REMARKS ON ω-CLOSED SETS IN SUNDARAM-SHEIK JOHN'S SENSE OF DIGITAL N-SPACES

H. Maki, S. Takigawa, M. Fujimoto, P. Sundaram and M. Sheik John

Received February 8, 2013

Abstract

The aim of this paper is to study some topological properties, especially, ω-closed sets (in Sundaram-Sheik John's sense) of digital lines and digital n-spaces ($n \geq 2$).

1 Introduction In 2000, the concept of ω-closed sets (in Sundaram-Sheik John's sense) of topological spaces was introduced and investigated by P. Sundaram and M. Sheik John [35] [36] [37] and some results on bitopological version were investigated by [12]. We note that, in 1982, Hdeibe [14] had defined the same named concept: ω-closed sets (e.g., [14]); but their definitions are different. Throughout the present paper, we call the ω-closed sets [35] the ω-closed sets in Sundaram-Sheik John's sense (cf. Definition 2.1). The concept of Λ_{s}-sets was introduced and investigated by [4]. In the present paper, for the digital n-space $\left(\mathbb{Z}^{n}, \kappa^{n}\right)(n \geq 1)$, we try to investigate properties on ω-closed sets in Sundaram-Sheik John's sense and Λ_{s}-sets. The concept of the digital line (\mathbb{Z}, κ) is initiated by Khalimsky [15], [16] and sometimes it is called the Khalimsky line (cf. [17] and references there, [33], [19, p.905], [20, p.175]; e.g., [11], [18]). We reference the naming of the digital n-space ($\left(\mathbb{Z}^{n}, \kappa^{n}\right)$ in [20, Definition 4$] ;\left(\mathbb{Z}^{n}, \kappa^{n}\right)$ is the topological product of n copies of the digital line (\mathbb{Z}, κ) (cf. Section 3).

The purpose of the present paper is to characterlize the ω-closedness in SundaramSheik John's sense in $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$ (cf. Theorem 4.6). Namely, a subset A is an ω-closed set in Sundaram-Sheik John's sense of ($\mathbb{Z}^{n}, \kappa^{n}$) if and only if A is closed in $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$ (Theorem 4.6). In order to prove the result, we investigate the concept of semi-kernels of subsets in $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$ (cf. Theorem 4.5) after checking on some examples in $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$ (cf. Example 4.2). In Section 2 we recall some definitions and properties on topological spaces which are used in the present paper; moreover in Section 3 we recall the definitions of the digital lines and digital n-spaces $(n \geq 2)$ and we give a short survey of important properties which are used in the present paper. In Section 4 we give some examples and we prove a characterization of ω-closed sets in Sundaram-Sheik John's sense for $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$ (cf. Theorem 4.6). In order to prove Theorem 4.6, we need the construction of semi-open sets containing a point of ($\mathbb{Z}^{n}, \kappa^{n}$) (cf. Theorem 4.4). In the end of Section 4, using Theorem 4.4 and Theorem 4.9, we give an alternative and direct proof of [30, Theorem 4.2] which shows $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$ is semi- T_{2}.

Throughout the present paper, (X, τ) represents a nonempty topological space on which no separation axioms are assumed, unless otherwise mentioned.

2 Preliminaries We recall some concepts and properties on topological spaces.
2010 Mathematics Subject Classification. 50A05, 54D05, 54D10, 68U05.
Key words and phrases. ω-closed set; Semi-open set; Preopen set; Topological digital topology; Digital line; Digital plane; Digital n-space; Semi-T 2_{2} separation axiom; Semi-kernel; Λ_{s}-set.

Definition 2.1 (i) ([22, Definition 2.1]) A subset A of a topological space (X, τ) is called generalized closed (shortly, g-closed) in (X, τ) if $\mathrm{Cl}(A) \subset U$ whenever $A \subset U$ and U is open in (X, τ).
(ii) ([35], [36]) A subset A of a topological space (X, τ) is called ω-closed in SundaramSheik John's sense in (X, τ) if $\mathrm{Cl}(A) \subset V$ whenever $A \subset V$ and V is semi-open in (X, τ). The complement of an ω-closed set is called an ω-open set.

A subset B of (X, τ) is said to be semi-open [21, Definition 1] in (X, τ), if there exists an open set U such that $U \subset B \subset \mathrm{Cl}(U)$. It is shown that [21, Theorem 1] a subset B is semi-open if and only if $B \subset \mathrm{Cl}(\operatorname{Int}(B))$ in (X, τ). A subset E of (X, τ) is said to be preopen [25] in (X, τ), if $E \subset \operatorname{Int}(\operatorname{Cl}(E))$ holds in (X, τ). Every open set is semi-open and preopen in (X, τ). The complement of a semi-open set (resp. preopen set) is said to be semi-closed (resp. preclosed). In the present paper, the famly of all semi-open sets (resp. preopen sets) of (X, τ) is denoted by $\mathrm{SO}(X, \tau)$ (resp. $\mathrm{PO}(X, \tau))$. Namely, for a topological space (X, τ), as notation,

- $S O(X, \tau):=\{B \mid B \subset \mathrm{Cl}(\operatorname{Int}(B)), B \subset X\}, P O(X, \tau):=\{E \mid E \subset \operatorname{Int}(\mathrm{Cl}(E)), E \subset X\}$; and $\tau \subset S O(X, \tau)$ and $\tau \subset P O(X, \tau)$ hold for any topological space (X, τ).

The following concept of semi-kernels is due to [4] and the concept of kernels is well known (e.g., [28]).
Definition 2.2 Let E be a subset of a topological space (X, τ).
(i) ([4, Definition 1]) The following set τ-sKer (E) (or shortly $\operatorname{sKer}(E)$) is called a semikernel of E in (X, τ) (in [4], it is denoted by $\left.E^{\Lambda_{s}}\right)$:

- τ-sKer $(E)=E^{\Lambda_{s}}:=\bigcap\{V \mid E \subset V$ and V is semi-open in $(X, \tau)\}$.

Note that, in the present paper, we use the symbol $\tau-\operatorname{sKer}(E)$ or $\operatorname{sKer}(E)$.
(ii) (e.g., [28]) The following set $\tau-\operatorname{Ker}(E)$ (or shortly $\operatorname{Ker}(E)$) is called a kernel of E in (X, τ) :

- $\tau-\operatorname{Ker}(E):=\bigcap\{V \mid E \subset V$ and V is open in $(X, \tau)\}$.

Note that, in [28] (resp. [24]), the set $\tau-\operatorname{Ker}(E)$ above is denoted by $\operatorname{Ker}_{\tau}(E)\left(\right.$ resp. $\left.E^{\wedge}\right)$.
Definition 2.3 ([4, Definition 2]) In a topological space (X, τ), a subset E is a Λ_{s}-set of (X, τ) if $E=E^{\Lambda_{s}}$ (i.e., $E=\operatorname{sKer}(E)$).

We recall the following property on semi-kernels.
Proposition 2.4 For a family $\left\{E_{i} \mid i \in \Omega\right\}$ of subsets of a topological space (X, τ), where Ω is an index set,
(i) $\left(\left[4, \operatorname{Proposition~3.1])} \operatorname{sKer}\left(\bigcup\left\{E_{i} \mid i \in \Omega\right\}\right)=\bigcup\left\{\operatorname{sKer}\left(E_{i}\right) \mid i \in \Omega\right\}\right.\right.$ holds; and
(ii) (e.g., $[24,(2.5)]) \operatorname{Ker}\left(\bigcup\left\{E_{i} \mid i \in \Omega\right\}\right)=\bigcup\left\{\operatorname{Ker}\left(E_{i}\right) \mid i \in \Omega\right\}$ holds.

Theorem 2.5 t60 ([35], [36]) A subset A is ω-closed (in Sundaram-Sheik John's sense) in a topological space (X, τ) if and only if $\mathrm{Cl}(A) \subset \operatorname{sKer}(A)$.

Proposition 2.6 (i) ([4, Proposition 3.7]) A topological space (X, τ) is semi- T_{1} if and only if every subset is a Λ_{s}-set.
(ii) $\left(\left[4\right.\right.$, Corollary 3.8]) Every semi- T_{1}-space is a semi- R_{0}-space.

We need the following notation.
Definition 2.7 (e.g., [10, p.166]; [39, Definition 2.1] [38, p.47] for the case where $E:=\mathbb{Z}^{n}$) For a subset E of (X, τ), we define the following subsets E_{τ} and $E_{\mathcal{F}}$:
$E_{\tau}:=\{x \in E \mid\{x\}$ is open in (X, τ), i.e., $\{x\} \in \tau\} ;$
$E_{\mathcal{F}}:=\{x \in E \mid\{x\}$ is closed in $(X, \tau)\}$.

3 Preliminaries-2 In the present section, we recall some foundamental definitions and topological properties on digital lines and digital n-spaces ($n \geq 2$); this includes a survey on digital lines and digital n-spaces $(n \geq 2)$ on our topics. And the notation of Definition 3.11 and (*20) in (II) below are used in the proofs of results in Section 4.
(I) (digital lines):

- Let us recall some definitions and topological properties on digital lines (cf. $(* 1)-(* 11)$ below).

Definition 3.1 (cf. [20, p.175], [19, p.905, p.908], [26, Section 2], [27, Example 4 in Section 2]; e.g., [11, Section 1], [33, Section 6 in p.9]) The digital line or so called the Khalimsky line (\mathbb{Z}, κ) is the set \mathbb{Z} of all integers, equipped with the topology κ having $\{\{2 m-1,2 m, 2 m+$ $1\} \mid m \in \mathbb{Z}\}$ as a subbase.

Remark 3.2 We put $\mathcal{G}:=\{\{2 m-1,2 m, 2 m+1\} \mid m \in \mathbb{Z}\}$ in Definition 3.1.
(i) By the definition of κ, a subset U of \mathbb{Z} is open in (\mathbb{Z}, κ) (i.e., $U \in \kappa$) if and only if there exists a family of subsets of (\mathbb{Z}, κ), say $\left\{B_{i}^{(U)} \mid i \in I^{(U)}\right\}$, where $I^{(U)}$ is an index set, such that $U=\bigcup\left\{B_{i}^{(U)} \mid i \in I^{(U)}\right\}$ and $B_{i}^{(U)}=\bigcap\left\{V_{j}^{(i)} \mid j \in\{1,2, \ldots, m\}\right\}$ for some positive integer m and some subsets $V_{j}^{(i)} \in \mathcal{G}(1 \leq j \leq m)$, here we assume that $V_{j}^{(i)} \neq V_{j_{1}}^{(i)}$ if $j \neq j_{1}$, where $\left.j, j_{1} \in\{1,2, \ldots, m\}\right)$.
(ii) For the set $B_{i}^{(U)}=\bigcap\left\{V_{j}^{(i)} \mid j \in\{1,2, \ldots, m\}\right\}$ above, we note that:
$(*)_{1}$ if $m=1$ (resp. $m=2$), then $B_{i}^{(U)}=\{2 t-1,2 t, 2 t+1\}($ resp. $=\{2 u+1\}$ or $\emptyset)$ for some $t \in \mathbb{Z}$ (resp. for some $u \in \mathbb{Z}$);
$(*)_{2}$ if $m \geq 3$, then $B_{i}^{(U)}=\bigcap\left\{V_{j}^{(i)} \mid j \in\{1,2, \ldots, m\}\right\}=\emptyset$.

