1}) = {2s+1}; \kappa-Int({2s}) = \emptyset ;

(iii) κ -Ker({2s+1}) = {2s+1}; κ -Ker({2s}) = {2s-1, 2s, 2s+1} = U(2s).

(Proof of (*5)). (i) They are shown by (*4)(i), (*1) and (*2) above, respectively. (ii) They are shown by (*1) and (*2) above, respectively. (iii) They are shown by (*1) and (*4)(i) above. (\circ)

• (*6)(i) In the digital line (\mathbb{Z}, κ) , a singleton $\{x\}$ is open if and only if the integer x is odd in \mathbb{Z} .

(ii) A singleton $\{x\}$ is closed in (\mathbb{Z}, κ) if and only if the integer x is even in \mathbb{Z} .

(Proof of (*6)) (i). It is shown by (*5)(ii) above. (ii) By the closure form in (*5)(i) above, (ii) is shown. (\circ)

By (*6) above, it is shown that:

• (*7) (i) Every singleton of (\mathbb{Z}, κ) is open or closed (cf. (*6); or (*1) and (*2) above). This shows that (\mathbb{Z}, κ) is $T_{1/2}$ (e.g., [8, Example 4.6]; cf. [22, Definition 5.1], [9, Theorem 2.5]). We recall some topological properties; in general, the class of $T_{1/2}$ -spaces is properly placed between the classes of T_0 -spaces and T_1 -spaces ([22, Corollary 5.6]). Furthermore, Dontchev and Ganster [8, Example 4.6] proved that (\mathbb{Z}, κ) is $T_{3/4}$; in general, the class of $T_{3/4}$ -spaces is properly placed between the classes of T_1 -spaces and $T_{1/2}$ -spaces ([8, Corollary 4.4 and Corollary 4.7]). For the digital plane (\mathbb{Z}^2, κ^2) (cf. Definition 3.4 below), it is well known that (\mathbb{Z}^2, κ^2) is not $T_{1/2}$ ([26, Section 3]).

• We recall the *semi-openness* (resp. *semi-closedness*) (cf. Section 2) of singletons in (\mathbb{Z}, κ) and the *semi-closure* of $\{x\}$, the *semi-interor* of $\{x\}$ and the *semi-kernel* (cf. Definition 2.2(i)) of $\{x\}$ (cf. (*8) and (*9) below): for an integer s,

 \cdot (*8)(i) every open singleton {2s + 1} is semi-open and semi-closed in (\mathbb{Z}, κ);

(ii) every closed singleton $\{2s\}$ is semi-closed in (\mathbb{Z}, κ) ; but $\{2s\}$ is not semi-open in (\mathbb{Z}, κ) ;

(iii) the subsets $\{2s, 2s+1\}$ and $\{2s-1, 2s\}$ are semi-open on (\mathbb{Z}, κ) .

(*Proof of* (*8)). (i) Every open set is semi-open and so $\{2s + 1\}$ is semi-open in (\mathbb{Z}, κ) (cf. (*6)(i) above). And, since κ -Int(κ -Cl($\{2s + 1\}$))= κ -int($\{2s, 2s + 1, 2s + 2\}$) = $\{2s + 1\}$ hold, $\{2s + 1\}$ is semi-closed (cf. (*5)(i)(ii) above). (ii) Since κ -Int(κ -Cl($\{2s\}$)) = κ -Int($\{2s\}$) = $\emptyset \subset \{2s\}, \{2s\}$ is semi-closed in (\mathbb{Z}, κ) . And, we have Cl(Int($\{2s\}$)) = Cl(\emptyset) = $\emptyset \not\supseteq \{2s\}$ and so $\{2s\}$ is not semi-open in (\mathbb{Z}, κ) . (iii) It is easily shown that κ -Cl(κ -Int($\{2s, 2s + 1\}$)) = κ -Cl($\{2s + 1\}$) = $\{2s, 2s + 1, 2s + 2\} \supset \{2s, 2s + 1\}$; and so $\{2s, 2s + 1\}$ is semi-open in (\mathbb{Z}, κ) . Similarly, the subset $\{2s - 1, 2s\}$ is semi-open in (\mathbb{Z}, κ) . (\circ) \cdot (*9) For an integer s, we have the following properties:

(i) κ -sCl($\{2s+1\}$) = $\{2s+1\}$; κ -sCl($\{2s\}$) = $\{2s\}$;

(ii) κ -sInt({2s+1}) = {2s+1}; \kappa-sInt({2s}) = \emptyset ;

(iii) κ -sKer({2s+1}) = {2s+1}; κ -sKer({2s}) = {2s}.

(*Proof of* (*9)). (i) (resp. (ii)) They are proved by (*8)(i) (resp. (*8)(ii)) above. (iii) By (*8)(iii) (resp. (*8)(i)), it is obtained that κ -sKer($\{2s\}$) = $\{2s, 2s + 1\} \cap \{2s - 1, 2s\}$ = $\{2s\}$ (resp. κ -sKer($\{2s + 1\}$) = $\{2s + 1\}$). (\circ)

• We recall more topological properties on (\mathbb{Z}, κ) :

• (*10) (i) For (\mathbb{Z}, κ) , $\kappa = PO(\mathbb{Z}, \kappa)$, $PO(\mathbb{Z}, \kappa) \subset SO(\mathbb{Z}, \kappa)$ and $\kappa^{\alpha} = \kappa$ hold ([10, Theorem 2.1 (i)(a)(b)]), where $\kappa^{\alpha} := \{V | V \text{ is } \alpha \text{-open in } (\mathbb{Z}, \kappa)\}$. For topological spaces, the concept of the α -open set was introduced by Njåstad [31] who called it the α -set. A subset A of a topological space (X, τ) is said to be α -open in (X, τ) if $A \subset Int(Cl(Int(A)))$ holds.

(ii) The digital line (\mathbb{Z}, κ) is submaximal. This fact may be known in folklore; however, we are able to read one of the proof ([10, Theorem 1.1(i)]). Furthermore, it is noted that, by [10, Theorem 1.1(ii)(iii)], the digital plane (\mathbb{Z}^2, κ^2) (cf. (II) below) is not submaximal but it is quasi-submaximal. Al-Nashef [1, Definition 3.2] introduced the concept of quasi-submaximal topological spaces which is weaker than one of submaximal spaces (e.g., [3, Definition 1.1], [13, p.137]).

(iii) The digital line (\mathbb{Z}, κ) is s-normal ([11, Section 3, Theorem B]). In 1978, Maheshwari and Prasad [23] introduced the concept of s-normal topological spaces using semi-open sets. The digital plane is also a geometric example of s-normal spaces ([11, Section 5, Theorem D]).

• Using Definition 2.7 for $(X, \tau) = (\mathbb{Z}, \kappa)$, we can define the following subsets $\mathbb{Z}_{\kappa} := \{x \in \mathbb{Z} \mid \{x\} \in \kappa\}, \mathbb{Z}_{\mathcal{F}} := \{x \in \mathbb{Z} \mid \{x\} \text{ is closed in } (\mathbb{Z}, \kappa)\};$ for a nonempty subset E of (\mathbb{Z}, κ) , $E_{\kappa} := \{x \in E \mid \{x\} \in \kappa\}$ and $E_{\mathcal{F}} := \{x \in E \mid \{x\} \text{ is closed in } (\mathbb{Z}, \kappa)\}.$

· (*11) (i) Let $A \subset \mathbb{Z}$. Then we have that $\mathbb{Z}_{\kappa} = \{2m + 1 \in \mathbb{Z} \mid m \in \mathbb{Z}\}; A_{\kappa} = \{2m + 1 \in A \mid m \in \mathbb{Z}\}$ (cf. (*6)(i) above);

 $\mathbb{Z}_{\mathcal{F}} = \{ 2m \in \mathbb{Z} \mid m \in \mathbb{Z} \}; A_{\mathcal{F}} = \{ 2m \in A \mid m \in \mathbb{Z} \} \text{ (cf. } (*6)(\text{ii}) \text{ above}).$

(ii) A_{κ} is open in (\mathbb{Z}, κ) for any subset A of (\mathbb{Z}, κ) ; and $A_{\kappa} = \mathbb{Z}_{\kappa} \cap A$.

(iii) $\mathbb{Z} = \mathbb{Z}_{\kappa} \cup \mathbb{Z}_{\mathcal{F}} (\mathbb{Z}_{\kappa} \cap \mathbb{Z}_{\mathcal{F}} = \emptyset)$ and $A = A_{\kappa} \cup A_{\mathcal{F}} (A_{\kappa} \cap A_{\mathcal{F}} = \emptyset)$ for any subset A of (\mathbb{Z}, κ) (cf. (*6) above).

(iv) For any subset A of (\mathbb{Z}, κ) , $A_{\mathcal{F}} = A \setminus A_{\kappa}$ holds and $A_{\mathcal{F}}$ is closed in (\mathbb{Z}, κ) ; and $A_{\mathcal{F}} = \mathbb{Z}_{\mathcal{F}} \cap A$.

(v) If $E \subset F \subset \mathbb{Z}$, then $E_{\kappa} \subset F_{\kappa}$ and $E_{\mathcal{F}} \subset F_{\mathcal{F}}$ hold in (\mathbb{Z}, κ) .

(Proof of (*11)) (iv). (Proof of the closedness of $A_{\mathcal{F}}$). Let $x \in \mathbb{Z} \setminus A_{\mathcal{F}}$.

Case 1. x = 2s + 1, where $s \in \mathbb{Z}$: for this case, we have $x \in \mathbb{Z}_{\kappa}$ (cf. (*6)(i) above); and so $\{x\} \cap A_{\mathcal{F}} = \emptyset$ (cf. (iii) above). Thus, there exists an open set $\{x\}$, say U_x , containing xsuch that $U_x \subset \mathbb{Z} \setminus A_{\mathcal{F}}$.

Case 2. x = 2t, where $t \in \mathbb{Z}$: for this case, we have $x \in \mathbb{Z}_{\mathcal{F}}$ and $x \notin A_{\mathcal{F}}$ (cf. (iii) above and (*6)(ii) above). Hence, for the point $x \in \mathbb{Z}_{\mathcal{F}} \setminus A_{\mathcal{F}}$, there exists an open set $\{x - 1, x, x + 1\}$, say U_x , containing x and $\{x - 1, x + 1\} \subset \mathbb{Z}_{\kappa}$; and so $U_x \cap A_{\mathcal{F}} = \{x - 1, x, x + 1\} \cap A_{\mathcal{F}} = \emptyset$, i.e., $U_x \subset \mathbb{Z} \setminus A_{\mathcal{F}}$.

Thus, for each point $x \in \mathbb{Z} \setminus A_{\mathcal{F}}$, the subset U_x above is an open set containing x such that $U_x \subset \mathbb{Z} \setminus A_{\mathcal{F}}$. We have $\mathbb{Z} \setminus A_{\mathcal{F}} = \bigcup \{ U_x | x \in \mathbb{Z} \setminus A_{\mathcal{F}} \}$ and so $\mathbb{Z} \setminus A_{\mathcal{F}} \in \kappa$. Namely, $A_{\mathcal{F}}$ is closed in (\mathbb{Z}, κ) . (\circ)

(II) (digital *n*-spaces $(n \ge 2)$):

• In the final stage of the present section, we recall some structures of the digital *n*-space $(n \ge 2)$ ([20, Definition 4]; e.g., [26, Section 3], [39], [38], [11]; for n = 2, [10], [5, Section 6], [34, Section 5], [7, Section 7], [6], [32, Section 6]).

Definition 3.4 ([20, Definition 4]) Let *n* be an integer with $n \ge 2$. The digital *n*-space or Khalimsky *n*-space is the Cartesian product of *n*-copies of the digital line (\mathbb{Z}, κ) . This topological space is denoted by (\mathbb{Z}^n, κ^n) , where $\mathbb{Z}^n := \prod_{i=1}^n X_i$, where $X_i = \mathbb{Z}$ for all integers *i* with $1 \le i \le n$, and $\kappa^n := \prod_{i=1}^n \tau_i$, where $\tau_i := \kappa$ for all integers *i* with $1 \le i \le n$. For $n = 2, (\mathbb{Z}^2, \kappa^2)$ is called the digital plane or Khalimsky plane.

Since κ^n is the product topology of *n*-copies of κ , it is shown that: for a point $x := (x_1, x_2, ..., x_n)$ of (\mathbb{Z}^n, κ^n) ,

 $\begin{array}{l} \cdot (*12) \ (a) \ \kappa^n - \operatorname{Cl}(\{x\}) = \prod_{i=1}^n \kappa - \operatorname{Cl}(\{x_i\}); \ (b) \ \kappa^n - \operatorname{Int}(\{x\}) = \prod_{i=1}^n \kappa - \operatorname{Int}(\{x_i\}); \\ (c) \ \kappa^n - \operatorname{Ker}(\{x\}) = \prod_{i=1}^n \kappa - \operatorname{Ker}(\{x_i\}). \end{array}$

(*Note on* (c)). Let $(X, \tau) := \prod_{i=1}^{n} (X_i, \tau_i)$ be a product topological space of topological spaces $(X_i, \tau_i)(1 \le i \le n)$. In general, for a point $x := (x_1, x_2, ..., x_n)$ of (X, τ) , it is shown that τ -Ker $(\{x\}) = \prod_{i=1}^{n} (\tau_i$ -Ker $(\{x_i\}))$, where $\tau = \prod_{i=1}^{n} \tau_i$.