- For examples, we first have some properties on singletons and two-pointed sets of (\mathbb{Z}, κ) (cf. ($* 1$) - ($* 3$) below): for an integer s,
$\cdot(* 1)$ a singleton $\{2 s+1\}$ is open in $(\mathbb{Z}, \kappa) ;\{2 s+1\}$ is not closed in (\mathbb{Z}, κ).
$\cdot(* 2)$ a singleton $\{2 s\}$ is not open in (\mathbb{Z}, κ); but $\{2 s\}$ is closed in (\mathbb{Z}, κ).
$\cdot(* 3)$ subsets $\{2 s, 2 s+1\}$ and $\{2 s-1,2 s\}$ are not open in (\mathbb{Z}, κ), where $s \in \mathbb{Z}$ (cf. (*8)(iii) below).
(Proof of $(* 1)$). (Proof of the opennness) It is shown that $\{2 s+1\}=V_{1} \cap V_{2}$, where $V_{1}:=\{2 s-1,2 s, 2 s+1\} \in \mathcal{G}$ and $V_{2}:=\{2 s+1,2 s+2,2 s+3\} \in \mathcal{G}$. Thus, $\{2 s+1\}$ is open in (\mathbb{Z}, κ).
(Proof of the non-closedness) Suppose that $\{2 s+1\}$ is closed. Put $U:=\mathbb{Z} \backslash\{2 s+1\}$. Then, $U \in \kappa$ and so there exists a family of subsets: $\left\{B_{i}^{(U)} \mid i \in I^{(U)}\right\}$, where $I^{(U)}$ is an index set, such that $U=\bigcup\left\{B_{i}^{(U)} \mid i \in I^{(U)}\right\}$ and $B_{i}^{(U)}=\bigcap\left\{V_{j}^{(i)} \mid j \in\{1,2, \ldots, m\}\right\}$ for some positive integer m and some subsets $V_{j}^{(i)} \in \mathcal{G}(1 \leq j \leq m$) (cf. Definition 3.1,Remark 3.2(i)). Pick a point $2 s \in U$, where $s \in \mathbb{Z}$. Then, we have
$(*)_{a} 2 s \in B_{i^{\prime}}^{(U)}=\bigcap\left\{V_{j}^{\left(i^{\prime}\right)} \mid j \in\left\{1,2, \ldots, m^{\prime}\right\}\right\}$ and $B_{i^{\prime}}^{(U)} \subset U$ for some $i^{\prime} \in I^{(U)}$ and positive integer m^{\prime}.
By Remark 3.2(ii), it is shown that $m^{\prime}=1$ and $B_{i^{\prime}}^{(U)}=\bigcap\left\{V_{j}^{\left(i^{\prime}\right)} \mid j \in\left\{1,2, \ldots, m^{\prime}\right\}\right\}$
$=\{2 s-1,2 s, 2 s+1\}$. Thus, using $(*)_{a}$, we have $2 s+1 \in U$; but this contradicts the definition of U in the first setting. Therefore, the singleton $\{2 s+1\}$ is not closed in (\mathbb{Z}, κ). (०)
(Proof of $(* 2)$). (Proof of the non-openness). Suppose that $\{2 s\} \in \kappa$. We put $U:=\{2 s\}$. By the definition of κ (cf. Remark $3.2(\mathrm{i}))$, there exists subsets $B_{i}^{(U)}\left(i \in I^{(U)}\right)$, where $I^{(U)}$ is an index set, such that $2 s \in B_{i}^{(U)}=\bigcap\left\{V_{j}^{(i)} \mid j \in\{1,2, \ldots, m\}\right\}$ and $B_{i}^{(U)} \subset U$ for some positive integer m and $V_{j}^{(i)} \in \mathcal{G}(1 \leq j \leq m)$. By using Remark 3.2(ii), it is shown that $m=1$ and $B_{i}^{(U)}=\bigcap\left\{V_{j}^{(i)} \mid j \in\{1,2, \ldots, m\}\right\}=\{2 s-1,2 s, 2 s+1\} \subset U$; and so $2 s+1 \in U$.

This contradicts the definition of $U:=\{2 s\}$. Therefore, any singleton $\{2 s\}$ is not open in (\mathbb{Z}, κ).
(Proof of the closedness). It is shown that $\{2 s\}=\mathbb{Z} \backslash E$, where $E:=\bigcup\{\{2 s-2 j-1,2 s-$ $2 j, 2 s-2 j+1\} \mid j \in \mathbb{Z}$ and $j \neq 0\}$. Since $E \in \kappa, \mathbb{Z} \backslash E$ is closed; and so $\{2 s\}$ is closed in (\mathbb{Z}, κ).
(Proof of $(* 3)$) Suppose that $\{2 s-1,2 s\} \in \kappa$. Then, we have a contradiction. Put $U:=$ $\{2 s-1,2 s\}$. By Definition 3.1 (cf. Remark 3.2 (i)), there exists an index set $I^{(U)}$ and some subsets $B_{i}^{(U)}$ such that $U=\bigcup\left\{B_{i}^{(U)} \mid i \in I^{(U)}\right\}$, where $B_{i}^{(U)}=\bigcap\left\{V_{j}^{(i)} \mid j \in\{1,2, \ldots, m\}\right\}$ for some positive integer m and $V_{j}^{(i)} \in \mathcal{G}(1 \leq j \leq m)$ (cf. Remark 3.2). It is noted that $B_{k}^{(U)} \subset U$ for any $k \in I^{(U)}$. Then, we have:
$(*)^{a} 2 s \in B_{a}^{(U)}$ for some $a \in I^{(U)} ;(*)^{b} \quad 2 s-1 \in B_{b}^{(U)}$ for some $b \in I^{(U)}$;
$(*)^{c} \quad B_{a}^{(U)} \cup B_{b}^{(U)} \subset U$, where $U:=\{2 s-1,2 s\}$.
Using $(*)^{a},(*)^{b}$ and $(*)^{c}$, we have: $(*)^{d} U=B_{a}^{(U)} \cup B_{b}^{(U)}$.
Using Remark 3.2(ii), $(*)^{a}$ and $(*)^{b}$ above, we have $B_{a}^{(U)}=\{2 s-1,2 s, 2 s+1\}$ and $B_{b}^{(U)}=$ $\{2 s-1\},\{2 s-1,2 s, 2 s+1\}$ or $\{2 s-3,2 s-2,2 s-1\}$. Thus, using $(*)^{d}$ above, we have $U=\{2 s-1,2 s, 2 s+1\}$ or $U=\{2 s-3,2 s-2,2 s-1,2 s, 2 s+1\}$. These properties above contradict the defininion of $U=\{2 s-1,2 s\}$. Therefore, $\{2 s-1,2 s\}$ is not open in (\mathbb{Z}, κ). Similarly, it is proved that $\{2 s+1,2 s\}$ is not open in (\mathbb{Z}, κ). In $(* 8)$ (iii) below, we note that they are semi-open in (\mathbb{Z}, κ).

- For the digital line (\mathbb{Z}, κ), the concept of the smallest open set, say $U(x)$, containing a point x of (\mathbb{Z}, κ) is very important; throughout the present paper, we put:
$\cdot U(2 s):=\{2 s-1,2 s, 2 s+1\} ; \cdot U(2 s+1):=\{2 s+1\}$, where $s \in \mathbb{Z}$.
We first recall the definition of the smallest open set containing a point x for a topological space (X, τ).

Definition 3.3 (e.g., [29, Definition 2.4]) Let (X, τ) be a topological space and a point $x \in X$. A subset E is called the smallest open set containing x if $x \in E, E \in \tau$ and $A=E$ holds for any open set A such that $x \in A$ and $A \subset E$.

For an open set E and $x \in E, E$ is the smallest open set containing x if and only if $E \subset G$ holds for every open set G containing the point x (e.g., [29, Remark 2.5 (ii)]).

- For the digital line (\mathbb{Z}, κ), we recall the concept of the smallest open set, say $U(x)$, containing a point x of (\mathbb{Z}, κ). Obviously, every subset belonging to $\mathcal{G}=:\{\{2 m-1,2 m, 2 m+$ $1\} \mid m \in \mathbb{Z}\}$ is open in (\mathbb{Z}, κ). Then, we have the following important property on $U(x)$, where $x \in \mathbb{Z}$:
$\cdot(* 4)$ (i) $U(2 s):=\{2 s-1,2 s, 2 s+1\}$ is the smallest open set containing $2 s$. Namely, $U(2 s)$ is an open set containing the point $2 s$ and if A is an any open set such that $2 s \in A$ and $A \subset U(2 s)$, then $A=U(2 s)$. And, if G is any open set containing $2 s$ in (\mathbb{Z}, κ), then $U(2 s) \subset G$.
(ii) $U(2 s+1):=\{2 s+1\}$ is the smallest open set containing $2 s+1$.
(iii) For each point x of (\mathbb{Z}, κ), there exists the smallest open set $U(x)$ containing the point x (cf. [20, p.175]). Namely, for the point $x \in \mathbb{Z}, U(x)$ is an open set containing the point x and if A is an any open set such that $x \in A$ and $A \subset U(x)$, then $A=U(x)$. And, if G is any open set containing x in (\mathbb{Z}, κ), then $U(x) \subset G$.
(Proof of $(* 4)$). (i) By $(* 2)$ and $(* 3)$ above, it is shown that:
$\left(*^{e}\right) U(2 s)$ is open in (\mathbb{Z}, κ) and $2 s \in U(2 s)$ (because of $\left.U(2 s) \in \mathcal{G}\right)$; and if A is any open subset of $U(2 s)$ such that $2 s \in A$, then $A=U(2 s)$.
Indeed, if $A_{1} \subset U(2 s)$ such that $2 s \in A_{1}$ and $A_{1} \neq U(2 s)$, then $A_{1}=\{2 s\},\{2 s-1,2 s\}$ or $\{2 s, 2 s+1\}$ and the subset A_{1} is not open in (\mathbb{Z}, κ) (cf. $(* 2),(* 3)$ above). Thus, we have
$A=U(2 s)$ for any open subset A such that $2 s \in A$ and $A \subset U(2 s)$. Moreover, we show: $\left(*^{f}\right) U(2 s) \subset G$ holds for any open set G containing the point $2 s$ and $2 s \in U(2 s)$. (Indeed, let G be any open set containing the point $2 s$. Then, we have $2 s \in U(2 s) \cap G$ and $U(2 s) \cap G$ is an open set such that $U(2 s) \cap G \subset U(2 s)$; thus we have $U(2 s) \cap G=U(2 s)$ (cf. ($*^{e}$) above). Namely, we have $U(2 s) \subset G$.)

Therefore, by $\left(*^{e}\right)$ or $\left(*^{f}\right)$, it is shown that $U(2 s)$ is the smallest open set containing $2 s$ (cf. Definition 3.3).
(ii) For an odd integer $2 s+1$, where $s \in \mathbb{Z}, U(2 s+1)=\{2 s+1\}$ is the smallest open set containing the point $2 s+1$ (cf. $(* 1)$). (iii) Using (i) and (ii) above, the set $U(x)$ is the smallest open set containing the point x.
(○)

- We have the form of the κ-closure of $\{x\}$, the κ-interior of $\{x\}$ and the κ-kernel of $\{x\}$, respectively, (cf. $(* 5),(* 6)$ below): for an integer s,
- (*5) (i) $\kappa-\mathrm{Cl}(\{2 s+1\})=\{2 s, 2 s+1,2 s+2\}, \kappa-\mathrm{Cl}(\{2 s\})=\{2 s\}$;
(ii) κ - $\operatorname{Int}(\{2 s+1\})=\{2 s+1\} ; \kappa-\operatorname{Int}(\{2 s\})=\emptyset$;
(iii) κ - $\operatorname{Ker}(\{2 s+1\})=\{2 s+1\} ; \kappa$ - $\operatorname{Ker}(\{2 s\})=\{2 s-1,2 s, 2 s+1\}=U(2 s)$.
(Proof of $(* 5)$). (i) They are shown by $(* 4)(\mathrm{i}),(* 1)$ and $(* 2)$ above, respectively. (ii) They are shown by $(* 1)$ and $(* 2)$ above, respectively. (iii) They are shown by $(* 1)$ and (*4)(i) above.
$\cdot(* \mathbf{6})(\mathbf{i})$ In the digital line (\mathbb{Z}, κ), a singleton $\{x\}$ is open if and only if the integer x is odd in \mathbb{Z}.
(ii) A singleton $\{x\}$ is closed in (\mathbb{Z}, κ) if and only if the integer x is even in \mathbb{Z}.
(Proof of $(* 6))$ (i). It is shown by $(* 5)$ (ii) above. (ii) By the closure form in $(* 5)(\mathrm{i})$ above, (ii) is shown.
By (*6) above, it is shown that:
$\cdot(* 7)$ (i) Every singleton of (\mathbb{Z}, κ) is open or closed $(c f .(* 6)$; or $(* 1)$ and $(* 2)$ above $)$. This shows that (\mathbb{Z}, κ) is $T_{1 / 2}$ (e.g., [8, Example 4.6]; cf. [22, Definition 5.1], [9, Theorem 2.5]). We recall some topological properties; in general, the class of $T_{1 / 2}$-spaces is properly placed between the classes of T_{0}-spaces and T_{1}-spaces ($[22$, Corollary 5.6]). Furthermore, Dontchev and Ganster [8, Example 4.6] proved that (\mathbb{Z}, κ) is $T_{3 / 4}$; in general, the class of $T_{3 / 4}$-spaces is properly placed between the classes of T_{1}-spaces and $T_{1 / 2}$-spaces ($[8$, Corollary 4.4 and Corollary 4.7]). For the digital plane $\left(\mathbb{Z}^{2}, \kappa^{2}\right)$ (cf. Definition 3.4 below), it is well known that $\left(\mathbb{Z}^{2}, \kappa^{2}\right)$ is not $T_{1 / 2}([26$, Section 3$])$.
- We recall the semi-openness (resp. semi-closedness) (cf. Section 2) of singletons in (\mathbb{Z}, κ) and the semi-closure of $\{x\}$, the semi-interor of $\{x\}$ and the semi-kernel (cf. Definition 2.2(i)) of $\{x\}$ (cf. $(* 8)$ and $(* 9)$ below): for an integer s,
$\cdot(* 8)(\mathbf{i})$ every open singleton $\{2 s+1\}$ is semi-open and semi-closed in (\mathbb{Z}, κ);
(ii) every closed singleton $\{2 s\}$ is semi-closed in (\mathbb{Z}, κ); but $\{2 s\}$ is not semi-open in (\mathbb{Z}, κ);
(iii) the subsets $\{2 s, 2 s+1\}$ and $\{2 s-1,2 s\}$ are semi-open on (\mathbb{Z}, κ).
(Proof of $(* 8)$). (i) Every open set is semi-open and so $\{2 s+1\}$ is semi-open in (\mathbb{Z}, κ) (cf. $(* 6)$ (i) above). And, since κ - $\operatorname{Int}(\kappa-\mathrm{Cl}(\{2 s+1\}))=\kappa$-int $(\{2 s, 2 s+1,2 s+2\})=\{2 s+1\}$ hold, $\{2 s+1\}$ is semi-closed (cf. (*5)(i)(ii) above). (ii) Since κ - $\operatorname{Int}(\kappa-\mathrm{Cl}(\{2 s\}))=\kappa$ $\operatorname{Int}(\{2 s\})=\emptyset \subset\{2 s\},\{2 s\}$ is semi-closed in (\mathbb{Z}, κ). And, we have $\operatorname{Cl}(\operatorname{Int}(\{2 s\}))=\mathrm{Cl}(\emptyset)=$ $\emptyset \not \supset\{2 s\}$ and so $\{2 s\}$ is not semi-open in (\mathbb{Z}, κ). (iii) It is easily shown that $\kappa-\mathrm{Cl}(\kappa$ $\operatorname{Int}(\{2 s, 2 s+1\}))=\kappa-\operatorname{Cl}(\{2 s+1\})=\{2 s, 2 s+1,2 s+2\} \supset\{2 s, 2 s+1\}$; and so $\{2 s, 2 s+1\}$ is semi-open in (\mathbb{Z}, κ). Similarly, the subset $\{2 s-1,2 s\}$ is semi-open in (\mathbb{Z}, κ).
$\cdot(* \mathbf{9})$ For an integer s, we have the following properties:
(i) $\kappa-\mathrm{sCl}(\{2 s+1\})=\{2 s+1\} ; \kappa-\mathrm{sCl}(\{2 s\})=\{2 s\}$;
(ii) κ-sInt $(\{2 s+1\})=\{2 s+1\}$; κ-sInt $(\{2 s\})=\emptyset$;
(iii) κ-sKer $(\{2 s+1\})=\{2 s+1\} ; \kappa$-sKer $(\{2 s\})=\{2 s\}$.
(Proof of $(* 9)$). (i) (resp. (ii)) They are proved by (*8)(i) (resp. (*8)(ii)) above. (iii)
By $(* 8)$ (iii) (resp. $(* 8)(\mathrm{i})$), it is obtained that κ-sKer $(\{2 s\})=\{2 s, 2 s+1\} \cap\{2 s-1,2 s\}=$
$\{2 s\}($ resp. κ-sKer $(\{2 s+1\})=\{2 s+1\})$.
- We recall more topological properties on (\mathbb{Z}, κ) :
$\cdot(* \mathbf{1 0})$ (i) For $(\mathbb{Z}, \kappa), \kappa=P O(\mathbb{Z}, \kappa), P O(\mathbb{Z}, \kappa) \subset S O(\mathbb{Z}, \kappa)$ and $\kappa^{\alpha}=\kappa$ hold ([10, Theorem 2.1 (i)(a)(b)]), where $\kappa^{\alpha}:=\{V \mid V$ is α-open in $(\mathbb{Z}, \kappa)\}$. For topological spaces, the concept of the α-open set was introduced by Njåstad [31] who called it the α-set. A subset A of a topological space (X, τ) is said to be α-open in (X, τ) if $A \subset \operatorname{Int}(\operatorname{Cl}(\operatorname{Int}(A)))$ holds.
(ii) The digital line (\mathbb{Z}, κ) is submaximal. This fact may be known in folklore; however, we are able to read one of the proof ([10, Theorem 1.1(i)]). Furthermore, it is noted that, by $\left[10\right.$, Theorem 1.1 (ii)(iii)], the digital plane $\left(\mathbb{Z}^{2}, \kappa^{2}\right)$ (cf. (II) below) is not submaximal but it is quasi-submaximal. Al-Nashef [1, Definition 3.2] introduced the concept of quasisubmaximal topological spaces which is weaker than one of submaximal spaces (e.g., [3, Definition 1.1], [13, p.137]).
(iii) The digital line (\mathbb{Z}, κ) is s-normal $([11$, Section 3, Theorem B]). In 1978, Maheshwari and Prasad [23] introduced the concept of s-normal topological spaces using semi-open sets. The digital plane is also a geometric example of s-normal spaces ($[11$, Section 5 , Theorem D]).
- Using Definition 2.7 for $(X, \tau)=(\mathbb{Z}, \kappa)$, we can define the following subsets $\mathbb{Z}_{\kappa}:=\{x \in$ $\mathbb{Z} \mid\{x\} \in \kappa\}, \mathbb{Z}_{\mathcal{F}}:=\{x \in \mathbb{Z} \mid\{x\}$ is closed in $(\mathbb{Z}, \kappa)\}$; for a nonempty subset E of (\mathbb{Z}, κ), $E_{\kappa}:=\{x \in E \mid\{x\} \in \kappa\}$ and $E_{\mathcal{F}}:=\{x \in E \mid\{x\}$ is closed in $(\mathbb{Z}, \kappa)\}$.
$\cdot(* \mathbf{1 1})$ (i) Let $A \subset \mathbb{Z}$. Then we have that $\mathbb{Z}_{\kappa}=\{2 m+1 \in \mathbb{Z} \mid m \in \mathbb{Z}\} ; A_{\kappa}=\{2 m+1 \in$ $A \mid m \in \mathbb{Z}\}$ (cf. (*6)(i) above);
$\mathbb{Z}_{\mathcal{F}}=\{2 m \in \mathbb{Z} \mid m \in \mathbb{Z}\} ; A_{\mathcal{F}}=\{2 m \in A \mid m \in \mathbb{Z}\}$ (cf. (*6)(ii) above).
(ii) A_{κ} is open in (\mathbb{Z}, κ) for any subset A of (\mathbb{Z}, κ); and $A_{\kappa}=\mathbb{Z}_{\kappa} \cap A$.
(iii) $\mathbb{Z}=\mathbb{Z}_{\kappa} \cup \mathbb{Z}_{\mathcal{F}}\left(\mathbb{Z}_{\kappa} \cap \mathbb{Z}_{\mathcal{F}}=\emptyset\right)$ and $A=A_{\kappa} \cup A_{\mathcal{F}}\left(A_{\kappa} \cap A_{\mathcal{F}}=\emptyset\right)$ for any subset A of (\mathbb{Z}, κ) (cf. ($* 6$) above).
(iv) For any subset A of $(\mathbb{Z}, \kappa), A_{\mathcal{F}}=A \backslash A_{\kappa}$ holds and $A_{\mathcal{F}}$ is closed in (\mathbb{Z}, κ); and $A_{\mathcal{F}}=\mathbb{Z}_{\mathcal{F}} \cap A$.
(v) If $E \subset F \subset \mathbb{Z}$, then $E_{\kappa} \subset F_{\kappa}$ and $E_{\mathcal{F}} \subset F_{\mathcal{F}}$ hold in (\mathbb{Z}, κ).
(Proof of $(* 11)$) (iv). (Proof of the closedness of $A_{\mathcal{F}}$). Let $x \in \mathbb{Z} \backslash A_{\mathcal{F}}$.
Case 1. $x=2 s+1$, where $s \in \mathbb{Z}$: for this case, we have $x \in \mathbb{Z}_{\kappa}$ (cf. (*6)(i) above); and so $\{x\} \cap A_{\mathcal{F}}=\emptyset$ (cf. (iii) above). Thus, there exists an open set $\{x\}$, say U_{x}, containing x such that $U_{x} \subset \mathbb{Z} \backslash A_{\mathcal{F}}$.

Case 2. $x=2 t$, where $t \in \mathbb{Z}$: for this case, we have $x \in \mathbb{Z}_{\mathcal{F}}$ and $x \notin A_{\mathcal{F}}$ (cf. (iii) above and $(* 6)$ (ii) above). Hence, for the point $x \in \mathbb{Z}_{\mathcal{F}} \backslash A_{\mathcal{F}}$, there exists an open set $\{x-1, x, x+1\}$, say U_{x}, containing x and $\{x-1, x+1\} \subset \mathbb{Z}_{\kappa}$; and so $U_{x} \cap A_{\mathcal{F}}=\{x-1, x, x+1\} \cap A_{\mathcal{F}}=\emptyset$, i.e., $U_{x} \subset \mathbb{Z} \backslash A_{\mathcal{F}}$.

Thus, for each point $x \in \mathbb{Z} \backslash A_{\mathcal{F}}$, the subset U_{x} above is an open set containing x such that $U_{x} \subset \mathbb{Z} \backslash A_{\mathcal{F}}$. We have $\mathbb{Z} \backslash A_{\mathcal{F}}=\bigcup\left\{U_{x} \mid x \in \mathbb{Z} \backslash A_{\mathcal{F}}\right\}$ and so $\mathbb{Z} \backslash A_{\mathcal{F}} \in \kappa$. Namely, $A_{\mathcal{F}}$ is closed in (\mathbb{Z}, κ).
(II) (digital n-spaces $(n \geq 2)$):

- In the final stage of the present section, we recall some structures of the digital n-space $(n \geq 2)([20$, Definition 4]; e.g., [26, Section 3], [39], [38], [11]; for $n=2$, [10], [5, Section 6], [34, Section 5], [7, Section 7], [6], [32, Section 6]).