We use the following well known property; we recall shortly the proof.

Proposition 3.5 Let $x := (x_1, x_2, ..., x_n)$ be a point of (\mathbb{Z}^n, κ^n) .

(i) If all the coordinates of the point x is odd, say $x_i = 2s_i + 1 \in \mathbb{Z}$ $(s_i \in \mathbb{Z})$ for each integer i with $1 \le i \le n$, then for the point $x = (2s_1 + 1, 2s_2 + 1, ..., 2s_n + 1)$

(a) κ^n -Cl({x}) = $\prod_{i=1}^n \{2s_i, 2s_i + 1, 2s_i + 2\}.$

(b) κ^n -Int({x}) = $\prod_{i=1}^n \{2s_i + 1\} = \{x\}$; and so the singleton $\{x\}$ is open in (\mathbb{Z}^n, κ^n) .

(c) κ^n -Ker $(\{x\}) = \prod_{i=1}^n \{2s_i + 1\} = \{x\}.$

(ii) If all the coordinates of the point x is even, say $x_i = 2s_i \in \mathbb{Z}$ $(s_i \in \mathbb{Z})$ for each integer i with $1 \leq i \leq n$, then for the point $x = (2s_1, 2s_2, ..., 2s_n)$

(a) κ^n -Cl($\{x\}$) = $\prod_{i=1}^n \{2s_i\} = \{x\}$; and so the singleton $\{x\}$ is closed in (\mathbb{Z}^n, κ^n) .

(b) κ^n -Int $(\{x\}) = \prod_{i=1}^n \emptyset = \emptyset$.

(c) κ^n -Ker $(\{x\}) = \prod_{i=1}^n \{2s_i - 1, 2s_i, 2s_i + 1\} = \prod_{i=1}^n U(2s_i).$

(iii) (a) A singleton $\{x\}$ is closed in (\mathbb{Z}^n, κ^n) if and only if all the coordinates of x, say $x_i(1 \le i \le n)$, are even.

(b) A singleton $\{x\}$ is open in (\mathbb{Z}^n, κ^n) if and only if all the coordinates of x, say $x_i(1 \le i \le n)$, are odd.

Proof. (i) (ii) The properties are shown by (*5) in (I), (*12) in (II) and definitions.

(iii) (a) (Necessity) It follows from assumption that κ^n -Cl($\{x\}$) = $\{x\}$. Using (*12)(a) in (II), it is shown that κ -Cl($\{x_i\}$) = $\{x_i\}$ for each integer i with $1 \le i \le n$. Then, using (*6)(ii) in (I), we have that x_i is even for each i with $1 \le i \le n$. (Sufficiency) It is obtained by (ii)(a) above. (iii) (b) (Necessity) By using (*12)(b) in (II) and (*6)(i) in (I) above, (iii)(b) is proved. (Sufficiency) It is obtained by (i)(b) above. \Box

Example 3.6 (i) Especially, for the case where n = 2, we have the following forms of κ^2 -closures of singletons: for integers $s, t \in \mathbb{Z}$,

 $\kappa^{2}-\operatorname{Cl}(\{(2s+1,2t+1)\}) = \{2s,2s+1,2s+2\} \times \{2t,2t+1,2t+2\};\$

 κ^2 -Cl({(2s, 2t)}) = {(2s, 2t)};

 $\kappa^{2}-\mathrm{Cl}(\{(2s, 2t+1)\}) = \{2s\} \times \{2t, 2t+1, 2t+2\};\$

 $\kappa^2 - \operatorname{Cl}(\{(2s+1,2t)\}) = \{2s, 2s+1, 2s+2\} \times \{2t\}.$

(ii) By the following figure, the closure κ^2 -Cl({(2s+1, 2t+1)}) is illustrated; the singleton {(2s+1, 2t+1)} is denoted by a symbol \circ and the closure κ^2 -Cl({(2s+1, 2t+1)}) contains

the 9-points only denoted by the symbols \circ, \star, \bullet :

We give the concept of the smallest open set containing a point of (\mathbb{Z}^n, κ^n) .

Definition 3.7 (e.g., [39, p.602], [38, p.47], [11, p.47]) For a point $x := (x_1, x_2, ..., x_n)$ of (\mathbb{Z}^n, κ^n) , the following subset $U^n(x)$ is called the smallest open set containing the point x (cf. Theorem 3.9, Definition 3.3):

 $U^n(x) := \prod_{i=1}^n U(x_i)$, where $U(x_i)$ is the smallest open set (cf. (*4) in (I)) in (\mathbb{Z}, κ) containing the *i*-th coordinate x_i of $x(1 \le i \le n)$.

Example 3.8 (i) For examples, in the case where n = 2 of Definition 3.7, we have the following forms $U^2(x)$ for the following points $x \in \mathbb{Z}^2$: $U^2((2s+1,2t+1)) = \{(2s+1,2t+1)\};$

 $U^{2}((2s, 2t)) = \{2s - 1, 2s, 2s + 1\} \times \{2t - 1, 2t, 2t + 1\};$ $U^{2}((2s, 2t+1)) = \{2s - 1, 2s, 2s + 1\} \times \{2t + 1\} \text{ and}$ $U^{2}((2s + 1, 2t)) = \{2s + 1\} \times \{2t - 1, 2t, 2t + 1\}.$

(ii) In the figure below, a subset $U^2((2s, 2t))$ is illustrated; the singleton $\{(2s, 2t)\}$ is denoted by a symbol \bullet and $U^2((2s, 2t))$ is the set of the 9-points only denoted by the symbols \bullet, \circ, \star :

			-	-	-		
		•	0	*	0	•	2t+1
$U^2((2s, 2t)) =$	$U^2(ullet) =$	•	*	•	*	·	2t
		•	0	*	0	·	2t-1
		•	•	•	•	·	
			2s - 1	2s	2s + 1		

(iii) In the figure below, a subset $U^2((2s, 2t+1))$ is illustrated; the singleton $\{(2s, 2t+1)\}$ is denoted by a symbol \star and $U^2((2s, 2t+1))$ is the set of the 3-points only denoted by the symbols \circ and \star :

		•	•	•	•	·	
		•	0	*	0	•	2t+1
$U^2((2s, 2t+1)) =$	$U^2(\star) =$	•	•	•		•	2t
		•	•	•	•	•	2t-1
		•	•	•	•	•	
			2s-1	2s	2s+1		

(iv) In the figure below, a subset $U^2((2s+1,2t))$ is illustrated; the singleton $\{(2s+1,2t)\}$ is denoted by a symbol \star and $U^2((2s+1,2t))$ is the set of the 3-points only denoted by the symbols \circ and \star :

The following property is folklore, but we give its proof. The following theorem shows the well definedness of $U^n(x)$ of Definition 3.7.

Theorem 3.9 Let x be a point of (\mathbb{Z}^n, κ^n) and $U^n(x)$ the subset defined by Definition 3.7. Then, we have the following properties.

(i) $x \in U^n(x)$ and $U^n(x) \in \kappa^n$.

(ii) If A is an open set containing the point x in (\mathbb{Z}^n, κ^n) such that $A \subset U^n(x)$, then $A = U^n(x)$.

(iii) If G is any open set containing the point x in (\mathbb{Z}^n, κ^n) , then $U^n(x) \subset G$.

Proof. We put $x := (x_1, x_2, ..., x_n)$. (i) By Definition 3.7, (i) is shown.

(ii) Since $x \in A$ and $A \in \kappa^n$, there exist open sets $A_i \in \kappa(1 \le i \le n)$ such that $\prod_{i=1}^n A_i \subset A$ and $x_i \in A_i$ for each integer i with $1 \le i \le n$. Since A_i is open in (\mathbb{Z}, κ) such that $x_i \in A_i$, we have $x_i \in U(x_i) \subset A_i$ for each integer i with $1 \le i \le n$ (cf. (*4)(iii) in (I)); and so $U^n(x) := \prod_{i=1}^n U(x_i) \subset \prod_{i=1}^n A_i \subset A$. Therefore, we have $U^n(x) \subset A$. By using assumption that $A \subset U^n(x)$, it is shown that $A = U^n(x)$ holds. (iii) Since $G \in \kappa^n$ and $U^n(x) \in \kappa^n$, we see $G \cap U^n(x) \in \kappa^n$. Put $A := G \cap U^n(x)$. Then, we have $x \in A, A \in \kappa^n$ and $A \subset U^n(x)$. By (ii) above, it is shown that $A = G \cap U^n(x) = U^n(x)$ holds. Namely, we have $U^n(x) \subset G$.

Remark 3.10 Using Theorem 3.9, we can investigate topological properties of κ^n -Cl(A), κ^n -Int(A) and κ^n -Ker(A), where A is a subset of (\mathbb{Z}^n, κ^n) .

• (Some notation) In the present paper, we use the following notation (cf. Definition 3.11, (*20) below) for $(\mathbb{Z}^n, \kappa^n) (n \ge 2)$ (they are used in [39], [38], [11] for an integer $n \ge 1$); cf. (*11) in (I) for n = 1.

Definition 3.11 ([39, Definition 2.1], [38, Section 2], [11, Section 6])

(i) The following subsets $(\mathbb{Z}^n)_{\kappa^n}, (\mathbb{Z}^n)_{\mathcal{F}^n}$ and $(\mathbb{Z}^n)_{mix(r)}$ of (\mathbb{Z}^n, κ^n) are well defined, where $r \in \mathbb{Z}$ with $1 \leq r \leq n$:

(i-1) $(\mathbb{Z}^n)_{\kappa^n} := \{(x_1, x_2, ..., x_n) \in \mathbb{Z}^n | x_i \text{ is odd for each integer } i \text{ with } 1 \leq i \leq n\};$ by Proposition 3.5(i)(b) in (II), it is shown that: $(\mathbb{Z}^n)_{\kappa^n} = \{x \in \mathbb{Z}^n | \{x\} \text{ is open in } (\mathbb{Z}^n, \kappa^n)\}.$ (i-2) $(\mathbb{Z}^n)_{\mathcal{F}^n} := \{(x_1, x_2, ..., x_n) \in \mathbb{Z}^n | x_i \text{ is even for each integer } i \text{ with } 1 \leq i \leq n\};$ by Proposition 3.5(ii)(a), it is shown that: $(\mathbb{Z}^n)_{\mathcal{F}^n} = \{x \in \mathbb{Z}^n | \{x\} \text{ is closed in } (\mathbb{Z}^n, \kappa^n)\}.$

(i-3) $(\mathbb{Z}^n)_{mix(r)} := \{(x_1, x_2, ..., x_n) \in \mathbb{Z}^n | \#\{i \in \{1, 2, ..., n\} | x_i \text{ is even}\} = r \}$, where $1 \leq r \leq n$ and #A denotes the cardinality of a set A. Especially, for the case where r = n, we note $(\mathbb{Z}^n)_{\mathcal{F}^n} = (\mathbb{Z}^n)_{mix(n)}$ holds.

(ii) For a nonempty subset E of (\mathbb{Z}^n, κ^n) , the following subsets $E_{\kappa^n}, E_{\mathcal{F}^n}$ and $E_{mix(r)}$ of (\mathbb{Z}^n, κ^n) are well defined, where $1 \leq r \leq n$:

(ii-1) $E_{\kappa^n} := E \cap ((\mathbb{Z}^n)_{\kappa^n})$ (cf. (i-1) above);

(ii-2) $E_{\mathcal{F}^n} := E \cap ((\mathbb{Z}^n)_{\mathcal{F}^n})$ (cf. (i-2) above);

(ii-3) $E_{mix(r)} := E \cap ((\mathbb{Z}^n)_{mix(r)})$ (cf. (i-3) above); we note $E_{mix(n)} = E_{\mathcal{F}^n}$.

It is well known that: for any nonempty subset E of (\mathbb{Z}^n, κ^n) ,

• (*20) (i) $E_{\kappa^n} = \{x \in E \mid \{x\} \text{ is open in } (\mathbb{Z}^n, \kappa^n)\} = \{(x_1, x_2, ..., x_n) \in E \mid x_i \text{ is odd for each } i \in \mathbb{Z} \text{ with } 1 \le i \le n\}.$

(ii) $E_{\mathcal{F}^n} = \{x \in E \mid \{x\} \text{ is closed in } (\mathbb{Z}^n, \kappa^n)\} = \{(x_1, x_2, ..., x_n) \in E \mid x_i \text{ is even for each } i \in \mathbb{Z} \text{ with } 1 \leq i \leq n\}.$

(iii) The subset $(\mathbb{Z}^n)_{\kappa^n}$ and E_{κ^n} are open in (\mathbb{Z}^n, κ^n) .