Definition 3.4 ([20, Definition 4]) Let n be an integer with $n \geq 2$. The digital n-space or Khalimsky n-space is the Cartesian product of n-copies of the digital line (\mathbb{Z}, κ). This topological space is denoted by $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$, where $\mathbb{Z}^{n}:=\prod_{i=1}^{n} X_{i}$, where $X_{i}=\mathbb{Z}$ for all integers i with $1 \leq i \leq n$, and $\kappa^{n}:=\prod_{i=1}^{n} \tau_{i}$, where $\tau_{i}:=\kappa$ for all integers i with $1 \leq i \leq n$. For $n=2,\left(\mathbb{Z}^{2}, \kappa^{2}\right)$ is called the digital plane or Khalimsky plane.

Since κ^{n} is the product topology of n-copies of κ, it is shown that: for a point $x:=$ $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$,
$\cdot(* 12)(\mathrm{a}) \kappa^{n}-\mathrm{Cl}(\{x\})=\prod_{i=1}^{n} \kappa-\mathrm{Cl}\left(\left\{x_{i}\right\}\right)$;
(b) $\kappa^{n}-\operatorname{Int}(\{x\})=\prod_{i=1}^{n} \kappa-\operatorname{Int}\left(\left\{x_{i}\right\}\right)$;
(c) $\kappa^{n}-\operatorname{Ker}(\{x\})=\prod_{i=1}^{n} \kappa-\operatorname{Ker}\left(\left\{x_{i}\right\}\right)$.
(Note on $(\mathrm{c}))$. Let $(X, \tau):=\prod_{i=1}^{n}\left(X_{i}, \tau_{i}\right)$ be a product topological space of topological spaces $\left(X_{i}, \tau_{i}\right)(1 \leq i \leq n)$. In general, for a point $x:=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of (X, τ), it is shown that $\tau-\operatorname{Ker}(\{x\})=\prod_{i=1}^{n}\left(\tau_{i}-\operatorname{Ker}\left(\left\{x_{i}\right\}\right)\right)$, where $\tau=\prod_{i=1}^{n} \tau_{i}$.

We use the following well known property; we recall shortly the proof.
Proposition 3.5 Let $x:=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a point of $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$.
(i) If all the coordinates of the point x is odd, say $x_{i}=2 s_{i}+1 \in \mathbb{Z}\left(s_{i} \in \mathbb{Z}\right)$ for each integer i with $1 \leq i \leq n$, then for the point $x=\left(2 s_{1}+1,2 s_{2}+1, \ldots, 2 s_{n}+1\right)$
(a) $\kappa^{n}-\mathrm{Cl}(\{x\})=\prod_{i=1}^{n}\left\{2 s_{i}, 2 s_{i}+1,2 s_{i}+2\right\}$.
(b) $\kappa^{n}-\operatorname{Int}(\{x\})=\prod_{i=1}^{n}\left\{2 s_{i}+1\right\}=\{x\}$; and so the singleton $\{x\}$ is open in $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$.
(c) $\kappa^{n}-\operatorname{Ker}(\{x\})=\prod_{i=1}^{n}\left\{2 s_{i}+1\right\}=\{x\}$.
(ii) If all the coordinates of the point x is even, say $x_{i}=2 s_{i} \in \mathbb{Z}\left(s_{i} \in \mathbb{Z}\right)$ for each integer i with $1 \leq i \leq n$, then for the point $x=\left(2 s_{1}, 2 s_{2}, \ldots, 2 s_{n}\right)$
(a) $\kappa^{n}-\mathrm{Cl}(\{x\})=\prod_{i=1}^{n}\left\{2 s_{i}\right\}=\{x\}$; and so the singleton $\{x\}$ is closed in $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$.
(b) $\kappa^{n}-\operatorname{Int}(\{x\})=\prod_{i=1}^{n} \emptyset=\emptyset$.
(c) $\kappa^{n}-\operatorname{Ker}(\{x\})=\prod_{i=1}^{n}\left\{2 s_{i}-1,2 s_{i}, 2 s_{i}+1\right\}=\prod_{i=1}^{n} U\left(2 s_{i}\right)$.
(iii) (a) A singleton $\{x\}$ is closed in $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$ if and only if all the coordinates of x, say $x_{i}(1 \leq i \leq n)$, are even.
(b) A singleton $\{x\}$ is open in $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$ if and only if all the coordinates of x, say $x_{i}(1 \leq$ $i \leq n$), are odd.

Proof. (i) (ii) The properties are shown by (*5) in (I), $(* 12)$ in (II) and definitions.
(iii) (a) (Necessity) It follows from assumption that $\kappa^{n}-\mathrm{Cl}(\{x\})=\{x\}$. Using $(* 12)$ (a) in (II), it is shown that $\kappa-\mathrm{Cl}\left(\left\{x_{i}\right\}\right)=\left\{x_{i}\right\}$ for each integer i with $1 \leq i \leq n$. Then, using $(* 6)\left(\right.$ ii) in (I), we have that x_{i} is even for each i with $1 \leq i \leq n$. (Sufficiency) It is obtained by (ii)(a) above. (iii) (b) (Necessity) By using ($* 12$)(b) in (II) and (*6)(i) in (I) above, (iii)(b) is proved. (Sufficiency) It is obtained by (i)(b) above.

Example 3.6 (i) Especially, for the case where $n=2$, we have the following forms of κ^{2}-closures of singletons: for integers $s, t \in \mathbb{Z}$,
$\kappa^{2}-\mathrm{Cl}(\{(2 s+1,2 t+1)\})=\{2 s, 2 s+1,2 s+2\} \times\{2 t, 2 t+1,2 t+2\} ;$
$\kappa^{2}-\mathrm{Cl}(\{(2 s, 2 t)\})=\{(2 s, 2 t)\}$;
$\kappa^{2}-\mathrm{Cl}(\{(2 s, 2 t+1)\})=\{2 s\} \times\{2 t, 2 t+1,2 t+2\} ;$
$\kappa^{2}-\mathrm{Cl}(\{(2 s+1,2 t)\})=\{2 s, 2 s+1,2 s+2\} \times\{2 t\}$.
(ii) By the following figure, the closure $\kappa^{2}-\mathrm{Cl}(\{(2 s+1,2 t+1)\})$ is illustrated; the singleton $\{(2 s+1,2 t+1)\}$ is denoted by a symbol \circ and the closure $\kappa^{2}-\mathrm{Cl}(\{(2 s+1,2 t+1)\})$ contains
the 9 -points only denoted by the symbols \circ, \star, \bullet :

$$
\kappa^{2}-\mathrm{Cl}(\{(2 s+1,2 t+1)\})=\mathrm{Cl}(\circ)=\begin{array}{ccccc}
\bullet & \star & \bullet & 2 \mathrm{t}+2 \\
& \star & \circ & \star & 2 \mathrm{t}+1 \\
\bullet & \star & \bullet & 2 \mathrm{t} \\
& 2 \mathrm{~s} & 2 \mathrm{~s}+1 & 2 \mathrm{~s}+2 &
\end{array}
$$

(iii) By the following figure, the closures $\kappa^{2}-\mathrm{Cl}(\{(2 s, 2 t+1)\})$ is illustrated:

$$
\kappa^{2}-\mathrm{Cl}(\{(2 s, 2 t+1)\})=\quad \mathrm{Cl}(\star)=\begin{array}{cc}
\bullet & 2 \mathrm{t}+2 \\
\star & 2 \mathrm{t}+1 \\
\bullet & 2 \mathrm{t} \\
2 \mathrm{~s} &
\end{array}
$$

(iv) By the following figure, the closure $\kappa^{2}-\mathrm{Cl}(\{(2 s+1,2 t)\})$ is illustrated:

$$
\kappa^{2}-\mathrm{Cl}(\{(2 s+1,2 t)\})=\quad \mathrm{Cl}(\star)=\begin{array}{cccc}
\bullet & \star & \bullet & 2 \mathrm{t} \\
& 2 \mathrm{~s} & 2 \mathrm{~s}+1 & 2 \mathrm{~s}+2
\end{array}
$$

We give the concept of the smallest open set containing a point of $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$.
Definition 3.7 (e.g., [39, p.602], [38, p.47], [11, p.47]) For a point $x:=\left(x_{1}, x_{2}\right.$, $\left.\ldots, x_{n}\right)$ of $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$, the following subset $U^{n}(x)$ is called the smallest open set containing the point x (cf. Theorem 3.9, Definition 3.3):
$U^{n}(x):=\prod_{i=1}^{n} U\left(x_{i}\right)$, where $U\left(x_{i}\right)$ is the smallest open set (cf. (*4) in (I)) in ($\left.\mathbb{Z}, \kappa\right)$ containing the i-th coordinate x_{i} of $x(1 \leq i \leq n)$.

Example 3.8 (i) For examples, in the case where $n=2$ of Definition 3.7, we have the following forms $U^{2}(x)$ for the following points $x \in \mathbb{Z}^{2}$:
$U^{2}((2 s+1,2 t+1))=\{(2 s+1,2 t+1)\}$;
$U^{2}((2 s, 2 t))=\{2 s-1,2 s, 2 s+1\} \times\{2 t-1,2 t, 2 t+1\}$;
$U^{2}((2 s, 2 t+1))=\{2 s-1,2 s, 2 s+1\} \times\{2 t+1\}$ and
$U^{2}((2 s+1,2 t))=\{2 s+1\} \times\{2 t-1,2 t, 2 t+1\}$.
(ii) In the figure below, a subset $U^{2}((2 s, 2 t))$ is illustrated; the singleton $\{(2 s, 2 t)\}$ is denoted by a symbol - and $U^{2}((2 s, 2 t))$ is the set of the 9 -points only denoted by the symbols •, ০, \star :

$$
\begin{array}{rlccccc}
U^{2}((2 s, 2 t))=U^{2}(\bullet)= & \cdot & \circ & \star & \circ & \cdot & 2 \mathrm{t}+1 \\
\cdot & \star & \bullet & \star & \cdot & 2 \mathrm{t} \\
\cdot & \circ & \star & \circ & \cdot & 2 \mathrm{t}-1 \\
& \cdot & \cdot & \cdot & \cdot & \cdot & \\
& & 2 s-1 & 2 s & 2 s+1 & &
\end{array}
$$

(iii) In the figure below, a subset $U^{2}((2 s, 2 t+1))$ is illustrated; the singleton $\{(2 s, 2 t+1)\}$ is denoted by a symbol \star and $U^{2}((2 s, 2 t+1))$ is the set of the 3 -points only denoted by the symbols \circ and \star :

$$
\left.\begin{array}{rl}
U^{2}((2 s, 2 t+1))=U^{2}(\star)= & \cdot \\
\cdot & \cdot \\
& \cdot \\
& \cdot \\
\cdot & \cdot \\
& \cdot \\
& \\
& \\
& \\
& \cdot \\
\hline
\end{array}\right) \cdot \begin{array}{ccccc}
& \cdot & \cdot & \cdot & 2 \mathrm{t}-1 \\
& 2 s & 2 s+1 & &
\end{array}
$$

(iv) In the figure below, a subset $U^{2}((2 s+1,2 t))$ is illustrated; the singleton $\{(2 s+1,2 t)\}$ is denoted by a symbol \star and $U^{2}((2 s+1,2 t))$ is the set of the 3 -points only denoted by the symbols \circ and \star :

$$
U^{2}((2 s+1,2 t))=U^{2}(\star)=\begin{array}{cccccc}
c & \cdot & \cdot & \cdot & \circ & \cdot \\
\cdot & \cdot & \cdot & \star & \cdot & 2 \mathrm{t}+1 \\
\cdot & \cdot & \cdot & \circ & \cdot & 2 \mathrm{t}-1 \\
& \cdot & \cdot & \cdot & \cdot & \cdot \\
& & 2 s-1 & 2 s & 2 s+1 &
\end{array}
$$

The following property is folklore, but we give its proof. The following theorem shows the well definedness of $U^{n}(x)$ of Definition 3.7.