(iv) We have the following decomposition of \mathbb{Z}^n and one of a nonempty set E, respectively, as follows (Note: $n \geq 2$),

 $\cdot \mathbb{Z}^n = (\mathbb{Z}^n)_{\kappa^n} \cup (\mathbb{Z}^n)_{\mathcal{F}^n} \cup (\bigcup \{ (\mathbb{Z}^n)_{mix(r)} | 1 \le r \le n-1 \}) \text{ (disjoint union)};$

• $E = E_{\kappa^n} \cup E_{\mathcal{F}^n} \cup (\bigcup \{ E_{mix(r)} | 1 \le r \le n-1 \})$ (disjoint union).

(Note: in the above decomposition of \mathbb{Z}^n (resp. E), we should take $(\mathbb{Z}^n)_{mix(r)}$ (resp. $E_{mix(r)}$) with $1 \le r \le n-1$.)

(v) Especially, for n = 2 and r = 1, $E_{mix(1)} = \{(x_1, x_2) \in E \mid x_1 \text{ is even and } x_2 \text{ is odd}\}$ $\cup \{(x_1, x_2) \in E \mid x_1 \text{ is odd and } x_2 \text{ is even}\}; we have the following decompositions:}$

 $\mathbb{Z}^2 = (\mathbb{Z}^2)_{\kappa^2} \cup (\mathbb{Z}^2)_{\mathcal{F}^2} \cup (\mathbb{Z}^2)_{mix(1)}$ (disjoint union) and $E = E_{\kappa^2} \cup E_{\mathcal{F}^2} \cup E_{mix(1)}$ (disjoint union).

(vi) If $E \subset F \subset \mathbb{Z}^n$, then $E_{\kappa^n} \subset F_{\kappa^n}$, $E_{\mathcal{F}^n} \subset F_{\mathcal{F}^n}$ and $E_{mix(r)} \subset F_{mix(r)} (1 \leq r \leq n-1)$ hold in (\mathbb{Z}^n, κ^n) .

In Section 4, we need the following property Theorem 3.12 (cf. Theorem 4.9, Corollary 4.10 below).

Theorem 3.12 ([39, Lemma 2.3]) Let $x = (x_1, x_2, ..., x_n) \in (\mathbb{Z}^n)_{mix(a')}$ and $y = (y_1, y_2, ..., y_n) \in (\mathbb{Z}^n)_{mix(a)}$, where a' and a are integers such that $a' \leq a, 1 \leq a' \leq n$ and $1 \leq a \leq n$. Suppose that $U^n(x) \cap U^n(y)$ contains exactly the $2^{a'}$ open singletons, say $\{q^{(1)}, q^{(2)}, ..., q^{(2^{a'})}\}$. Then, the following properties holds.

(i) $\{q^{(1)}, q^{(2)}, \dots, q^{(2^{a'})}\} = (U^n(x))_{\kappa^n} = (U^n(x) \cap U^n(y))_{\kappa^n} \subseteq (U^n(y))_{\kappa^n}.$

(ii) $\{i \mid x_i \text{ is even } (1 \le i \le n)\} \subseteq \{i \mid y_i \text{ is even } (1 \le i \le n)\}.$

- (ii)' If a' = a especially, then $\{i \mid x_i \text{ is even } (1 \le i \le n)\} = \{i \mid y_i \text{ is even } (1 \le i \le n)\}.$
- (iii) $x \in U^n(y)$ holds.
- (iii)' If a' = a especially, then x = y.

4 ω -closed sets in Sundaram-Sheik John's sense and Λ_s -sets in (\mathbb{Z}^n, κ^n) In the present section, we investigate the concept of ω -closed sets (in Sundaram-Sheik John's sense) in (\mathbb{Z}^n, κ^n) and we give a characterization of the ω -closedness in the digital *n*-spaces (cf. Theorem 4.6). In (\mathbb{Z}^n, κ^n) , we first give an example of a Λ_s -set, say B(n), where $n \geq 2$, (cf. Definition 2.3, Example 4.2) which is not ω -closed (in Sundaram-Sheik John's sense) (cf. Example 4.2(ii-1)); this example informs us general properties on (\mathbb{Z}^n, κ^n) (cf. Theorem 4.5). In order to explain the example, we prove the following proposition. We use the notations of Definition 3.11 and (II)(*20) etc in Section 3, i.e., some notation and well known properties in (\mathbb{Z}^n, κ^n) .

Proposition 4.1 Let V be an open set of (\mathbb{Z}^n, κ^n) .

(i) If $n \ge 2$, then $V_{\mathcal{F}^n} \cup (\bigcup \{V_{mix(r)} | 1 \le r \le n-1\}) \subset \operatorname{Cl}(V_{\kappa^n})$. (ii) If n = 1, then $V_{\mathcal{F}^n} \subset \operatorname{Cl}(V_{\kappa^n})$.

Proof. (i) Let $y \in V_{\mathcal{F}^n} \cup (\bigcup \{V_{mix(r)} | 1 \le r \le n-1\})$ (cf. Definition 3.11(ii), (II)(*20) etc in Section 3 above). Since $y \in V$ and V is open in (\mathbb{Z}^n, κ^n) , there exists the smallest open set $U^n(y)$ (cf. Definition 3.7) containing y such that

(*1) $U^n(y) \subset V$ (cf. Theorem 3.9(iii)) and so $(U^n(y))_{\kappa^n} \subset V_{\kappa^n}$ (cf. Definition 3.11(ii)(ii-1), (II)(*20)(vi) above).

Case 1. $y \in V_{\mathcal{F}^n}$, i.e., $y = (2s_1, 2s_2, ..., 2s_n)$ and $y \in V$, where $s_i \in \mathbb{Z}$ $(1 \le i \le n)$ (cf. Definition 3.11(ii)(ii-2)): since $U^n(y) = \prod_{i=1}^n \{2s_i - 1, 2s_i, 2s_i + 1\}$ for this point y, we have $\prod_{i=1}^n \{2s_i - 1, 2s_i, 2s_i + 1\} \subset V$ (cf. Definition 3.7, Theorem 3.9(iii) and (I)(*4) in Section 3). We pick a point $p(y) := (2s_1 + 1, 2s_2 + 1, ..., 2s_n + 1) \in (U^n(y))_{\kappa^n}$ and so $p(y) \in V_{\kappa^n}$ (cf. Proposition 3.5(iii)(b)). Then, since $\operatorname{Cl}(\{p(y)\}) = \prod_{i=1}^n \{2s_i, 2s_i + 1, 2s_i + 2\}$ (cf. Proposition 3.5(i)(a)), we have $y = (2s_1, 2s_2, ..., 2s_n) \in \operatorname{Cl}(\{p(y)\}) \subset \operatorname{Cl}(V_{\kappa^n})$. It is proved that $V_{\mathcal{F}^n} \subset \operatorname{Cl}(V_{\kappa^n})$. We note that the above proof is done for the case where $n \ge 1$ (cf. (I)(*1), (*4), (*11)(v) in Section3).

Case 2. $y \in V_{mix(r)}$, where $1 \leq r \leq n-1$ $(n \geq 2)$ (cf. Definition 3.11(ii)(ii-3)): for this point y, we set $y = (y_1, y_2, ..., y_n)$; then by definition, $r = \#\{i \mid y_i \text{ is an even integer } (1 \leq i \leq n)\}$. We put $I_r := \{i \mid y_i \text{ is even }\} = \{e(1), e(2), ..., e(r)\}$

(e(1) < e(2) < ... < e(r)) and $J_{n-r} := \{j \mid y_j \text{ is odd }\} = \{o(1), o(2), ..., o(n-r)\}$ (o(1) < o(2) < ... < o(n-r)); then $\{1, 2, ..., n\} = I_r \cup J_{n-r}$ (disjoint union). For the present case, we claim that $y \in Cl(V_{\kappa^n})$. Indeed, we recall that:

(*²) $U^{n}(y) = \prod_{i=1}^{n} U(y_{i})$, where $U(y_{e}) := \{y_{e} - 1, y_{e}, y_{e} + 1\}$ if $e \in I_{r}$; and $U(y_{o}) := \{y_{o}\}$ if $o \in J_{n-r}$ (cf. (I)(*4) in Section 3, Definition 3.7).

For this point $y \in V_{mix(r)}$ $(1 \le r \le n-1 \text{ and } n \ge 2)$, we pick a point $p(y) \in U^n(y)$ such that $p(y) \in (U^n(y))_{\kappa^n}$ as follows:

 $(*^3)$ let $p(y) := (p_1, p_2, ..., p_n)$, where $p_e := y_e - 1$ if $e \in I_r$; $p_o := y_o$ if $o \in J_{n-r}$.

.

Then by $(*^2)$ and $(*^3)$ above, it is shown that the components of the point p(y) are odd and so $(*^4) \quad p(y) \in (U^n(y))_{\kappa^n}$, because the components have the forms of $y_e - 1 \in U(y_e)$ or $y_o \in U(y_o)$.

Thus, using $(*^1)$, $(*^4)$ above and (II)(*20)(vi) above, we see that $p(y) \in V_{\kappa^n}$; and so $(*^5) \operatorname{Cl}(\{p(y)\}) \subset \operatorname{Cl}(V_{\kappa^n})$.

We note that : $\operatorname{Cl}(\{p(y)\}) = \operatorname{Cl}(\{(p_1, p_2, ..., p_n)\}) = \prod_{i=1}^n \operatorname{Cl}(\{p_i\}) \text{ in } (\mathbb{Z}^n, \kappa^n), \text{ where } \operatorname{Cl}(\{p_e\}) = \{p_e - 1, p_e, p_e + 1\} = \{y_e - 2, y_e - 1, y_e\} \text{ if } e \in I_r; \text{ and } \operatorname{Cl}(\{p_o\}) = \{p_o - 1, p_o, p_o + 1\} = \{y_o - 1, y_o, y_o + 1\} \text{ if } o \in J_{n-r} \text{ (cf. Proposition 3.5)}. \text{ Thus, we have } y = (y_1, y_2, ..., y_n) \in \operatorname{Cl}(\{p(y)\}).$ Moreover, using $(*^5)$ above, we conclude that $y \in \operatorname{Cl}(V_{\kappa^n})$ for a point $y \in V_{mix(r)}$. Namely, it is proved that $V_{mix(r)} \subset \operatorname{Cl}(V_{\kappa^n})$ for each r with $1 \leq r \leq n - 1$ $(n \geq 2)$.

Therefore we have the required inclusion: $V_{\mathcal{F}^n} \cup (\bigcup \{V_{mix(r)} | 1 \le r \le n-1\}) \subset Cl(V_{\kappa^n})$

(ii) For the case where n = 1, we may consider the case 1 only of the proof of (i) above; the proof is omitted (cf. (I)(*1), (*4), (*11)(v) in Section3).

Example 4.2 Throughout the present example, let $B(n) := (\mathbb{Z}^n)_{\mathcal{F}^n} \cup \{x(1), x(2), \dots, x(s)\}$ be an infinite subset of (\mathbb{Z}^n, κ^n) , where $n \ge 1$ and s is a positive integer, $\{x(j)\}$ is an open singleton of (\mathbb{Z}^n, κ^n) for each integer j with $1 \le j \le s$. We have the following properties on the subset B(n): namely,

(i) B(n) is a Λ_s -set of (\mathbb{Z}^n, κ^n) for each $n \ge 1$ (cf. Proof of (i) below and Definition 2.3).

(ii) (ii-1) If $n \ge 2$, then B(n) is not an ω -closed set (in Sundaram-Sheik John's sense) of (\mathbb{Z}^n, κ^n) (cf. Proof of (ii-1) below and Definition 2.1);

(ii-2) For n = 1, B(n) is a closed set of (\mathbb{Z}, κ) and so it is an ω -closed set (in Sundaram-Sheik John's sense) in (\mathbb{Z}, κ) (cf. Proof of (ii-2) below and Definition 2.1).

(iii) Let A be a subset of (\mathbb{Z}^n, κ^n) such that $B(n) \subset A \subset Cl(B(n))$. Then, A is not semi-open in (\mathbb{Z}^n, κ^n) .

For the case where n = 2, the following figure illustrates the subset $B = (\mathbb{Z}^2)_{\mathcal{F}^2} \cup \{x(1), x(2)\}$ in (\mathbb{Z}^2, κ^2) ; each symbol \bullet means a point in $(\mathbb{Z}^2)_{\mathcal{F}^2}$ and two symbols \circ mean x(1) = (1, 1) and x(2) = (3, 1) respectively.

									ℤ ↑										
	•••	•	٠	•	٠	•	٠	•	•	•	٠	•	٠	•	٠	•	٠	•••	
	•••	•	•	•	•	0	•	0	•	•	•	•	•	•	•	•	•	•••	
\mathbb{Z}	\rightarrow	•	٠	•	٠	•	٠	•	•	•	٠	•	٠	•	٠	•	٠	•••	
	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•••	
	• • •	•	٠	•	٠	•	٠	•	٠	•	٠	•	٠	•	٠	•	٠	• • •	

In order to prove (i) above, we need the following property (**):

134

(**) Suppose $n \ge 1$. Let $F_1(n) := B(n) \cup E_1(n)$ and $F_2(n) := B(n) \cup E_2(n)$, where $E_1(n) = \{(s_1, s_2, ..., s_n) \in \mathbb{Z}^n \mid s_i \equiv 1 \mod 4 \ (1 \le i \le n)\}$ and $E_2(n) := \{(s_1, s_2, ..., s_n) \in \mathbb{Z}^n \mid s_j \equiv 3 \mod 4 \ (1 \le j \le n)\}$. Then, $E_1(n) \cap E_2(n) = \emptyset$ holds and $F_1(n)$ and $F_2(n)$ are semi-open sets including B(n) such that $F_1(n) \cap F_2(n) = B(n)$.

Proof of (**). We first recall the following expressions of $(\mathbb{Z}^n)_{\mathcal{F}^n} := \{(x_1, x_2, ..., x_n) | x_i \text{ is even } (1 \le i \le n)\}$ as follows:

 $\begin{array}{l} (*_1) \quad (\mathbb{Z}^n)_{\mathcal{F}^n} = \bigcup \{\prod_{i=1}^n \{x_i\} | \ x_i \text{ is even } (1 \le i \le n) \} = \bigcup \{\prod_{i=1}^n \{s_i - 1, s_i + 1\} | (s_1, s_2, ..., s_n) \in \mathbb{Z}^n, s_i \equiv 1 \mod 4 \ (1 \le i \le n) \}; \text{ and} \end{array}$

 $(*_1)' \ (\mathbb{Z}^n)_{\mathcal{F}^n} = \bigcup \{ \prod_{i=1}^n \{s_i - 1, s_i + 1\} | (s_1, s_2, ..., s_n) \in \mathbb{Z}^n, s_i \equiv 3 \mod 4 \ (1 \le i \le n) \}.$ We secondly claim that

 $(*_2)$ Cl $(E_i(n)) \supset (\mathbb{Z}^n)_{\mathcal{F}^n} \cup E_i(n)$ for each $i \in \{1, 2\}$.

Indeed, we have $\operatorname{Cl}(E_1(n)) = \operatorname{Cl}(\bigcup\{\prod_{i=1}^n \{s_i\} | (s_1, s_2, ..., s_n) \in \mathbb{Z}^n, s_i \equiv 1 \mod 4 \ (1 \leq i \leq n)\}) = \bigcup\{\operatorname{Cl}(\prod_{i=1}^n \{s_i\}) | (s_1, s_2, ..., s_n) \in \mathbb{Z}^n, s_i \equiv 1 \mod 4 \ (1 \leq i \leq n)\} = \bigcup\{\prod_{i=1}^n \operatorname{Cl}(\{s_i\}) | (s_1, s_2, ..., s_n) \in \mathbb{Z}^n, s_i \equiv 1 \mod 4 \ (1 \leq i \leq n)\} = \bigcup\{\prod_{i=1}^n \{s_i - 1, s_i, s_i + 1\} | (s_1, s_2, ..., s_n) \in \mathbb{Z}^n, s_i \equiv 1 \mod 4 \ (1 \leq i \leq n)\} = \bigcup\{\prod_{i=1}^n \{s_i - 1, s_i, s_i + 1\} | (s_1, s_2, ..., s_n) \in \mathbb{Z}^n, s_i \equiv 1 \mod 4 \ (1 \leq i \leq n)\} = \bigcup\{\prod_{i=1}^n \{s_i - 1, s_i + 1\} | (s_1, s_2, ..., s_n) \in \mathbb{Z}^n, s_i \equiv 1 \mod 4 \ (1 \leq i \leq n)\} = \bigcup\{\prod_{i=1}^n \{s_i - 1, s_i + 1\} | (s_1, s_2, ..., s_n) \in \mathbb{Z}^n, s_i \equiv 1 \mod 4 \ (1 \leq i \leq n)\} = (\mathbb{Z}^n)_{\mathcal{F}^n} \ (cf. \ (*_1) \ above, \ (I)(*5)(i) \ in \ Section \ 3) \ and \ \operatorname{Cl}(E_1(n)) \supset E_1(n).$ Hence, we have $\operatorname{Cl}(E_1(n)) \supset (\mathbb{Z}^n)_{\mathcal{F}^n} \cup E_1(n).$ In the same way, using $(*_1)'$ in place of $(*_1)$, we have $\operatorname{Cl}(E_2(n)) \supset (\mathbb{Z}^n)_{\mathcal{F}^n} \cup E_2(n).$ Moreover, we claim that

(*3) $F_i(n)$ is semi-open in (\mathbb{Z}^n, κ^n) for each $i \in \{1, 2\}$.

Indeed, by using $(*_2)$ and definitions, it is shown that, for each $i \in \{1, 2\}$, Cl $(Int(F_i(n))) \supset$ Cl $(Int((B(n))_{\kappa^n} \cup E_i(n))) = Cl((B(n))_{\kappa^n} \cup E_i(n)) \supset (B(n))_{\kappa^n} \cup Cl(E_i(n)) \supset \{x(1), x(2), ..., x(s)\} \cup ((\mathbb{Z}^n)_{\mathcal{F}^n} \cup E_i(n)) = B(n) \cup E_i(n) = F_i(n).$ Namely, $F_i(n)$ is semi-open in (\mathbb{Z}^n, κ^n) for each $i \in \{1, 2\}$.

Finally, $(*_4)$ $F_1(n) \cap F_2(n) = B(n) \cup (E_1(n) \cap E_2(n)) = B(n)$ hold, because $E_1(n) \cap E_2(n) = \emptyset$. (\circ)

Proof of (i). We first claim that $\operatorname{sKer}(B(n)) \subset B(n)$. Indeed, we recall (**) above and so $F_1(n)$ and $F_2(n)$ are semi-open sets in $(\mathbb{Z}^n, \kappa^n)(n \ge 1)$ such that $B(n) \subset F_i(n)$ for each $i \in \{1, 2\}$. Thus, by definitions, it is shown that $\operatorname{sKer}(B(n)) \subset F_1(n) \cap F_2(n)$ (cf. Definition 2.2(i)); and so $\operatorname{sKer}(B(n)) \subset B(n)$, because $F_1(n) \cap F_2(n) = B(n)$ (cf. (**) above). This concludes that $\operatorname{sKer}(B(n)) = B(n)$, because $B(n) \subset \operatorname{sKer}(B(n))$ holds. Namely, B(n)is a Λ_s -set of (\mathbb{Z}^n, κ^n) , where $n \ge 1$.

Proof of (ii)(ii-1). Suppose $n \ge 2$. We first show that:

(*5) $(\operatorname{Cl}(B(n)))_{mix(r)} \neq \emptyset$, for each integer r with $1 \leq r \leq n-1$. Indeed, since $\operatorname{Cl}(B(n)) = \operatorname{Cl}((\mathbb{Z}^n)_{\mathcal{F}^n}) \cup (\bigcup\{(\operatorname{Cl}(\{x(i)\}))| 1 \leq i \leq s\})$, it is shown that $(\operatorname{Cl}(B(n)))_{mix(r)} \supset (\operatorname{Cl}(\{x(1)\}))_{mix(r)}$ (cf. (II)(*20) in Section 3). We can put $x(1) := (t_1, t_2, ..., t_n)$, where t_j is odd for each j with $1 \leq j \leq n$, because $x(1) \in (\mathbb{Z}^n)_{\kappa^n}$ (cf. Definition 3.11(i)(i-1)). Then, we show $\operatorname{Cl}(\{x(1)\}) = \prod_{j=1}^n \operatorname{Cl}(\{t_j\}) = \prod_{j=1}^n \{t_j - 1, t_j, t_j + 1\}$ (cf. Proposition 3.5(i)(a)) and so

 $(Cl(\{x(1)\}))_{mix(r)} \neq \emptyset$ for each integer r with $1 \leq r \leq n-1$, because we can take a point

 $p := (p_1, p_2, ..., p_n)$, where $p_j := t_j - 1$ is even for each j with $1 \le j \le r$ and $p_j := t_j$ is odd for each j with $r + 1 \le j \le n$; and hence $p \in (\operatorname{Cl}(\{x(1)\}))_{mix(r)}$ (cf. Definition 3.11(i)(i-3)) and so $p \in (\operatorname{Cl}(B(n)))_{mix(r)}$ (cf. (II)(*20) in Section 3). Thus, we prove the property (*5).

We secondly have the following property: $(*_6) \operatorname{Cl}(B(n)) \not\subset F_1(n)$ holds. Indeed, for a contradiction, we suppose $\operatorname{Cl}(B(n)) \subset F_1(n)$; then $(\operatorname{Cl}(B(n)))_{mix(r)} \subset (F_1(n))_{mix(r)}$ and so $(\operatorname{Cl}(B(n)))_{mix(r)} = \emptyset$ because of $(F_1(n))_{mix(r)} = \emptyset$ for each integer r with $1 \leq r \leq n-1$. This contradicts $(*_5)$ above.

For a contradiction, we finally suppose that B(n) is ω -closed in Sundaram-Sheik John's sense, i.e., $\operatorname{Cl}(B(n)) \subset \operatorname{sKer}(B(n))$ (cf. Theorem 2.5). Then, using (**) above, we have $\operatorname{sKer}(B(n)) \subset F_1(n)$ and so $\operatorname{Cl}(B(n)) \subset F_1(n)$; this contradicts (*6) above. Therefore, B(n) is not ω -closed (in Sundaram-Sheik John's sense) in (\mathbb{Z}^n, κ^n) , where $n \geq 2$.

Proof of (ii)(ii-2) Suppose n = 1. First, it is shown that B(n) = B(1) is closed in \mathbb{Z}^n , where n = 1. Indeed, we have $\mathbb{Z} \setminus B(1) = \mathbb{Z}_{\kappa} \setminus \{x(j) | 1 \leq j \leq s\}$ and so $\mathbb{Z} \setminus B(1) = \bigcup\{\{z\} | z \in \mathbb{Z}_{\kappa} \text{ and } z \notin \{x(j) | 1 \leq j \leq s\}\}$, i.e., $\mathbb{Z} \setminus B(1)$ is the union of some open singletons $\{z\}$, and hence $\mathbb{Z} \setminus B(1) \in \kappa$ (cf. Definition 3.1). Thus, the set B(1) is closed and so it is ω -closed in Sundaram-Sheik John's sense.

Proof of (iii). For a contradiction, we suppose that A is semi-open in (\mathbb{Z}^n, κ^n) . Then, there exists an open set V such that $V \subset A \subset \operatorname{Cl}(V)$ and so $V \subset \operatorname{Cl}(B(n))$. First we claim that: $(*_7) \operatorname{Cl}(V) \subset \operatorname{Cl}(V_{\kappa^n})$ holds for each $n \geq 1$.

Proof of $(*_7)$. Case (I). $n \ge 2$: for this case, we have $V = V_{\kappa^n} \cup V_{\mathcal{F}^n} \cup (\bigcup \{V_{mix(r)} | 1 \le r \le n-1\})$ (cf. (II)(*20)(iv) in Section 3). Since V is open, by Proposition 4.1(i), it is shown that $\operatorname{Cl}(V) = \operatorname{Cl}(V_{\kappa^n}) \cup \operatorname{Cl}(V_{\mathcal{F}^n} \cup (\bigcup \{V_{mix(r)} | 1 \le r \le n-1\})) \subset \operatorname{Cl}(V_{\kappa^n}) \cup \operatorname{Cl}(\operatorname{Cl}(V_{\kappa^n})) = \operatorname{Cl}(V_{\kappa^n});$ and so $\operatorname{Cl}(V) \subset \operatorname{Cl}(V_{\kappa^n})$.