Theorem 3.9 Let x be a point of $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$ and $U^{n}(x)$ the subset defined by Definition 3.7. Then, we have the following properties.
(i) $x \in U^{n}(x)$ and $U^{n}(x) \in \kappa^{n}$.
(ii) If A is an open set containing the point x in $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$ such that $A \subset U^{n}(x)$, then $A=U^{n}(x)$.
(iii) If G is any open set containing the point x in $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$, then $U^{n}(x) \subset G$.

Proof. We put $x:=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. (i) By Definition 3.7, (i) is shown.
(ii) Since $x \in A$ and $A \in \kappa^{n}$, there exist open sets $A_{i} \in \kappa(1 \leq i \leq n)$ such that $\prod_{i=1}^{n} A_{i} \subset A$ and $x_{i} \in A_{i}$ for each integer i with $1 \leq i \leq n$. Since A_{i} is open in (\mathbb{Z}, κ) such that $x_{i} \in A_{i}$, we have $x_{i} \in U\left(x_{i}\right) \subset A_{i}$ for each integer i with $1 \leq i \leq n$ (cf. (*4)(iii) in (I)); and so $U^{n}(x):=\prod_{i=1}^{n} U\left(x_{i}\right) \subset \prod_{i=1}^{n} A_{i} \subset A$. Therefore, we have $U^{n}(x) \subset A$. By using assumption that $A \subset U^{n}(x)$, it is shown that $A=U^{n}(x)$ holds. (iii) Since $G \in \kappa^{n}$ and $U^{n}(x) \in \kappa^{n}$, we see $G \cap U^{n}(x) \in \kappa^{n}$. Put $A:=G \cap U^{n}(x)$. Then, we have $x \in A, A \in \kappa^{n}$ and $A \subset U^{n}(x)$. By (ii) above, it is shown that $A=G \cap U^{n}(x)=U^{n}(x)$ holds. Namely, we have $U^{n}(x) \subset G$.

Remark 3.10 Using Theorem 3.9, we can investigate topological properties of $\kappa^{n}-\operatorname{Cl}(A), \kappa^{n}$ $\operatorname{Int}(A)$ and $\kappa^{n}-\operatorname{Ker}(A)$, where A is a subset of $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$.

- (Some notation) In the present paper, we use the following notation (cf. Definition 3.11, $(* 20)$ below) for $\left(\mathbb{Z}^{n}, \kappa^{n}\right)(n \geq 2)$ (they are used in [39], [38], [11] for an integer $\left.n \geq 1\right)$; cf. $(* 11)$ in (I) for $n=1$.
Definition 3.11 ([39, Definition 2.1], [38, Section 2], [11, Section 6])
(i) The following subsets $\left(\mathbb{Z}^{n}\right)_{\kappa^{n}},\left(\mathbb{Z}^{n}\right)_{\mathcal{F}^{n}}$ and $\left(\mathbb{Z}^{n}\right)_{\operatorname{mix}(r)}$ of $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$ are well defined, where $r \in \mathbb{Z}$ with $1 \leq r \leq n$:
(i-1) $\left(\mathbb{Z}^{n}\right)_{\kappa^{n}}:=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{Z}^{n} \mid x_{i}\right.$ is odd for each integer i with $\left.1 \leq i \leq n\right\}$; by Proposition 3.5(i)(b) in (II), it is shown that: $\left(\mathbb{Z}^{n}\right)_{\kappa^{n}}=\left\{x \in \mathbb{Z}^{n} \mid\{x\}\right.$ is open in $\left.\left(\mathbb{Z}^{n}, \kappa^{n}\right)\right\}$. $(\mathrm{i}-2)\left(\mathbb{Z}^{n}\right)_{\mathcal{F}^{n}}:=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{Z}^{n} \mid x_{i}\right.$ is even for each integer i with $\left.1 \leq i \leq n\right\}$; by Proposition 3.5(ii)(a), it is shown that: $\left(\mathbb{Z}^{n}\right)_{\mathcal{F}^{n}}=\left\{x \in \mathbb{Z}^{n} \mid\{x\}\right.$ is closed in $\left.\left(\mathbb{Z}^{n}, \kappa^{n}\right)\right\}$.
(i-3) $\left(\mathbb{Z}^{n}\right)_{\operatorname{mix}(r)}:=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{Z}^{n} \mid \#\left\{i \in\{1,2, \ldots, n\} \mid x_{i}\right.\right.$ is even $\left.\}=r\right\}$, where $1 \leq r \leq n$ and $\# A$ denotes the cardinality of a set A. Especially, for the case where $r=n$, we note $\left(\mathbb{Z}^{n}\right)_{\mathcal{F}^{n}}=\left(\mathbb{Z}^{n}\right)_{\operatorname{mix}(n)}$ holds.
(ii) For a nonempty subset E of $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$, the following subsets $E_{\kappa^{n}}, E_{\mathcal{F}^{n}}$ and $E_{m i x(r)}$ of $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$ are well defined, where $1 \leq r \leq n$:
(ii-1) $E_{\kappa^{n}}:=E \cap\left(\left(\mathbb{Z}^{n}\right)_{\kappa^{n}}\right)$ (cf. (i-1) above);
(ii-2) $E_{\mathcal{F}^{n}}:=E \cap\left(\left(\mathbb{Z}^{n}\right)_{\mathcal{F}^{n}}\right)$ (cf. (i-2) above);
(ii-3) $E_{\operatorname{mix}(r)}:=E \cap\left(\left(\mathbb{Z}^{n}\right)_{\operatorname{mix}(r)}\right)$ (cf. (i-3) above); we note $E_{\operatorname{mix}(n)}=E_{\mathcal{F}^{n}}$.
It is well known that: for any nonempty subset E of $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$,
$\cdot(* \mathbf{2 0})(\mathbf{i}) E_{\kappa^{n}}=\left\{x \in E \mid\{x\}\right.$ is open in $\left.\left(\mathbb{Z}^{n}, \kappa^{n}\right)\right\}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in E \mid x_{i}\right.$ is odd for each $i \in \mathbb{Z}$ with $1 \leq i \leq n\}$.
(ii) $E_{\mathcal{F}^{n}}=\left\{x \in E \mid\{x\}\right.$ is closed in $\left.\left(\mathbb{Z}^{n}, \kappa^{n}\right)\right\}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in E \mid x_{i}\right.$ is even for each $i \in \mathbb{Z}$ with $1 \leq i \leq n\}$.
(iii) The subset $\left(\mathbb{Z}^{n}\right)_{\kappa^{n}}$ and $E_{\kappa^{n}}$ are open in $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$.
(iv) We have the following decomposition of \mathbb{Z}^{n} and one of a nonempty set E, respectively, as follows (Note: $n \geq 2$),
- $\mathbb{Z}^{n}=\left(\mathbb{Z}^{n}\right)_{\kappa^{n}} \cup\left(\mathbb{Z}^{n}\right)_{\mathcal{F}^{n}} \cup\left(\bigcup\left\{\left(\mathbb{Z}^{n}\right)_{\operatorname{mix}(r)} \mid 1 \leq r \leq n-1\right\}\right)$ (disjoint union);
- $E=E_{\kappa^{n}} \cup E_{\mathcal{F}^{n}} \cup\left(\bigcup\left\{E_{\operatorname{mix}(r)} \mid 1 \leq r \leq n-1\right\}\right)$ (disjoint union).
(Note: in the above decomposition of $\mathbb{Z}^{n}($ resp. $E)$, we should take $\left(\mathbb{Z}^{n}\right)_{\operatorname{mix}(r)}\left(\right.$ resp. $\left.E_{m i x(r)}\right)$ with $1 \leq r \leq n-1$.)
(v) Especially, for $n=2$ and $r=1, E_{\operatorname{mix}(1)}=\left\{\left(x_{1}, x_{2}\right) \in E \mid x_{1}\right.$ is even and x_{2} is odd $\}$ $\cup\left\{\left(x_{1}, x_{2}\right) \in E \mid x_{1}\right.$ is odd and x_{2} is even $\}$; we have the following decompositions:
$\cdot \mathbb{Z}^{2}=\left(\mathbb{Z}^{2}\right)_{\kappa^{2}} \cup\left(\mathbb{Z}^{2}\right)_{\mathcal{F}^{2}} \cup\left(\mathbb{Z}^{2}\right)_{\operatorname{mix}(1)}$ (disjoint union) and $E=E_{\kappa^{2}} \cup E_{\mathcal{F}^{2}} \cup E_{\operatorname{mix}(1)}$ (disjoint union).
(vi) If $E \subset F \subset \mathbb{Z}^{n}$, then $E_{\kappa^{n}} \subset F_{\kappa^{n}}, E_{\mathcal{F}^{n}} \subset F_{\mathcal{F}^{n}}$ and $E_{\operatorname{mix}(r)} \subset F_{\operatorname{mix}(r)}(1 \leq r \leq n-1)$ hold in $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$.

In Section 4, we need the following property Theorem 3.12 (cf. Theorem 4.9, Corollary 4.10 below).

Theorem 3.12 ([39, Lemma 2.3]) Let $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in\left(\mathbb{Z}^{n}\right)_{\operatorname{mix}\left(a^{\prime}\right)}$ and $y=\left(y_{1}, y_{2}, \ldots\right.$, $\left.y_{n}\right) \in\left(\mathbb{Z}^{n}\right)_{\operatorname{mix}(a)}$, where a^{\prime} and a are integers such that $a^{\prime} \leq a, 1 \leq a^{\prime} \leq n$ and $1 \leq a \leq n$. Suppose that $U^{n}(x) \cap U^{n}(y)$ contains exactly the $2^{a^{\prime}}$ open singletons, say $\left\{q^{(1)}, q^{(2)}, \ldots, q^{\left(2^{a^{\prime}}\right)}\right\}$. Then, the following properties holds.
(i) $\left\{q^{(1)}, q^{(2)}, \ldots, q^{\left(2^{a^{\prime}}\right)}\right\}=\left(U^{n}(x)\right)_{\kappa^{n}}=\left(U^{n}(x) \cap U^{n}(y)\right)_{\kappa^{n}} \subseteq\left(U^{n}(y)\right)_{\kappa^{n}}$.
(ii) $\left\{i \mid x_{i}\right.$ is even $\left.(1 \leq i \leq n)\right\} \subseteq\left\{i \mid y_{i}\right.$ is even $\left.(1 \leq i \leq n)\right\}$.
(ii)' If $a^{\prime}=a$ especially, then $\left\{i \mid x_{i}\right.$ is even $\left.(1 \leq i \leq n)\right\}=\left\{i \mid y_{i}\right.$ is even $\left.(1 \leq i \leq n)\right\}$.
(iii) $x \in U^{n}(y)$ holds.
(iii)' If $a^{\prime}=a$ especially, then $x=y$.
4ω-closed sets in Sundaram-Sheik John's sense and Λ_{s}-sets in $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$ In the present section, we investigate the concept of ω-closed sets (in Sundaram-Sheik John's sense) in $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$ and we give a characterization of the ω-closedness in the digital n-spaces (cf. Theorem 4.6). In $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$, we first give an example of a Λ_{s}-set, say $B(n)$, where $n \geq 2$, (cf. Definition 2.3, Example 4.2) which is not ω-closed (in Sundaram-Sheik John's sense) (cf. Example 4.2(ii-1)); this example informs us general properties on ($\mathbb{Z}^{n}, \kappa^{n}$) (cf. Theorem 4.5). In order to explain the example, we prove the following proposition. We use the notations of Definition 3.11 and (II) $(* 20)$ etc in Section 3, i.e., some notation and well known properties in $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$.

Proposition 4.1 Let V be an open set of $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$.
(i) If $n \geq 2$, then $V_{\mathcal{F}^{n}} \cup\left(\bigcup\left\{V_{\operatorname{mix}(r)} \mid 1 \leq r \leq n-1\right\}\right) \subset \mathrm{Cl}\left(V_{\kappa^{n}}\right)$.
(ii) If $n=1$, then $V_{\mathcal{F}^{n}} \subset \mathrm{Cl}\left(V_{\kappa^{n}}\right)$.

Proof. (i) Let $y \in V_{\mathcal{F}^{n}} \cup\left(\bigcup\left\{V_{\operatorname{mix}(r)} \mid 1 \leq r \leq n-1\right\}\right.$) (cf. Definition 3.11(ii), (II) $(* 20)$ etc in Section 3 above). Since $y \in V$ and V is open in $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$, there exists the smallest open set $U^{n}(y)(\mathrm{cf}$. Definition 3.7) containing y such that
$\left(*^{1}\right) \quad U^{n}(y) \subset V\left(c f\right.$. Theorem 3.9(iii)) and so $\left(U^{n}(y)\right)_{\kappa^{n}} \subset V_{\kappa^{n}}$ (cf. Definition 3.11(ii)(ii-1), $(\mathrm{II})(* 20)(\mathrm{vi})$ above).

Case 1. $y \in V_{\mathcal{F}^{n}}$, i.e., $y=\left(2 s_{1}, 2 s_{2}, \ldots, 2 s_{n}\right)$ and $y \in V$, where $s_{i} \in \mathbb{Z}(1 \leq i \leq n)$ (cf. Definition 3.11(ii)(ii-2)): since $U^{n}(y)=\prod_{i=1}^{n}\left\{2 s_{i}-1,2 s_{i}, 2 s_{i}+1\right\}$ for this point y, we have $\prod_{i=1}^{n}\left\{2 s_{i}-1,2 s_{i}, 2 s_{i}+1\right\} \subset V($ cf. Definition 3.7, Theorem 3.9(iii) and (I)(*4) in Section 3). We pick a point $p(y):=\left(2 s_{1}+1,2 s_{2}+1, \ldots, 2 s_{n}+1\right) \in\left(U^{n}(y)\right)_{\kappa^{n}}$ and so $p(y) \in V_{\kappa^{n}}$ (cf. Proposition 3.5(iii)(b)). Then, since $\mathrm{Cl}(\{p(y)\})=\prod_{i=1}^{n}\left\{2 s_{i}, 2 s_{i}+1,2 s_{i}+2\right\}$ (cf. Proposition 3.5(i)(a)), we have $y=\left(2 s_{1}, 2 s_{2}, \ldots, 2 s_{n}\right) \in \mathrm{Cl}(\{p(y)\}) \subset \mathrm{Cl}\left(V_{\kappa^{n}}\right)$. It is proved that $V_{\mathcal{F}^{n}} \subset \mathrm{Cl}\left(V_{\kappa^{n}}\right)$. We note that the above proof is done for the case where $n \geq 1$ (cf. $(\mathrm{I})(* 1),(* 4),(* 11)(\mathrm{v})$ in Section3).

Case 2. $y \in V_{\operatorname{mix}(r)}$, where $1 \leq r \leq n-1(n \geq 2)$ (cf. Definition 3.11(ii)(ii-3)): for this point y, we set $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$; then by definition, $r=\#\left\{i \mid y_{i}\right.$ is an even integer $(1 \leq i \leq n)\}$. We put $I_{r}:=\left\{i \mid y_{i}\right.$ is even $\}=\{e(1), e(2), \ldots, e(r)\}$
$(e(1)<e(2)<\ldots<e(r))$ and $J_{n-r}:=\left\{j \mid y_{j}\right.$ is odd $\}=\{o(1), o(2), \ldots, o(n-r)\}(o(1)<$ $o(2)<\ldots<o(n-r))$; then $\{1,2, \ldots, n\}=I_{r} \cup J_{n-r}$ (disjoint union). For the present case, we claim that $y \in C l\left(V_{\kappa^{n}}\right)$. Indeed, we recall that:
$\left(*^{2}\right) U^{n}(y)=\prod_{i=1}^{n} U\left(y_{i}\right)$, where $U\left(y_{e}\right):=\left\{y_{e}-1, y_{e}, y_{e}+1\right\}$ if $e \in I_{r} ;$ and $U\left(y_{o}\right):=\left\{y_{o}\right\}$ if $o \in J_{n-r}$ (cf. (I) (*4) in Section 3, Definition 3.7).
For this point $y \in V_{\operatorname{mix}(r)}(1 \leq r \leq n-1$ and $n \geq 2)$, we pick a point $p(y) \in U^{n}(y)$ such that $p(y) \in\left(U^{n}(y)\right)_{\kappa^{n}}$ as follows:
$\left(*^{3}\right)$ let $p(y):=\left(p_{1}, p_{2}, \ldots, p_{n}\right)$, where $p_{e}:=y_{e}-1$ if $e \in I_{r} ; p_{o}:=y_{o}$ if $o \in J_{n-r}$.
Then by $\left(*^{2}\right)$ and $\left(*^{3}\right)$ above, it is shown that the components of the point $p(y)$ are odd and so $\left(*^{4}\right) p(y) \in\left(U^{n}(y)\right)_{\kappa^{n}}$, because the components have the forms of $y_{e}-1 \in U\left(y_{e}\right)$ or $y_{o} \in U\left(y_{o}\right)$.
Thus, using $\left(*^{1}\right),\left(*^{4}\right)$ above and (II) $(* 20)\left(\right.$ vi) above, we see that $p(y) \in V_{\kappa^{n}}$; and so
$\left(*^{5}\right) \mathrm{Cl}(\{p(y)\}) \subset \mathrm{Cl}\left(V_{\kappa^{n}}\right)$.
We note that: $\mathrm{Cl}(\{p(y)\})=\mathrm{Cl}\left(\left\{\left(p_{1}, p_{2}, \ldots, p_{n}\right)\right\}\right)=\prod_{i=1}^{n} \mathrm{Cl}\left(\left\{p_{i}\right\}\right)$ in $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$, where $\mathrm{Cl}\left(\left\{p_{e}\right\}\right)$ $=\left\{p_{e}-1, p_{e}, p_{e}+1\right\}=\left\{y_{e}-2, y_{e}-1, y_{e}\right\}$ if $e \in I_{r}$; and $\mathrm{Cl}\left(\left\{p_{o}\right\}\right)=\left\{p_{o}-1, p_{o}, p_{o}+1\right\}=\left\{y_{o}-\right.$ $\left.1, y_{o}, y_{o}+1\right\}$ if $o \in J_{n-r}$ (cf. Proposition 3.5). Thus, we have $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \mathrm{Cl}(\{p(y)\})$. Moreover, using $\left(*^{5}\right)$ above, we conclude that $y \in \mathrm{Cl}\left(V_{\kappa^{n}}\right)$ for a point $y \in V_{\operatorname{mix}(r)}$. Namely, it is proved that $V_{\operatorname{mix}(r)} \subset \mathrm{Cl}\left(V_{\kappa^{n}}\right)$ for each r with $1 \leq r \leq n-1(n \geq 2)$.

Therefore we have the required inclusion: $V_{\mathcal{F}^{n}} \cup\left(\bigcup\left\{V_{\operatorname{mix}(r)} \mid 1 \leq r \leq n-1\right\}\right) \subset \mathrm{Cl}\left(V_{\kappa^{n}}\right)$
(ii) For the case where $n=1$, we may consider the case 1 only of the proof of (i) above; the proof is omitted (cf. $(\mathrm{I})(* 1),(* 4),(* 11)(\mathrm{v})$ in Section3).

Example 4.2 Throughout the present example, let $B(n):=\left(\mathbb{Z}^{n}\right)_{\mathcal{F}^{n}} \cup\{x(1), x(2), \ldots$, $x(s)\}$ be an infinite subset of $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$, where $n \geq 1$ and s is a positive integer, $\{x(j)\}$ is an open singleton of $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$ for each integer j with $1 \leq j \leq s$. We have the following properties on the subset $B(n)$: namely,
(i) $B(n)$ is a Λ_{s}-set of $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$ for each $n \geq 1$ (cf. Proof of (i) below and Definition 2.3).
(ii) (ii-1) If $n \geq 2$, then $B(n)$ is not an ω-closed set (in Sundaram-Sheik John's sense) of $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$ (cf. Proof of (ii-1) below and Definition 2.1);
(ii-2) For $n=1, B(n)$ is a closed set of (\mathbb{Z}, κ) and so it is an ω-closed set (in SundaramSheik John's sense) in ($\mathbb{Z}, \kappa)$ (cf. Proof of (ii-2) below and Definition 2.1).
(iii) Let A be a subset of $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$ such that $B(n) \subset A \subset C l(B(n))$. Then, A is not semi-open in $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$.

For the case where $n=2$, the following figure illustrates the subset $B=\left(\mathbb{Z}^{2}\right)_{\mathcal{F}^{2}} \cup$ $\{x(1), x(2)\}$ in $\left(\mathbb{Z}^{2}, \kappa^{2}\right)$; each symbol \bullet means a point in $\left(\mathbb{Z}^{2}\right)_{\mathcal{F}^{2}}$ and two symbols \circ mean $x(1)=(1,1)$ and $x(2)=(3,1)$ respectively.

In order to prove (i) above, we need the following property ($* *$):
$(* *)$ Suppose $n \geq 1$. Let $F_{1}(n):=B(n) \cup E_{1}(n)$ and $F_{2}(n):=B(n) \cup E_{2}(n)$, where $E_{1}(n)=\left\{\left(s_{1}, s_{2}, \ldots, s_{n}\right) \in \mathbb{Z}^{n} \mid s_{i} \equiv 1 \bmod 4(1 \leq i \leq n)\right\}$ and $E_{2}(n):=\left\{\left(s_{1}, s_{2}, \ldots, s_{n}\right) \in\right.$ $\left.\mathbb{Z}^{n} \mid s_{j} \equiv 3 \bmod 4(1 \leq j \leq n)\right\}$. Then, $E_{1}(n) \cap E_{2}(n)=\emptyset$ holds and $F_{1}(n)$ and $F_{2}(n)$ are semi-open sets including $B(n)$ such that $F_{1}(n) \cap F_{2}(n)=B(n)$.