Case (II). n = 1: for this case, we have $V = V_{\kappa} \cup V_{\mathcal{F}}$ (cf. (I)(*11)(iii) in Section 3). Since V is open, by Proposition 4.1(ii), it is shown that

 $\operatorname{Cl}(V) = \operatorname{Cl}(V_{\kappa}) \cup \operatorname{Cl}(V_{\mathcal{F}}) \subset \operatorname{Cl}(V_{\kappa}) \cup \operatorname{Cl}(\operatorname{Cl}(V_{\kappa})) = \operatorname{Cl}(V_{\kappa}); \text{ and so } \operatorname{Cl}(V) \subset \operatorname{Cl}(V_{\kappa}).$ (\circ) We proceed the proof of (iii). We put $V_{\kappa^n} := \{p(k) \in V | \{p(k)\} \in \kappa^n, k \in \nu\},$ where $\nu \subset \mathbb{Z}$ is an index set (cf. Definition 3.11(i)(i-1)). Since $p(k) \in V_{\kappa^n} \subset V \subset \operatorname{Cl}(B(n))$ and so $p(k) \in \operatorname{Cl}(B(n))$, it is shown that $\{p(k)\} \cap B(n) \neq \emptyset$ and so $p(k) \in B(n)$ for each $k \in \nu$. Namely, we have:

 $(*_8)$ $V_{\kappa^n} \subset (B(n))_{\kappa^n}$ (cf. Definition 3.11(i)(i-1),(ii)(ii-1) and (I)(*11)(v), (II)

(*20)(vi)). Then, using (*7) and (*8) above, we conclude that $\operatorname{Cl}(V) \subset \operatorname{Cl}(V_{\kappa^n}) \subset \operatorname{Cl}((B(n))_{\kappa^n}) = \operatorname{Cl}(\{x(1), x(2), ..., x(s)\}) = \bigcup \{\operatorname{Cl}(\{x(j)\}) | 1 \leq j \leq s\}; \text{ and hence } \operatorname{Cl}(V) \text{ is a finite subset of } (\mathbb{Z}^n, \kappa^n), \text{ because } \operatorname{Cl}(\{y\}) \text{ is a finite subset of } \mathbb{Z} \text{ for every point } y \in \mathbb{Z} \text{ (cf. (I)(*5)(i) in Section 3) and so } \operatorname{Cl}(\{x(j)\}) \text{ is a finite subset of } \mathbb{Z}^n \text{ for each } j \text{ with } 1 \leq j \leq s \text{ (cf. (II)(*12)(a) in Section 3). Therefore, we have A is a finite subset of } (\mathbb{Z}^n, \kappa^n), \text{ because of } V \subset A \subset \operatorname{Cl}(V); \text{ and so } B(n) \text{ is also finite, because of } B(n) \subset A; \text{ this contradicts the definition of the set } B(n) \text{ (i.e., } B(n) \text{ is not finite). Therefore, } A \text{ is not semi-open in } (\mathbb{Z}, \kappa).$

In order to state Theorem 4.4, we need the following definition on $I_r(x)$ and $J_{n-r}(x)$, where $x \in \mathbb{Z}^n$.

Definition 4.3 (cf. Definition 3.11(i)(i-3),(II)(*20)(iv) in Section 3; [39, Definiton 2.1(ii)]) Let $x := (x_1, x_2, ..., x_n) \in (\mathbb{Z}^n)_{mix(r)}$, where $n \ge 2$ and r is the cardinality of a set $\{k \mid x_k \text{ is even}\}$ with $1 \le r \le n-1$ (cf. Definition 3.11(i-3),(II)(*20)(iv) in Section 3; in the present definition, we note the assumption that $1 \le r \le n-1$ and $n \ge 2$; and so $(\mathbb{Z}^n)_{mix(r)} \ne \emptyset$). Let $x_{e(1)}, x_{e(2)}, ..., x_{e(r)}$ be all the components of x which are even; and $x_{o(1)}, x_{o(2)}, ..., x_{o(n-r)}$ be all the components of x which are $e(k)(1 \le k \le r)$ and $o(j)(1 \le j \le n-r)$ are positive integers with $1 \le e(1) < e(2) < ... < e(r) \le n$ and $1 \le o(1) < o(2) < ... < o(n-r) \le n$. Then, for this point $x = (x_1, x_2, ..., x_n)$, we define the following subsets $I_r(x)$ and $J_{n-r}(x)$ of $\{1, 2, ..., n\}$ as follows: • $I_r(x) := \{k \mid x_k \text{ is even}\}; \text{ and so } I_r(x) = \{e(1), e(2), ..., e(r)\} \text{ holds};$ • $J_{n-r}(x) := \{j \mid x_j \text{ is odd}\}; \text{ and so}$

 $J_{n-r}(x) = \{o(1), o(2), ..., o(n-r)\}, \{1, 2, ..., n\} = I_r(x) \cup J_{n-r}(x) \quad (I_r(x) \cap J_{n-r}(x) = \emptyset), I_r(x) \neq \emptyset \text{ and } J_{n-r}(x) \neq \emptyset \text{ hold, where } n \ge 2 \text{ and } 1 \le r \le n-1.$

We construct some semi-open sets containing a point of (\mathbb{Z}^n, κ^n) where $n \ge 1$.

Theorem 4.4 Let $x := (x_1, x_2, ..., x_n) \in \mathbb{Z}^n$.

(i) Suppose $n \ge 1$. If $x \in (\mathbb{Z}^n)_{\kappa^n}$, *i.e.*, all the components $x_1, x_2, ..., x_n$ of the point x are odd (cf. Definition 3.11(i)(i-1)), then $\{x\}$ is a semi-open set containing x in (\mathbb{Z}^n, κ^n) .

(ii) Suppose $n \ge 1$ and $x := (x_1, x_2, ..., x_n) \in (\mathbb{Z}^n)_{\mathcal{F}^n}$, i.e., all the components $x_1, x_2, ..., x_n$ of the point x are even (cf. Definition 3.11(i)(i-2)). Then, we have the following properties.

(ii-1) We set $A(x) := \{(x_1 + i_1, x_2 + i_2, ..., x_n + i_n) \in \mathbb{Z}^n | i_k \in \{+1, -1\} (1 \le k \le n)\}$ for the point $x = (x_1, x_2, ..., x_n) \in (\mathbb{Z}^n)_{\mathcal{F}^n}$. Then, $\#A(x) = 2^n$ holds. And, for each point of A(x), say $p(x, u)(1 \le u \le 2^n)$, the singleton $\{p(x, u)\}$ is open in (\mathbb{Z}^n, κ^n) .

(ii-2) In (\mathbb{Z}^n, κ^n) , $\{p(x, u)|1 \le u \le 2^n\} = (U^n(x))_{\kappa^n}$ holds, where $U^n(x)$ is the smallest open set (cf. Definition 3.7, Theorem 3.9) containing the point $x \in (\mathbb{Z}^n)_{\mathcal{F}^n}$.

(ii-3) The subset $\{x\} \cup \{p(x, u)\}$ is a semi-open set containing the point $x \in (\mathbb{Z}^n)_{\mathcal{F}^n}$ for each u with $1 \leq u \leq 2^n$.

(iii) Suppose $n \ge 2$ and $x := (x_1, x_2, ..., x_n) \in (\mathbb{Z}^n)_{mix(r)}$ where $1 \le r \le n-1$ (cf. Definition 3.11(i)(i-3),(II)(*20)(iv) in Section 3). Let $I_r(x) = \{e(1), e(2), ..., e(n)\}$

..., e(r) and $J_{n-r}(x) = \{o(1), o(2), ..., o(n-r)\}$ (cf. Definition 4.3). Then, we have the following properties.

(iii-1) We set $B(x) := \{(z_1, z_2, ..., z_n) \in \mathbb{Z}^n | z_{e(k)} \in \{x_{e(k)} - 1, x_{e(k)} + 1\} \ (1 \le k \le r), z_{o(j)} = x_{o(j)} \ (1 \le j \le n - r)\}$ for the point $x = (x_1, x_2, ..., x_n) \in (\mathbb{Z}^n)_{mix(r)}$. Then, $\#B(x) = 2^r$. And, for each point of B(x), say $p(x, u)(1 \le u \le 2^r)$, the singleton $\{p(x, u)\}$ is open in (\mathbb{Z}^n, κ^n) .

(iii-2) In (\mathbb{Z}^n, κ^n) , $\{p(x, u)|1 \le u \le 2^r\} = (U^n(x))_{\kappa^n}$ holds, where $U^n(x)$ is the smallest open set containing the point $x \in (\mathbb{Z}^n)_{mix(r)}$.

(iii-3) The subset $\{x\} \cup \{p(x, u)\}$ is a semi-open set containing the point $x \in (\mathbb{Z}^n)_{mix(r)}$ for each u with $1 \leq u \leq 2^r$.

Proof. (i) For the point $x \in (\mathbb{Z}^n)_{\kappa^n}$, the singleton $\{x\}$ is open in (\mathbb{Z}^n, κ^n) (cf. Proposition 3.5(iii)(b)); and so it is semi-open.

(ii) (ii-1) Obviously, the cardinality of A(x) is 2^n . The point p(x, u), where $1 \le u \le 2^n$, is expressible as $p(x, u) = (x_1 + i_1, x_2 + i_2, ..., x_n + i_n)$ for some integers $i_k \in \{+1, -1\} (1 \le k \le n)$ and so all the components of p(x, u) are odd, because all the components $x_1, x_2, ..., x_n$ are even. Thus, $\{p(x, u)\}$ is open in (\mathbb{Z}^n, κ^n) (cf. Proposition 3.5(iii)(b)).

(ii-2) For the point $x \in (\mathbb{Z}^n)_{\mathcal{F}^n}$, we set $x = (2s_1, 2s_2, ..., 2s_n)$ for some integers $s_i(1 \le i \le n)$. Then, $U^n(x) = \prod_{i=1}^n U(2s_i) = \prod_{i=1}^n \{2s_i - 1, 2s_i, 2s_i + 1\}$ is the smallest open set containing x (cf. Definition 3.7 and (I)(*4)(i) in Section 3). Since $(U^n(x))_{\kappa^n} = \{z \in U^n(x) | \{z\} \text{ is open in } (\mathbb{Z}^n, \kappa^n)\} = \{(z_1, z_2, ..., z_n) \in \prod_{i=1}^n \{2s_i - 1, 2s_i, 2s_i + 1\} | z_1, z_2, ..., z_n \text{ are odd } \}$, we have $(U^n(x))_{\kappa^n} = \{(2s_1 + i_1, 2s_2 + i_2, ..., 2s_n + i_n) \in \mathbb{Z}^n | i_k \in \{+1, -1\} (1 \le k \le n)\} = A(x)$; and so we have $(U^n(x))_{\kappa^n} = \{p(x, u) | 1 \le u \le 2^n\}$ (cf. Definition 3.11(i)(i-1),(ii)(ii-1) and (ii-1) above).

(ii-3) We first claim that $x \in Cl(\{p(x,u)\})$ for each u with $1 \le u \le 2^n$. Indeed, we have $Cl(\{p(x,u)\}) = \prod_{k=1}^n Cl(\{x_k+i_k\}) = \prod_{k=1}^n \{x_k+i_k-1, x_k+i_k, x_k+i_k+1\}$ (cf. (II)(*12)(a) in Section 3, Proposition 3.5(i)(a)); and so $x = (x_1, x_2, ..., x_n) \in \prod_{k=1}^n Cl(\{x_k+i_k\}) = Cl(\{p(x,u)\})$. Thus, we show that $\{x\} \cup \{p(x,u)\} \subset Cl(\{p(x,u)\}) = Cl(Int(\{p(x,u)\})) \subset C$

 $(\{x\} \cup \{p(x,u)\}))$ (cf. (ii-1) above), i.e., $\{x\} \cup \{p(x,u)\} \subset Cl(Int(\{x\} \cup \{p(x,u)\}))$. Namely, $\{x\} \cup \{p(x,u)\}$ is semi-open in (\mathbb{Z}^n, κ^n) for each u with $1 \le u \le 2^n$.

(iii) (iii-1) By the definition of B(x), it is obviously shown that $\#B(x) = 2^r$. A point p(x, u) of B(x) is expressible as $p(x, u) = (z(u)_1, z(u)_2, ..., z(u)_n)$, where $z(u)_{e(k)} \in \{x_{e(k)} - 1, x_{e(k)} + 1\}$ $(1 \le k \le r)$ and $z(u)_{o(j)} = x_{o(j)}$ $(1 \le j \le n - r)$. We recall that the *r* components $x_{e(1)}, x_{e(2)}, ..., x_{e(r)}$ are all even and the n-r components $x_{o(1)}, x_{o(2)}, ..., x_{o(n-r)}$ are all odd, because we assume that $x = (x_1, x_2, ..., x_n) \in (\mathbb{Z}^n)_{mix(r)}$ where $1 \le r \le n - 1(n \ge 2)$ and $I_r(x) := \{k \mid x_k \text{ is even}\} = \{e(1), e(2), ..., e(r)\}$ (e(1) < e(2) < ... < e(r)); and

 $\begin{aligned} J_{n-r}(x) &:= \{j | x_j \text{ is odd }\} = \{o(1), o(2), ..., o(n-r)\} \ (o(1) < o(2) < ... < o(n-r)) \ (\text{cf. Definition 3.11(i)(i-3),(II)(*20)(iv) in Section 3 and Definition 4.3 above). Then, since the integers \\ x_{e(k)} - 1, x_{e(k)} + 1 \text{ and } x_{o(j)} \text{ are odd, all the components } z(u)_1, z(u)_2, ..., z(u)_n \text{ are odd for each } u \text{ with } 1 \leq u \leq 2^r. \text{ We have that the singleton } \{p(x, u)\} = \{(z(u)_1, z(u)_2, ..., z(u)_n)\} \\ \text{ is open in } (\mathbb{Z}^n, \kappa^n) \ (\text{cf. Proposition 3.5(iii)(b)}). \end{aligned}$

(iii-2) We recall that, for this point $x \in (\mathbb{Z}^n)_{mix(r)}$, $U^n(x) = \prod_{i=1}^n U(x_i)$, where $U(x_{e(k)}) = \{x_{e(k)} - 1, x_{e(k)}, x_{e(k)} + 1\} (1 \le k \le r)$ and $U(x_{o(j)}) = \{x_{o(j)}\} (1 \le j \le n-r)$ (cf. Definition 4.3,Definition 3.7,(I)(*4)(i)(ii) in Section 3). Thus, we have that $(z_1, z_2, ..., z_n) \in (U^n(x))_{\kappa^n}$ if and only if $z_{e(k)} \in \{x_{e(k)} - 1, x_{e(k)} + 1\}$ and $z_{o(j)} = x_{o(j)}$ for integers k, j with $1 \le k \le r$ and $1 \le j \le n-r$ (cf. Proposition 3.5(iii)(b), Definition 4.3). Namely, we have $(U^n(x))_{\kappa^n} = B(x)$ for the point $x \in (\mathbb{Z}^n)_{mix(r)}$ and so $(U^n(x))_{\kappa^n} = \{p(x, u) | 1 \le u \le 2^r\}$ (cf. (iii-1) above).

(iii-3) We first claim that (*) $\{x\} \cup \{p(x,u)\} \subset Cl(\{p(x,u)\})$ holds in (\mathbb{Z}^n, κ^n) for each u with $1 \leq u \leq 2^r$. Indeed, for the point p(x,u), we set $p(x,u) := (z(u)_1, z(u)_2, ..., z(u)_n)$ (cf. (iii-1) above). Then, for each positive integers k, j with $1 \leq k \leq r$ and $1 \leq j \leq n-r$, it is shown that: in (\mathbb{Z}, κ) ,

 $\begin{array}{l} \text{if } z(u)_{e(k)} = x_{e(k)} - 1, \, \text{then } \operatorname{Cl}(\{z(u)_{e(k)}\}) = \{x_{e(k)} - 2, x_{e(k)} - 1, x_{e(k)}\} \, \text{holds}; \\ \text{if } z(u)_{e(k)} = x_{e(k)} + 1, \, \text{then } \operatorname{Cl}(\{z(u)_{e(k)}\}) = \{x_{e(k)}, x_{e(k)} + 1, x_{e(k)} + 2\} \, \text{holds}; \\ \text{if } z(u)_{o(j)} = x_{o(j)}, \, \text{then } \operatorname{Cl}(\{z(u)_{o(j)}\}) = \{x_{o(j)} - 1, x_{o(j)}, x_{o(j)} + 1\} \, \text{holds}, \, (\text{cf. } (I)(*5)(\text{i}) \, \text{in} \\ \text{Section 3). Thus, we show that } x_{e(k)} \in \operatorname{Cl}(\{z(u)_{e(k)}\}) \, \text{and } x_{o(j)} \in \operatorname{Cl}(\{z(u)_{o(j)}\}) \, (1 \le k \le r \\ \text{and } 1 \le j \le n - r); \, \text{and so } \{x\} \subset \prod_{i=1}^{n} \operatorname{Cl}(\{z(u)_{i}\}) \, \text{holds in } (\mathbb{Z}^{n}, \kappa^{n}). \, \text{Since } \operatorname{Cl}(\{p(x, u)\}) = \\ \prod_{i=1}^{n} \operatorname{Cl}(\{z(u)_{i}\}) \, \text{in } (\mathbb{Z}^{n}, \kappa^{n}) \, (\text{cf. } (II)(*12) \, \text{in Section 3}), \, \text{we show that } \{x\} \subset \operatorname{Cl}(\{p(x, u)\}) \\ \text{and } \{x\} \cup \{p(x, u)\} \subset \end{array}$

 $\operatorname{Cl}(\{p(x, u)\})$ hold in (\mathbb{Z}^n, κ^n) .

We finally finish the proof of (iii-3): there exists an open set $\{p(x,u)\}$ such that $\{p(x,u)\} \subset \{x\} \cup \{p(x,u)\} \subset Cl(\{p(x,u)\})$, i.e., $\{x\} \cup \{p(x,u)\}$ is a semi-open in (\mathbb{Z}^n, κ^n) for each u with $1 \leq u \leq 2^r$.

Theorem 4.5 For the digital n-space (\mathbb{Z}^n, κ^n) where $n \ge 1$, we have the following properties.

- (i) For any point x of (\mathbb{Z}^n, κ^n) , $sKer(\{x\}) = \{x\}$.
- (ii) For any subset E of (\mathbb{Z}^n, κ^n) , sKer(E) = E.

Proof. (i) We first note that: for the case where n = 1,

 $\mathbb{Z}^n = (\mathbb{Z}^n)_{\kappa^n} \cup (\mathbb{Z}^n)_{\mathcal{F}^n}$ (disjoint union) holds, where n = 1 (cf. (I)(*11)(iii) in Section 3); for the case where $n \ge 2$,

 $\mathbb{Z}^n = (\mathbb{Z}^n)_{\kappa^n} \cup (\mathbb{Z}^n)_{\mathcal{F}^n} \cup (\bigcup \{ (\mathbb{Z}^n)_{mix(r)} | 1 \le r \le n-1 \}) \text{ (disjoint union) and } (\mathbb{Z}^n)_{mix(r)} \ne \emptyset (1 \le r \le n-1) \text{ hold, where } n \ge 2 \text{ (cf. Definition 3.11, (II)(*20)(iv) in Section 3).}$

Let $x \in \mathbb{Z}^n$. It is enough to consider the following three cases for the point $x \in \mathbb{Z}^n$.

Case 1. $x \in (\mathbb{Z}^n)_{\kappa^n}$ (cf. Definition 3.11(i)(i-1)): since $\{x\}$ is open in (\mathbb{Z}^n, κ^n) , it is semiopen. Then, it is obvious that sKer($\{x\}$) = $\{x\}$ in (\mathbb{Z}^n, κ^n) (cf. Definition 2.2(i)). We note this result is true for the case where $n \geq 1$.

Case 2. $x \in (\mathbb{Z}^n)_{\mathcal{F}^n}$ (cf. Definition 3.11(i)(i-2)): we put $x = (2s_1, 2s_2, ..., 2s_n)$ where

 $s_i \in \mathbb{Z}$ $(1 \le i \le n)$. Note that, for the point $x \in (\mathbb{Z}^n)_{\mathcal{F}^n}$, $U^n(x) := \prod_{i=1}^n \{2s_i - 1, 2s_i, 2s_i + 1\}$ is the smallest open set containing x (cf. Definition 3.7,(I)(*4)(i) in Section 3, Theorem 3.9). Then, by Theorem 4.4(ii), there exist 2^n semi-open sets $\{x\} \cup \{p(x,u)\}(1 \le u \le 2^n)$ containing the point $x \in (\mathbb{Z}^n)_{\mathcal{F}^n}$ such that $\{p(x,u)|1 \le u \le 2^n\} = (U^n(x))_{\kappa^n} = \{(2s_1 + i_1, 2s_2 + i_2, ..., 2s_n + i_n)|i_k \in \{+1, -1\}(1 \le k \le n)\}$ and $\#((U^n(x))_{\kappa^n}) = 2^n$. Thus, we have sKer($\{x\}) \subset \bigcap\{\{x\} \cup \{p(x,u)\}| \ 1 \le u \le 2^n\}$; moreover, $\bigcap\{\{x\} \cup \{p(x,u)\}| \ 1 \le u \le 2^n\} = \{x\}$ holds for this case. We note the result above is true for the case where $n \ge 1$.

Case 3. $x \in (\mathbb{Z}^n)_{mix(r)}$ where $1 \leq r \leq n - 1$ $(n \geq 2)$ (cf. Definition 3.11(i)(i-3)): for this point x, we set $x = (x_1, x_2, ..., x_n)$; then by definition, $r = \#\{i | x_i \text{ is an even integer } (1 \leq i \leq n)\}$. We recall the following subsets $I_r(x)$ and $J_{n-r}(x)$ as follows (cf. Definition 4.3 above):

 $I_r(x) := \{k \mid x_k \text{ is even}\} = \{e(1), e(2), \dots, e(r)\} \ (e(1) < e(2) < \dots < e(r)); \text{ and }$

 $J_{n-r}(x) := \{j | x_j \text{ is odd }\} = \{o(1), o(2), \dots, o(n-r)\} \ (o(1) < o(2) < \dots < o(n-r)\}; \text{ and } \{1, 2, \dots, n\} = I_r(x) \cup J_{n-r}(x) \ (\text{disjoint union}), \ I_r(x) \neq \emptyset, J_{n-r}(x) \neq \emptyset.$

For the point $x \in (\mathbb{Z}^n)_{mix(r)}, U^n(x) = \prod_{i=1}^n U(x_i)$ is the smallest open set containing x, where $U(x_{e(k)}) = \{x_{e(k)} - 1, x_{e(k)}, x_{e(k)} + 1\} (1 \le k \le r)$ and $U(x_{o(j)}) = \{x_{o(j)}\} (1 \le j \le n - r)$ (cf. Definition 3.7,(I)(*4) in Section 3,Theorem 3.9). Then, using Theorem 4.4(iii), there exist the 2^r semi-open sets $\{x\} \cup \{p(x, u)\} (1 \le u \le 2^r)$ containing the point $x \in (\mathbb{Z}^n)_{mix(r)}$ such that $\{p(x, u)|1 \le u \le 2^r\} = (U^n(x))_{\kappa^n} = \{(z_1, z_2, ..., z_n)|z_{e(k)} \in \{x_{e(k)} + 1, x_{e(k)} - 1\} (1 \le k \le r), z_{o(j)} = x_{o(j)} (1 \le j \le n - r)\}$ and $\#((U^n(x))_{\kappa^n}) = 2^r$. Thus, it is shown that $\mathrm{sKer}(\{x\}) \subset \bigcap\{\{x\} \cup \{p(x, u)\}| \ 1 \le u \le 2^r\} = \{x\} \cup (\bigcap\{\{p(x, u)\}| \ 1 \le u \le 2^r\} = \{x\}$ because $\bigcap\{\{p(x, u)\}| \ 1 \le u \le 2^r\} = \emptyset$. Then, we show that $\mathrm{sKer}(\{x\}) = \{x\}$ holds for this case.

Therefore, for all cases above, we have proved that $\operatorname{sKer}(\{x\}) = \{x\}$ holds in (\mathbb{Z}^n, κ^n) , $n \ge 1$.

(ii) Since $E = \bigcup \{\{x\} | x \in E\}$, by Proposition 2.4(i.e., [4, Proposition 3.1]) and (i), it is shown that $\operatorname{sKer}(E) = \bigcup \{\operatorname{sKer}(\{x\}) | x \in E\} = \bigcup \{\{x\} | x \in E\} = E$.

The following result is a characterization of the ω -closed sets in Sundaram-Sheik John's sense of (\mathbb{Z}^n, κ^n) .

Theorem 4.6 For a subset A of (\mathbb{Z}^n, κ^n) , where $n \ge 1, A$ is closed in (\mathbb{Z}^n, κ^n) if and only if A is an ω -closed set in Sundaram-Sheik John's sense of (\mathbb{Z}^n, κ^n) .

Proof. By Theorem 2.5, it is obtained that a subset A is an ω -closed in Sundaram-Sheik John's sense of (\mathbb{Z}^n, κ^n) if and only if $\operatorname{Cl}(A) \subset \operatorname{sKer}(A)$. Then, by Theorem 4.5 (ii), it is well known that $A = \operatorname{sKer}(A)$ holds. Thus, A is ω -closed in Sundaram-Sheik John's sense if and only if $\operatorname{Cl}(A) \subset A$ (i.e., A is closed in (\mathbb{Z}^n, κ^n)).

Remark 4.7 (i) Every subset of (\mathbb{Z}^n, κ^n) is a Λ_s -set in (\mathbb{Z}^n, κ^n) . Indeed, let E be a subset of (\mathbb{Z}^n, κ^n) . By Theorem 4.5 (ii) and Definition 2.3, it is shown that $E = \operatorname{sKer}(E)$ holds, i.e., E is a Λ_s -set of (\mathbb{Z}^n, κ^n) .

(ii) By (i) and Proposition 2.6, it is obtained that (\mathbb{Z}^n, κ^n) is a semi-T₁ topological space. However, we note that, in 2004, S.I. Nada [30, Theorem 4.2, Theorem 4.1] proved that (\mathbb{Z}^n, κ^n) is semi-T₂; the proof is very elegantly done, using the semi-T₂ separation property of (\mathbb{Z}, κ) and the product topology of κ ; and hence their product space (\mathbb{Z}^n, κ^n) is semi-T₂; in 2006, present authors [11, Theorem 2.3, Theorem 4.8 (i)] proved that (\mathbb{Z}, κ) and (\mathbb{Z}^2, κ^2) are semi-T₂. But, in the end of the present paper (Corollary 4.10 below), we shall mention an alternative proof of the result ([30, Theorem 4.2]) using Theorem 4.4 and ideas in [39].