Proof of $(* *)$. We first recall the following expressions of $\left(\mathbb{Z}^{n}\right)_{\mathcal{F} n}:=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid x_{i}\right.$ is even $(1 \leq i \leq n)\}$ as follows:
$\left(*_{1}\right)\left(\mathbb{Z}^{n}\right)_{\mathcal{F}^{n}}=\bigcup\left\{\prod_{i=1}^{n}\left\{x_{i}\right\} \mid x_{i}\right.$ is even $\left.(1 \leq i \leq n)\right\}=\bigcup\left\{\prod_{i=1}^{n}\left\{s_{i}-1, s_{i}+1\right\} \mid\left(s_{1}, s_{2}, \ldots, s_{n}\right) \in\right.$ $\left.\mathbb{Z}^{n}, s_{i} \equiv 1 \bmod 4(1 \leq i \leq n)\right\}$; and
$\left(*_{1}\right)^{\prime}\left(\mathbb{Z}^{n}\right)_{\mathcal{F}^{n}}=\bigcup\left\{\prod_{i=1}^{n}\left\{s_{i}-1, s_{i}+1\right\} \mid\left(s_{1}, s_{2}, \ldots, s_{n}\right) \in \mathbb{Z}^{n}, s_{i} \equiv 3 \bmod 4(1 \leq i \leq n)\right\}$.
We secondly claim that
$\left(*_{2}\right) \mathrm{Cl}\left(E_{i}(n)\right) \supset\left(\mathbb{Z}^{n}\right)_{\mathcal{F}^{n}} \cup E_{i}(n)$ for each $i \in\{1,2\}$.
Indeed, we have $\mathrm{Cl}\left(E_{1}(n)\right)=\mathrm{Cl}\left(\bigcup\left\{\prod_{i=1}^{n}\left\{s_{i}\right\} \mid\left(s_{1}, s_{2}, \ldots, s_{n}\right) \in \mathbb{Z}^{n}, s_{i} \equiv 1 \bmod 4(1 \leq i \leq\right.\right.$ $n)\}) \supset \bigcup\left\{\mathrm{Cl}\left(\prod_{i=1}^{n}\left\{s_{i}\right\}\right) \mid\left(s_{1}, s_{2}, \ldots, s_{n}\right) \in \mathbb{Z}^{n}, s_{i} \equiv 1 \bmod 4(1 \leq i \leq n)\right\}=\bigcup\left\{\prod_{i=1}^{n} \mathrm{Cl}\left(\left\{s_{i}\right\}\right) \mid\right.$ $\left.\left(s_{1}, s_{2}, \ldots, s_{n}\right) \in \mathbb{Z}^{n}, s_{i} \equiv 1 \bmod 4(1 \leq i \leq n)\right\}=\bigcup\left\{\prod_{i=1}^{n}\left\{s_{i}-1, s_{i}, s_{i}+1\right\} \mid\left(s_{1}, s_{2}, \ldots, s_{n}\right) \in\right.$ $\left.\mathbb{Z}^{n}, s_{i} \equiv 1 \bmod 4(1 \leq i \leq n)\right\} \supset \bigcup\left\{\prod_{i=1}^{n}\left\{s_{i}-1, s_{i}+1\right\} \mid\left(s_{1}, s_{2}, \ldots, s_{n}\right) \in \mathbb{Z}^{n}, s_{i} \equiv 1 \bmod \right.$ $4(1 \leq i \leq n)\}=\left(\mathbb{Z}^{n}\right)_{\mathcal{F}^{n}}\left(\right.$ cf. $\left(*_{1}\right)$ above, $(\mathrm{I})(* 5)(\mathrm{i})$ in Section 3) and $\mathrm{Cl}\left(E_{1}(n)\right) \supset E_{1}(n)$. Hence, we have $\mathrm{Cl}\left(E_{1}(n)\right) \supset\left(\mathbb{Z}^{n}\right)_{\mathcal{F}^{n}} \cup E_{1}(n)$. In the same way, using $\left(*_{1}\right)^{\prime}$ in place of $\left(*_{1}\right)$, we have $\mathrm{Cl}\left(E_{2}(n)\right) \supset\left(\mathbb{Z}^{n}\right)_{\mathcal{F}^{n}} \cup E_{2}(n)$. Moreover, we claim that $\left(*_{3}\right) F_{i}(n)$ is semi-open in $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$ for each $i \in\{1,2\}$.
Indeed, by using $\left(*_{2}\right)$ and definitions, it is shown that, for each $i \in\{1,2\}, \mathrm{Cl}\left(\operatorname{Int}\left(F_{i}(n)\right)\right) \supset \mathrm{Cl}$ $\left(\operatorname{Int}\left((B(n))_{\kappa^{n}} \cup E_{i}(n)\right)\right)=\operatorname{Cl}\left((B(n))_{\kappa^{n}} \cup E_{i}(n)\right) \supset(B(n))_{\kappa^{n}} \cup C l\left(E_{i}(n)\right) \supset\{x(1), x(2), \ldots, x(s)$ $\} \cup\left(\left(\mathbb{Z}^{n}\right)_{\mathcal{F}^{n}} \cup E_{i}(n)\right)=B(n) \cup E_{i}(n)=F_{i}(n)$. Namely, $F_{i}(n)$ is semi-open in $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$ for each $i \in\{1,2\}$.

Finally, $\left(*_{4}\right) F_{1}(n) \cap F_{2}(n)=B(n) \cup\left(E_{1}(n) \cap E_{2}(n)\right)=B(n)$ hold, because $E_{1}(n) \cap$ $E_{2}(n)=\emptyset$.

Proof of (i). We first claim that $\operatorname{sKer}(B(n)) \subset B(n)$. Indeed, we recall $(* *)$ above and so $F_{1}(n)$ and $F_{2}(n)$ are semi-open sets in $\left(\mathbb{Z}^{n}, \kappa^{n}\right)(n \geq 1)$ such that $B(n) \subset F_{i}(n)$ for each $i \in\{1,2\}$. Thus, by definitions, it is shown that $\operatorname{sKer}(B(n)) \subset F_{1}(n) \cap F_{2}(n)$ (cf. Definition 2.2(i)); and so $\operatorname{sKer}(B(n)) \subset B(n)$, because $F_{1}(n) \cap F_{2}(n)=B(n)$ (cf. (**) above). This concludes that $\operatorname{sKer}(B(n))=B(n)$, because $B(n) \subset s \operatorname{Ker}(B(n))$ holds. Namely, $B(n)$ is a Λ_{s}-set of $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$, where $n \geq 1$.

Proof of (ii)(ii-1). Suppose $n \geq 2$. We first show that:
$\left(*_{5}\right) \quad(\mathrm{Cl}(B(n)))_{\operatorname{mix}(r)} \neq \emptyset$, for each integer r with $1 \leq r \leq n-1$. Indeed, since $\mathrm{Cl}(B(n))=\mathrm{Cl}\left(\left(\mathbb{Z}^{n}\right)_{\mathcal{F}^{n}}\right) \cup(\bigcup\{(\mathrm{Cl}(\{x(i)\})) \mid 1 \leq i \leq s\})$, it is shown that $(\mathrm{Cl}(B(n)))_{\operatorname{mix}(r)} \supset$ $(\mathrm{Cl}(\{x(1)\}))_{\operatorname{mix}(r)}$ (cf. (II) $(* 20)$ in Section 3$)$. We can put $x(1):=\left(t_{1}, t_{2}, \ldots, t_{n}\right)$, where t_{j} is odd for each j with $1 \leq j \leq n$, because $x(1) \in\left(\mathbb{Z}^{n}\right)_{\kappa^{n}}$ (cf. Definition 3.11(i)(i-1)). Then, we show $\mathrm{Cl}(\{x(1)\})=\prod_{j=1}^{n} \mathrm{Cl}\left(\left\{t_{j}\right\}\right)=\prod_{j=1}^{n}\left\{t_{j}-1, t_{j}, t_{j}+1\right\}$ (cf. Proposition 3.5(i)(a)) and so
$(\mathrm{Cl}(\{x(1)\}))_{\operatorname{mix}(r)} \neq \emptyset$ for each integer r with $1 \leq r \leq n-1$, because we can take a point
$p:=\left(p_{1}, p_{2}, \ldots, p_{n}\right)$, where $p_{j}:=t_{j}-1$ is even for each j with $1 \leq j \leq r$ and $p_{j}:=t_{j}$ is odd for each j with $r+1 \leq j \leq n$; and hence $p \in(\mathrm{Cl}(\{x(1)\}))_{\operatorname{mix}(r)}$ (cf. Definition 3.11(i)(i-3)) and so $p \in(\mathrm{Cl}(B(n)))_{\operatorname{mix}(r)}$ (cf. (II) $(* 20)$ in Section 3). Thus, we prove the property $\left(*_{5}\right)$.

We secondly have the following property: $\left(*_{6}\right) \mathrm{Cl}(B(n)) \not \subset F_{1}(n)$ holds.
Indeed, for a contradiction, we suppose $\mathrm{Cl}(B(n)) \subset F_{1}(n)$; then $(\mathrm{Cl}(B(n)))_{\operatorname{mix}(r)}$
$\subset\left(F_{1}(n)\right)_{\operatorname{mix}(r)}$ and so $(\mathrm{Cl}(B(n)))_{\operatorname{mix}(r)}=\emptyset$ because of $\left(F_{1}(n)\right)_{\operatorname{mix}(r)}=\emptyset$ for each integer r with $1 \leq r \leq n-1$. This contradicts $\left(*_{5}\right)$ above.

For a contradiction, we finally suppose that $B(n)$ is ω-closed in Sundaram-Sheik John's sense, i.e., $\mathrm{Cl}(B(n)) \subset \operatorname{sKer}(B(n))$ (cf. Theorem 2.5). Then, using (**) above, we have $\operatorname{sKer}(B(n)) \subset F_{1}(n)$ and so $\mathrm{Cl}(B(n)) \subset F_{1}(n)$; this contradicts $\left(*_{6}\right)$ above. Therefore, $B(n)$ is not ω-closed (in Sundaram-Sheik John's sense) in $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$, where $n \geq 2$.

Proof of (ii)(ii-2) Suppose $n=1$. First, it is shown that $B(n)=B(1)$ is closed in \mathbb{Z}^{n}, where $n=1$. Indeed, we have $\mathbb{Z} \backslash B(1)=\mathbb{Z}_{\kappa} \backslash\{x(j) \mid 1 \leq j \leq s\}$ and so $\mathbb{Z} \backslash B(1)=$ $\bigcup\left\{\{z\} \mid z \in \mathbb{Z}_{\kappa}\right.$ and $\left.z \notin\{x(j) \mid 1 \leq j \leq s\}\right\}$, i.e., $\mathbb{Z} \backslash B(1)$ is the union of some open singletons $\{z\}$, and hence $\mathbb{Z} \backslash B(1) \in \kappa$ (cf. Definition 3.1). Thus, the set $B(1)$ is closed and so it is ω-closed in Sundaram-Sheik John's sense.

Proof of (iii). For a contradiction, we suppose that A is semi-open in $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$. Then, there exists an open set V such that $V \subset A \subset \mathrm{Cl}(V)$ and so $V \subset \mathrm{Cl}(B(n))$. First we claim that: $\quad\left(*_{7}\right) \quad \mathrm{Cl}(V) \subset \mathrm{Cl}\left(V_{\kappa^{n}}\right)$ holds for each $n \geq 1$.
Proof of $\left(*_{7}\right)$. Case (I). $n \geq 2$: for this case, we have $V=V_{\kappa^{n}} \cup V_{\mathcal{F}^{n}} \cup\left(\bigcup\left\{V_{\operatorname{mix}(r)} \mid 1 \leq r \leq\right.\right.$ $n-1\})$ (cf. (II) $(* 20)$ (iv) in Section 3). Since V is open, by Proposition 4.1(i), it is shown that $\mathrm{Cl}(V)=\mathrm{Cl}\left(V_{\kappa^{n}}\right) \cup \mathrm{Cl}\left(V_{\mathcal{F}^{n}} \cup\left(\bigcup\left\{V_{\operatorname{mix}(r)} \mid 1 \leq r \leq n-1\right\}\right)\right) \subset \mathrm{Cl}\left(V_{\kappa^{n}}\right) \cup \mathrm{Cl}\left(\mathrm{Cl}\left(V_{\kappa^{n}}\right)\right)=\mathrm{Cl}\left(V_{\kappa^{n}}\right) ;$ and so $\mathrm{Cl}(V) \subset \mathrm{Cl}\left(V_{\kappa^{n}}\right)$.
Case (II). $n=1$: for this case, we have $V=V_{\kappa} \cup V_{\mathcal{F}}$ (cf. (I)(*11)(iii) in Section 3). Since V is open, by Proposition 4.1(ii), it is shown that
$\mathrm{Cl}(V)=\mathrm{Cl}\left(V_{\kappa}\right) \cup \mathrm{Cl}\left(V_{\mathcal{F}}\right) \subset \mathrm{Cl}\left(V_{\kappa}\right) \cup \mathrm{Cl}\left(\mathrm{Cl}\left(V_{\kappa}\right)\right)=\mathrm{Cl}\left(V_{\kappa}\right)$; and so $\mathrm{Cl}(V) \subset \mathrm{Cl}\left(V_{\kappa}\right)$.
We proceed the proof of (iii). We put $V_{\kappa^{n}}:=\left\{p(k) \in V \mid\{p(k)\} \in \kappa^{n}, k \in \nu\right\}$, where $\nu \subset \mathbb{Z}$ is an index set (cf. Definition 3.11(i)(i-1)). Since $p(k) \in V_{\kappa^{n}} \subset V \subset \mathrm{Cl}(B(n))$ and so $p(k) \in \mathrm{Cl}(B(n))$, it is shown that $\{p(k)\} \cap B(n) \neq \emptyset$ and so $p(k) \in B(n)$ for each $k \in \nu$. Namely, we have:
$\left(*_{8}\right) \quad V_{\kappa^{n}} \subset(B(n))_{\kappa^{n}}($ cf. Definition 3.11(i)(i-1),(ii)(ii-1) and (I)(*11)(v), (II)
$(* 20)(\mathrm{vi}))$. Then, using $\left(*_{7}\right)$ and $\left(*_{8}\right)$ above, we conclude that $\mathrm{Cl}(V) \subset \mathrm{Cl}\left(V_{\kappa^{n}}\right) \subset \mathrm{Cl}((B(n)$ $\left.)_{\kappa^{n}}\right)=\operatorname{Cl}(\{x(1), x(2), \ldots, x(s)\})=\bigcup\{\mathrm{Cl}(\{x(j)\}) \mid 1 \leq j \leq s\}$; and hence $\mathrm{Cl}(V)$ is a finite subset of $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$, because $\mathrm{Cl}(\{y\})$ is a finite subset of \mathbb{Z} for every point $y \in \mathbb{Z}$ (cf. (I)(*5)(i) in Section 3) and so $\mathrm{Cl}(\{x(j)\})$ is a finite subset of \mathbb{Z}^{n} for each j with $1 \leq j \leq s($ cf. (II) $(* 12)($ a) in Section 3). Therefore, we have A is a finite subset of $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$, because of $V \subset A \subset \mathrm{Cl}(V)$; and so $B(n)$ is also finite, because of $B(n) \subset A$; this contradicts the definition of the set $B(n)$ (i.e., $B(n)$ is not finite). Therefore, A is not semi-open in (\mathbb{Z}, κ).
In order to state Theorem 4.4, we need the following definition on $I_{r}(x)$ and $J_{n-r}(x)$, where $x \in \mathbb{Z}^{n}$.