Example 4.8 In general, ω -closed sets in Sundaram-Sheik John's sense of a topological space are placed between closed sets and g-closed sets (cf. Definition 2.1(ii) (i.e.,[35])). The following example shows that there is a g-closed sets which is not an ω -closed set in Sundaram-Sheik John's sense of (\mathbb{Z}^n, κ^n) (i.e., closed set in (\mathbb{Z}^n, κ^n) , cf. Theorem 4.6). Suppose $n \geq 2$. Let $A := \mathbb{Z}^n \setminus (\bigcup \{ (\mathbb{Z}^n)_{mix(r)} | 1 \leq r \leq n-1 \})$, i.e., $A = (\mathbb{Z}^n)_{\mathcal{F}^n} \cup (\mathbb{Z}^n)_{\kappa^n}$ and $A \neq \emptyset$. We consider the following figure which is shown by the symbols $\bullet \in (\mathbb{Z}^n)_{\mathcal{F}^n}$ and $\circ \in (\mathbb{Z}^n)_{\kappa^n}$ in \mathbb{Z}^2 . The figure shows the subset A above for n = 2.

									L									
									1									
• • •									•••									• • •
• • •	٠	•	٠	•	٠	•	٠	•	٠	•	٠	•	٠	•	٠	•	• • •	
• • •	•	0	•	0	•	0	•	0	•	0	•	0	•	0	•	0	• • •	
• • •	٠	•	٠	•	٠	•	٠	•	٠	•	٠	•	٠	•	٠	•	\rightarrow	\mathbb{Z}
• • •	•	0	•	0	•	0	•	0	•	0	•	0	•	0	•	0	• • •	
• • •	٠	•	٠	•	٠	•	٠	•	٠	•	٠	•	٠	•	٠	•	• • •	

Let V be an open set containing A. Then, in below, it is proved that $V = \mathbb{Z}^n$; and hence the set A is g-closed in (\mathbb{Z}^n, κ^n) (cf. Definition 2.1(i), i.e., [22, Definition 2.1]). (Proof of the property: $V \supset \mathbb{Z}^n$). Let $x := (x_1, x_2, ..., x_n) \in \mathbb{Z}^n$ such that $x \notin A$. For this point x, we have $x \in (\mathbb{Z}^n)_{mix(r)}$ for some integer r with $1 \leq r \leq n-1$. The component $x_{e(k)}$ is even, where $e(k) \in I_r(x)$ ($1 \leq k \leq r$) and $x_{o(j)}$ is odd, where $o(j) \in J_{n-r}(x)$ $(1 \leq j \leq n-r)$ (cf. the notation in Definition 4.3, the proof (Case 3) of Theorem 4.5(i) or in the proof (Case 2) of Proposition 4.1(i)). We pick a point $y := (y_1, y_2, ..., y_n)$ as follow: $y_{e(k)} := x_{e(k)}(1 \leq k \leq r)$ and $y_{o(j)} := x_{o(j)} + 1(1 \leq j \leq n-r)$. Then, $y \in (\mathbb{Z}^n)_{\mathcal{F}^n} \subset A$ and $x \in U^n(y)$. Since $y \in A \subset V$ and V is open, we have $U^n(y) \subset V$ (cf. Definition 3.7, (I)(*4)(i)(ii) in Section 3, Theorem 3.9(iii)); and so $x \in V$. (\circ) Thus, we have $\operatorname{Cl}(A) \subset \mathbb{Z}^n = V$ for an open set V such that $A \subset V$, i.e., A is g-closed. On the other hand, it is shown that $\operatorname{Cl}(A) = \mathbb{Z}^n$ and so A is not closed in (\mathbb{Z}^n, κ^n) (cf. Theorem 4.6).

We mention an alternative proof of the result [30, Theorem 4.2] (cf. Remark 4.7(ii) above). For (\mathbb{Z}^n, κ^n) $(n \ge 2)$, we can construct directly two disjoint semi-open sets separating two given distinct points (cf. Corollary 4.10). We need the following property Theorem 4.9 on the smallest open sets and Theorem 4.4.

Theorem 4.9 Let $x, x' \in \mathbb{Z}^n$, where $1 \leq n$. If $x \neq x'$ in (\mathbb{Z}^n, κ^n) , then $(U^n(x))_{\kappa^n} \neq (U^n(x'))_{\kappa^n}$ holds.

Proof. We first recall that $\mathbb{Z}^n = (\mathbb{Z}^n)_{\kappa^n} \cup (\mathbb{Z}^n)_{\mathcal{F}^n} \cup (\bigcup\{(\mathbb{Z}^n)_{mix(r)}|1 \le r \le n-1\})$ (disjoint union) holds and $(\mathbb{Z}^n)_{mix(r)} \neq \emptyset(1 \le r \le n-1)$ if $n \ge 2$ (cf. (II)(*20)(iv) in Section 3). Since $\{x, x'\} \subset \mathbb{Z}^n$, we should check the cases below, Case i $(1 \le i \le 3)$, in order to prove $(U^n(x))_{\kappa^n} \neq (U^n(x'))_{\kappa^n}$. We secondly suppose, for a contradiction, that $(*1) \quad (U^n(x))_{\kappa^n} = (U^n(x'))_{\kappa^n}$ holds.

Case 1. $x \in (\mathbb{Z}^n)_{\kappa^n}$ and $x' \in (\mathbb{Z}^n)_{\kappa^n}$ (cf. Definition 3.11(i)(i-1)): for these points x and x', we have that $\{x\}$ and $\{x'\}$ are open singletons and $U^n(x) = \{x\}$ and $U^n(x') = \{x'\}$ (cf. Definition 3.7, (I)(*4)(ii) in Section 3); and so, by (*1) above, $\{x\} = (U^n(x))_{\kappa^n} = (U^n(x'))_{\kappa^n} = \{x'\}$. This contradicts the first setting of the given points x and x' (i.e., $x' \neq x$).

Case 2. $x \in (\mathbb{Z}^n)_{\kappa^n}$ and $x' \in (\mathbb{Z}^n)_{\mathcal{F}^n} \cup (\bigcup\{(\mathbb{Z}^n)_{mix(r')}|1 \leq r' \leq n-1\})$ (cf. Definition 3.11(i)): for this case, $\{x\} = U^n(x)$ holds (cf. Definition 3.7(I)(*4)(ii) in Section 3); and by Theorem 4.4(ii)(iii), it is obtained that $\#(U^n(x'))_{\kappa^n} = 2^{R'}$, where R' := n if $x' \in (\mathbb{Z}^n)_{\mathcal{F}^n}$

and R' := r' if $x' \in (\mathbb{Z}^n)_{mix(r')} (1 \le r' \le n-1)$. And so, by (*1), we have that $2^{R'} = 1$ holds, i.e., $2^n = 1$ or $2^{r'} = 1$. These contradict the first setting of the given integers n with $n \ge 1$ and r' with $1 \le r' \le n-1$.

Case 3. $\{x, x'\} \subset (\mathbb{Z}^n)_{\mathcal{F}^n} \cup (\bigcup \{ (\mathbb{Z}^n)_{mix(r)} | 1 \le r \le n-1 \})$ (cf. Definition 3.11(i)(i-2)(i-3)):

By Theorem 4.4(ii) and (iii) for the point x, there exist the open singletons $\{p(x,u)\}(1 \leq u \leq R\}$ such that $(U^n(x))_{\kappa^n} = \{p(x,u)|1 \leq u \leq R\}$ holds, where R := n if $x \in (\mathbb{Z}^n)_{\mathcal{F}^n}$ and R := r if $x \in (\mathbb{Z}^n)_{mix(r)}(1 \leq r \leq n-1, n \geq 2)$. Moreover, for the point x', there exist the open singletons $\{p(x',u')\}(1 \leq u' \leq R'\}$ such that $(U^n(x'))_{\kappa^n} = \{p(x',u')|1 \leq u' \leq R'\}$ holds, where R' := n if $x' \in (\mathbb{Z}^n)_{\mathcal{F}^n}$ and R' := r' if $x' \in (\mathbb{Z}^n)_{mix(r')}(1 \leq r' \leq n-1)$ and $n \geq 2$. We may assume that $R' \leq R$. Then, $\{p(x',u')|1 \leq u' \leq 2^{R'}\} = (U^n(x'))_{\kappa^n} = (U^n(x))_{\kappa^n} \cap (U^n(x'))_{\kappa^n} = (U^n(x) \cap U^n(x'))_{\kappa^n} \subset U^n(x) \cap U^n(x')$. Namely, $U^n(x) \cap U^n(x')$ contains exactly the $2^{R'}$ open singletons $\{p(x',u')\}$ $(1 \leq u' \leq 2^{R'})$. This shows that the assumptions of Theorem 3.12 (i.e., [39, Lemma 2.3]) are satisfied. And, using (*1) above, we have $2^{R'} = \#((U^n(x'))_{\kappa^n}) = \#((U^n(x))_{\kappa^n}) = 2^R$ and so R' = R. Then, under the assumption (*1) above, we do not have the case where that (R', R) = (r', n) or (n, r), because $r, r' \in \{1, 2, ..., n-1\}$ hold. Namely, under (*1), the following case does not occurs : $x \in (\mathbb{Z}^n)_{\mathcal{F}^n}$ and $x' \in (\mathbb{Z}^n)_{mix(r')}(1 \leq r' \leq n-1)$ (or $x' \in (\mathbb{Z}^n)_{\mathcal{F}^n}$ and $x \in (\mathbb{Z}^n)_{\mathcal{F}^n}$) or (R', R) = (r', r) (i.e., $x \in (\mathbb{Z}^n)_{mix(r)}$ and $x' \in (\mathbb{Z}^n)_{mix(r')}$) with $r, r' \in \{1, 2, ..., n-1\}$, using Theorem 3.12(iii)' (i.e., [39, Lemma 2.3]), we have x' = x; this contradicts the first setting of the given points x and x' (i.e., $x' \neq x$).

Therefore, we show the required property that $(*2) (U^n(x))_{\kappa^n} \neq (U^n(x'))_{\kappa^n}$ holds if $x \neq x'$ in (\mathbb{Z}^n, κ^n) .

Corollary 4.10 (Namda [30, Theorem 4.2] for any $n \ge 1$; [11] for n = 1, 2) The digital *n*-space (\mathbb{Z}^n, κ^n) is a semi-T₂-space.

Proof. Suppose $n \ge 2$ in the present proof; and so we have $(\mathbb{Z}^n)_{mix(r)} \ne \emptyset$ for each integer r with $1 \le r \le n-1$ (cf. Definition 3.11(i)(i-3)). We use Theorem 4.4 on the construction of semi-open sets in (\mathbb{Z}^n, κ^n) and Theorem 4.9; and we prove that (\mathbb{Z}^n, κ^n) is semi- T_2 , where $n \ge 2$, as follows.

Let x and x' be any distinct points of (\mathbb{Z}^n, κ^n) . We set $x = (x_1, x_2, ..., x_n)$ and $x' = (x'_1, x'_2, ..., x'_n)$, where $x_i \in \mathbb{Z}$ and $x'_i \in \mathbb{Z}(1 \le i \le n)$. Since $\{x, x'\} \subset \mathbb{Z}^n = (\mathbb{Z}^n)_{\kappa^n} \cup (\mathbb{Z}^n)_{\mathcal{F}^n} \cup (\bigcup \{(\mathbb{Z}^n)_{mix(r)} | 1 \le r \le n-1\})$ (disjoint union) (cf. (II)(*20)(iv) in Section 3), we consider the required proof for the following cases.

For the points x and x', we first use Theorem 4.9; we have that:

(*2) $(U^n(x))_{\kappa^n} \neq (U^n(x'))_{\kappa^n}$ holds, where $U^n(y)$ is the smallest open set containing each point $y \in \{x, x'\}$. Namely, we have that:

• (*a) there exists a point $z \in (U^n(x))_{\kappa^n}$ and $z \notin (U^n(x'))_{\kappa^n}$; or,

• (*b) there exists a point $z' \in (U^n(x'))_{\kappa^n}$ and $z' \notin (U^n(x))_{\kappa^n}$.

Case 1. $x \in (\mathbb{Z}^n)_{\kappa^n}$ and $x' \in (\mathbb{Z}^n)_{\kappa^n}$: it is obviouse that $\{x\}$ and $\{x'\}$ are the required disjoint semi-open sets, because every open set is semi-open.

Case 2. $\{x, x'\} \subset (\mathbb{Z}^n)_{\mathcal{F}^n} \cup (\bigcup \{(\mathbb{Z}^n)_{mix(r)} | 1 \le r \le n-1\}):$

• For Case (*a) above, by Theorem 4.4(ii) and (iii) for the point x, it is shown that $z = p(x, u_0)$ holds for some point $p(x, u_0) \in (U^n(x))_{\kappa^n} (1 \le u_0 \le 2^R)$, where R := n if $x \in (\mathbb{Z}^n)_{\mathcal{F}^n}$ and R := r if $x \in (\mathbb{Z}^n)_{mix(r)}$, because $(U^n(x))_{\kappa^n} = \{p(x, u) | 1 \le u \le 2^R\}$ holds. Moreover, we have that $\{x\} \cup \{z\}$ is a semi-open set containing the point x (cf. Theorem 4.4 (ii-3) and (iii-3)). Using Theorem 4.4 (ii) and (iii) for the point x', we can take any semi-open sets $\{x'\} \cup \{p(x', u')\}$ containing x', where $\{p(x', u')|1 \le u' \le 2^{R'}\} = (U^n(x'))_{\kappa^n}$ and

the integer R' is defined by R' := n if $x' \in (U^n(x'))_{\mathcal{F}^n}$ and R' := r' if $x' \in (U^n(x'))_{mix(r')}$ with $1 \leq r' \leq n-1$. Then, we have that $(\{x\} \cup \{z\}) \cap (\{x'\} \cup \{p(x',u')\}) = (\{x\} \cap \{x'\}) \cup (\{x\} \cap \{p(x',u')\}) \cup (\{z\} \cap \{x'\}) \cup (\{z\} \cap \{p(x',u')\}) \subset (V \cap (\mathbb{Z}^n)_{\kappa^n}) \cup ((U^n(x))_{\kappa^n} \cap V) \cup (\{z\} \cap (U^n(x'))_{\kappa^n}) = \emptyset$, where $V := (\mathbb{Z}^n)_{\mathcal{F}^n} \cup (\bigcup \{(\mathbb{Z}^n)_{mix(r)}) \le r \leq n-1\})$, because of the decomposition of \mathbb{Z}^n and the property in (*a) (i.e., $z \notin (U^n(x'))_{\kappa^n}$). Thus, for Case (*a), $\{x\} \cup \{z\}$ and $\{x'\} \cup \{p(x',u')\}$ are the required disjoint semi-open sets containing the points x and x', respectively.

• For Case (*b) above, by Theorem 4.4(ii) and (iii) for the point x', it is shown that $z' = p(x', u'_0)$ for some point $p(x', u'_0) \in (U^n(x'))_{\kappa^n}$, because $(U^n(x'))_{\kappa^n} = \{p(x', u')|1 \leq u' \leq R'\}$ holds, where R' := n if $x' \in (\mathbb{Z}^n)_{\mathcal{F}^n}$ and R' := r' if $x' \in (\mathbb{Z}^n)_{mix(r')}$ with $1 \leq r' \leq n-1$. Here we note that $z' \notin (U^n(x))_{\kappa^n}$. It is shown that $\{x'\} \cup \{z'\}$ (i.e., $\{x'\} \cup \{p(x', u'_0)\}$) is the required semi-open set containing x' (cf. Theorem 4.4(ii-3) and (ii-3) for the point x'). Using Theorem 4.4 (ii) and (iii) for the point x, we can take any semi-open sets $\{x\} \cup \{p(x, u)\}$ containing x, where $\{p(x, u)|1 \leq u \leq 2^R\} = (U^n(x))_{\kappa^n}$ for the integer R with R := n if $x \in (U^n(x))_{\mathcal{F}^n}$ and R := r if $x \in (U^n(x))_{mix(r)}$ with $1 \leq r \leq n-1$. Thus, the above semi-open sets $\{x\} \cup \{p(x, u)\}$ and $\{x'\} \cup \{z'\}$ are the required disjoint semi-open sets containing the point x and x', respectively. Indeed, we have that $(\{x\} \cup \{p(x, u)\}) \cap (\{x'\} \cup \{z'\}) = (\{x\} \cap \{x'\}) \cup (\{x\} \cap \{z'\}) \cup (\{p(x, u)\} \cap \{x'\}) \cup (\{p(x, u)\} \cap \{x'\}) \cup ((U^n(x))_{\kappa^n} \cap V) \cup ((U^n(x))_{\kappa^n} \cap \{z'\}) = \emptyset$, where $V := (\mathbb{Z}^n)_{\mathcal{F}^n} \cup (\bigcup \{(\mathbb{Z}^n)_{mix(r)})|1 \leq r \leq n-1\})$, because of the setting that $x \neq x'$, the decomposition of \mathbb{Z}^n and $z' \notin (U^n(x))_{\kappa^n}$ for the Case (*b).

Case 3. $x \in (\mathbb{Z}^n)_{\kappa^n}$ and $x' \in (\mathbb{Z}^n)_{\mathcal{F}^n} \cup (\bigcup \{ (\mathbb{Z}^n)_{mix(r)} | 1 \leq r \leq n-1 \})$: for this case, we have that $\{x\} = U^n(x)$ and $\{x\} \cap (U^n(x'))_{\kappa^n} = \emptyset$ and so $\{x\}$ is the required semi-open set containing the point x. We can construct the required semi-open set containing x' using Theorem 4.4; the construction is done by an argument similar to that in Case 2.

Therefore, by Case 1, Case 2, Case 3 above for distinct points x and x', there exist disjoint semi-open sets containing the point x and x', respectively; and so (\mathbb{Z}^n, κ^n) is semi- T_2 .

Remark 4.11 (cf. Remark 4.7(ii)) The digital *n*-space (\mathbb{Z}^n, κ^n) is semi-T₂, where $n \geq 1$ [30]; (\mathbb{Z}, κ) and (\mathbb{Z}^2, κ^2) are semi-T₂ [11]. The results are confirmed directly by Corollary 4.10 above. Moreover, since the semi-T₂ separation axiom implies the semi-T₁ separation axiom, using Proposition 2.6(i), we have an alternative proof of Theorem 4.5(ii) (cf. Definition 2.3). The above proof of Corollary 4.10 is done constructively; the present authors believe that we applies the same method to other topological properties on (\mathbb{Z}^n, κ^n) which are not proved by arguments preserving of topological products of (\mathbb{Z}, κ) and we have further applications.

References

- [1] B.Al-Nasef, On semipropen sets, Questions Answers Gen. Topology, 19(2006), 203-212.
- [2] N. Araki, M. Ganster, H. Maki and A. Nishi, On new characterizations of semi- T_i -spaces, where i = 0, 1/2, Sci. Math. Japon., **64**(2006), 551-555 : online **e-2006**, 609-613.
- [3] A.V.Arhangel'skii and P.J. Collin, On submaximal spaces, Topology Appl., 64(1995), 219-241.
- [4] M. Caldas and J. Dontchev, G. Λ_s-sets and g.V_s-sets, Mem. Fac. Sci. Kochi Univ. Ser.A Math., 21 (2000), 21-30.
- [5] R. Devi, K. Bhuvaneswari and H. Maki, Weak form on $g\rho$ -closed sets, where $\rho \in \{\alpha, \alpha^*, \alpha^{**}\}$, and digital planes, *Mem. Fac. Sci. Kochi Univ. Ser. A Math.*, **25** (2004), 37-54.
- [6] R. Devi, V. Kokilavani and H. Maki, More on $g^{\#}\alpha$ -open sets in digital planes, *Sci. Math. Japon.*, **70**(1)(2009), 53-62: online **e-2009**, 301-310.

- [7] R. Devi, S.N. Rajappriya, K. Muthukumaraswamy and H. Maki, ξ-closed sets in topological spaces and digital planes, *Sci. Math. Japon.*, **64**(3) (2006), 533-549: online **e-2006**,615-631.
- [8] J. Dontchev and M. Ganster, On δ-generalized closed sets and T_{3/4}-spaces, Mem. Fac. Sci. Kochi Univ. Ser. A., Math., 17 (1996), 15-42.
- [9] W. Dunham, T_{1/2}-spaces, Kyungpook Math. J., **17**(1977), 161-169.
- [10] M. Fujimoto, H. Maki, T. Noiri and S. Takigawa, The digital plane is quasi-submaximal, Questions Answers Gen. Topology, 22(2004), 163-168.
- [11] M. Fujimoto, S. Takigawa, J. Dontchev, T. Noiri and H. Maki, The topological structures and groups of digital n-spaces, Kochi J. Math., 1(2006), 31-55.
- [12] T. Fukutake, P. Sundaram and M. Sheik John, ω-closed sets, ω-open sets and ω-continuity in bitopological spaces, Bull. Fukuoka Univ. Ed. Part III, 51(2002), 1-9.
- [13] M. Ganster, Preopen sets and resolvable spaces, Kyungpook Math. J., 27 (1987), 135-134.
- [14] H.Z. Hdreib, ω-closed mapping, *Rev. Colombiana Mat.*, **16**(1982), 65-78.
- [15] E. D. Khalimsky, Applications of connected ordered topological spaces in topology, Conference of Math. Departments of Povolsia, (1970).
- [16] E. D. Khalimsky, Topological structures in computer sciences, J. Appl. Math. Simulation, 1(1) (1987), 25-40.
- [17] E. D. Khalimsky, R. Kopperman and P. R. Meyer, Computer graphics and connected topologies on finite ordered sets, *Topology Appl.*, 36(1990), 1-17.
- [18] R. Kopperman, Digital topology, Section J-4 in Encyclopedia of General Topology; edited by K.P. Hart, J. Nagata and J.E. Vaughan, Elsevier(2004), 428-432.
- [19] T. Y. Kong, R. Kopperman and P. R. Meyer, A topological approach to digital topology, *Amer. Math. Monthly*, 98(1991), 901-917.
- [20] V. Kovalevsky and R. Kopperman, Some topology-based image processing algorithms, Annals of the New York Academy of Sciences, Papers on General Topology and its Applications, 728(1994), 174-182.
- [21] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- [22] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo(2), 19(1970), 89-96.
- [23] A. S. Maheshwari and R. Prasada, On s-normal spaces, Bull. Math. Soc. Sci. R.S.Roumanie, 22(70)(1)(1978), 27-29.
- [24] H. Maki, Generalized Λ-sets and the associated closure operator, The special Issue in commemoration of Professor IKEDA's retirement, (1986), 139-146.
- [25] A. S. Mashhour, Abd El-Monsef and S.N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Phys. Math. Soc. Egypt., 53(1982), 47-53.
- [26] Erik Melin, Extension of continuous functions in digital spaces with the Khalimsky topology, Topology Appl., 153(2005), 52-65.
- [27] Erik Melin, Continuous extension in topological digital spaces, Applied General Topology, 9 (2008), 51-61.
- [28] M. Mršević, On pairwise R₀ and pairwise R₁ bitopological spaces, Bull. Math. Soc. Sci. Math. R.S. Roumanie (N.S), **30**(1986), 141-148.
- [29] F. Nakaoka, F. Tamari and H. Maki, On generalized digital lines, (submitting).
- [30] S.I. Nada, Semi-open and semi-closed sets in digital topological spaces, Commun. Fac. Sci. Univ. Ank. Series A1, 53(1)(2004), 1-6.
- [31] O. Njåstad, On some classes of nearly open sets, Pacific J. Math., 15(1965), 961-970.

- [32] A.A. Nasef and H. Maki, On some maps concerning gp-closed sets and related groups, Sci. Math. Japon., 71(1)(2010), 55-81: online e-2009, 649-675.
- [33] T. Noiri, Modified open and closed sets(semi-open sets etc), Section A-2 in Encyclopedia of General Topology; edited by K.P. Hart, J. Nagata and J.E. Vaughan, Elsevier(2004), 8-10.
- [34] K. Nôno, R. Devi, M. Devipriya, K. Muthukumaraswamy and H. Maki, On g[#]α-closed sets and the digital plane, Bull. Fukuoka Univ. Ed. Part III, 53(2004), 15-24.
- [35] M. Sheik John, A study on generalizations of closed sets and continuous maps in topological spaces, *Ph. D. Thesis*, Bharathiar University, Coimbatore, India, 2000.
- [36] P. Sundaram and M. Sheik John, Weakly closed sets and weakly continuous maps in topological spaces, Proc. 82nd Indian Science Congress Calcutta, 49(1995).
- [37] P. Sundaram and M. Sheik John, On ω -closed sets in topology, Acta Cienc. Indica Math., **26M**(4)(2000),389-392.
- [38] S. Takigawa, M. Ganster, H. Maki, T. Noiri and M. Fujimoto, The digital n-space is quasisubmaximal, Questions Answers Gen. Topology, 26(1) (2008), 45-52.
- [39] S.Takigawa and H.Maki, Every nonempty open set of the digital *n*-space is expressible as the union of finitely many nonempty regular open sets, *Sci. Math. Japon.*, **67**(3)(2008), 365-376;Online **e-2007**, 601-612.

Communicated by Yasunao Hattori

H. MAKI Wakagi-dai 2-10-13, Fukutsu-shi Fukuoka-ken 811-3221, Japan e-mail: makih@pop12.odn.ne.jp

S. TAKIGAWA Department of Mathematics Faculty of Culture and Education, Saga University Saga 840-8502, Japan

M. FUJIMOTO Department of Mathematics Fukuoka University of Education 1-1 Akamabunkyo-machi, Munakata, Fukuoka 811-4192, Japan

> P. SUNDARAM 12 Alagappa Lay Out, Mahalingapuram Pollachi 642002, India

M. SHEIK JOHN Department of Mathematics Nallamuthu Gounder Mahalingam College Pollachi 642001, India