Definition 4.3 (cf. Definition 3.11(i)(i-3),(II)(*20)(iv) in Section 3; [39, Definiton 2.1(ii)]) Let $x:=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in\left(\mathbb{Z}^{n}\right)_{m i x(r)}$, where $n \geq 2$ and r is the cardinality of a set $\left\{k \mid x_{k}\right.$ is even $\}$ with $1 \leq r \leq n-1$ (cf. Definition $3.11(\mathrm{i}-3)$,(II) $(* 20)$ (iv) in Section 3; in the present definition, we note the assumption that $1 \leq r \leq n-1$ and $n \geq 2$; and so $\left.\left(\mathbb{Z}^{n}\right)_{\operatorname{mix}(r)} \neq \emptyset\right)$. Let $x_{e(1)}, x_{e(2)}, \ldots, x_{e(r)}$ be all the components of x which are even; and $x_{o(1)}, x_{o(2)}, \ldots, x_{o(n-r)}$ be all the components of x which are odd, where $e(k)(1 \leq k \leq r)$ and $o(j)(1 \leq j \leq n-r)$ are positive integers with $1 \leq e(1)<e(2)<\ldots<e(r) \leq n$ and $1 \leq o(1)<o(2)<\ldots<$ $o(n-r) \leq n$. Then, for this point $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, we define the following subsets $I_{r}(x)$ and $J_{n-r}(x)$ of $\{1,2, \ldots, n\}$ as follows:

- $I_{r}(x):=\left\{k \mid x_{k}\right.$ is even $\}$; and so $I_{r}(x)=\{e(1), e(2), \ldots, e(r)\}$ holds;
- $J_{n-r}(x):=\left\{j \mid x_{j}\right.$ is odd $\}$; and so
$J_{n-r}(x)=\{o(1), o(2), \ldots, o(n-r)\},\{1,2, \ldots, n\}=I_{r}(x) \cup J_{n-r}(x) \quad\left(I_{r}(x) \cap J_{n-r}(x)=\right.$ $\emptyset), I_{r}(x) \neq \emptyset$ and $J_{n-r}(x) \neq \emptyset$ hold, where $n \geq 2$ and $1 \leq r \leq n-1$.

We construct some semi-open sets containing a point of $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$ where $n \geq 1$.
Theorem 4.4 Let $x:=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{Z}^{n}$.
(i) Suppose $n \geq 1$. If $x \in\left(\mathbb{Z}^{n}\right)_{\kappa^{n}}$, i.e., all the components $x_{1}, x_{2}, \ldots, x_{n}$ of the point x are odd (cf. Definition 3.11(i)(i-1)), then $\{x\}$ is a semi-open set containing x in $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$.
(ii) Suppose $n \geq 1$ and $x:=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in\left(\mathbb{Z}^{n}\right)_{\mathcal{F}^{n}}$, i.e., all the components $x_{1}, x_{2}, \ldots, x_{n}$ of the point x are even (cf. Definition 3.11(i)(i-2)). Then, we have the following properties.
(ii-1) We set $A(x):=\left\{\left(x_{1}+i_{1}, x_{2}+i_{2}, \ldots, x_{n}+i_{n}\right) \in \mathbb{Z}^{n} \mid i_{k} \in\{+1,-1\}(1 \leq k \leq n)\right\}$ for the point $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in\left(\mathbb{Z}^{n}\right)_{\mathcal{F}^{n}}$. Then, $\# A(x)=2^{n}$ holds. And, for each point of $A(x)$, say $p(x, u)\left(1 \leq u \leq 2^{n}\right)$, the singleton $\{p(x, u)\}$ is open in $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$.
(ii-2) In $\left(\mathbb{Z}^{n}, \kappa^{n}\right),\left\{p(x, u) \mid 1 \leq u \leq 2^{n}\right\}=\left(U^{n}(x)\right)_{\kappa^{n}}$ holds, where $U^{n}(x)$ is the smallest open set (cf. Definition 3.7,Theorem 3.9) containing the point $x \in\left(\mathbb{Z}^{n}\right)_{\mathcal{F}^{n}}$.
(ii-3) The subset $\{x\} \cup\{p(x, u)\}$ is a semi-open set containing the point $x \in\left(\mathbb{Z}^{n}\right)_{\mathcal{F}^{n}}$ for each u with $1 \leq u \leq 2^{n}$.
(iii) Suppose $n \geq 2$ and $x:=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in\left(\mathbb{Z}^{n}\right)_{\operatorname{mix}(r)}$ where $1 \leq r \leq n-1$ (cf. Definition 3.11(i)(i-3),(II)(*20)(iv) in Section 3). Let $I_{r}(x)=\{e(1), e(2)$,
$\ldots, e(r)\}$ and $J_{n-r}(x)=\{o(1), o(2), \ldots, o(n-r)\}$ (cf. Definition 4.3). Then, we have the following properties.
(iii-1) We set $B(x):=\left\{\left(z_{1}, z_{2}, \ldots, z_{n}\right) \in \mathbb{Z}^{n} \mid z_{e(k)} \in\left\{x_{e(k)}-1, x_{e(k)}+1\right\}(1 \leq k \leq\right.$ $\left.r), z_{o(j)}=x_{o(j)}(1 \leq j \leq n-r)\right\}$ for the point $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in\left(\mathbb{Z}^{n}\right)_{\operatorname{mix}(r)}$. Then, $\# B(x)=2^{r}$. And, for each point of $B(x)$, say $p(x, u)\left(1 \leq u \leq 2^{r}\right)$, the singleton $\{p(x, u)\}$ is open in $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$.
(iii-2) In $\left(\mathbb{Z}^{n}, \kappa^{n}\right),\left\{p(x, u) \mid 1 \leq u \leq 2^{r}\right\}=\left(U^{n}(x)\right)_{\kappa^{n}}$ holds, where $U^{n}(x)$ is the smallest open set containing the point $x \in\left(\mathbb{Z}^{n}\right)_{\operatorname{mix}(r)}$.
(iii-3) The subset $\{x\} \cup\{p(x, u)\}$ is a semi-open set containing the point $x \in\left(\mathbb{Z}^{n}\right)_{\operatorname{mix}(r)}$ for each u with $1 \leq u \leq 2^{r}$.

Proof. (i) For the point $x \in\left(\mathbb{Z}^{n}\right)_{\kappa^{n}}$, the singleton $\{x\}$ is open in $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$ (cf. Proposition $3.5(\mathrm{iii})(\mathrm{b}))$; and so it is semi-open.
(ii) (ii-1) Obviously, the cardinality of $A(x)$ is 2^{n}. The point $p(x, u)$, where $1 \leq u \leq 2^{n}$, is expressible as $p(x, u)=\left(x_{1}+i_{1}, x_{2}+i_{2}, \ldots, x_{n}+i_{n}\right)$ for some integers $i_{k} \in\{+1,-1\}(1 \leq$ $k \leq n)$ and so all the components of $p(x, u)$ are odd, because all the components $x_{1}, x_{2}, \ldots, x_{n}$ are even. Thus, $\{p(x, u)\}$ is open in $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$ (cf. Proposition 3.5(iii)(b)).
(ii-2) For the point $x \in\left(\mathbb{Z}^{n}\right)_{\mathcal{F}^{n}}$, we set $x=\left(2 s_{1}, 2 s_{2}, \ldots, 2 s_{n}\right)$ for some integers $s_{i}(1 \leq$ $i \leq n)$. Then, $U^{n}(x)=\prod_{i=1}^{n} U\left(2 s_{i}\right)=\prod_{i=1}^{n}\left\{2 s_{i}-1,2 s_{i}, 2 s_{i}+1\right\}$ is the smallest open set containing x (cf. Definition 3.7 and (I)(*4)(i) in Section 3). Since $\left(U^{n}(x)\right)_{\kappa^{n}}=\{z \in$ $U^{n}(x) \mid\{z\}$ is open in $\left.\left(\mathbb{Z}^{n}, \kappa^{n}\right)\right\}=\left\{\left(z_{1}, z_{2}, \ldots, z_{n}\right) \in \prod_{i=1}^{n}\left\{2 s_{i}-1,2 s_{i}, 2 s_{i}+1\right\} \mid z_{1}, z_{2}, \ldots, z_{n}\right.$ are odd $\}$, we have $\left(U^{n}(x)\right)_{\kappa^{n}}=\left\{\left(2 s_{1}+i_{1}, 2 s_{2}+i_{2}, \ldots, 2 s_{n}+i_{n}\right) \in \mathbb{Z}^{n} \mid i_{k} \in\{+1,-1\}(1 \leq\right.$ $k \leq n)\}=A(x)$; and so we have $\left(U^{n}(x)\right)_{\kappa^{n}}=\left\{p(x, u) \mid 1 \leq u \leq 2^{n}\right\}$ (cf. Definition 3.11(i)(i-1),(ii)(ii-1) and (ii-1) above).
(ii-3) We first claim that $x \in \operatorname{Cl}(\{p(x, u)\})$ for each u with $1 \leq u \leq 2^{n}$. Indeed, we have $\mathrm{Cl}(\{p(x, u)\})=\prod_{k=1}^{n} \mathrm{Cl}\left(\left\{x_{k}+i_{k}\right\}\right)=\prod_{k=1}^{n}\left\{x_{k}+i_{k}-1, x_{k}+i_{k}, x_{k}+i_{k}+1\right\}$ (cf. (II)(*12)(a) in Section 3, Proposition 3.5(i)(a)); and so $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \prod_{k=1}^{n} \mathrm{Cl}\left(\left\{x_{k}+i_{k}\right\}\right)=$ $\mathrm{Cl}(\{p(x, u)\})$. Thus, we show that $\{x\} \cup\{p(x, u)\} \subset \mathrm{Cl}(\{p(x, u)\})=\operatorname{Cl}(\operatorname{Int}(\{p(x, u)\})) \subset \mathrm{Cl}($ Int
$(\{x\} \cup\{p(x, u)\}))($ cf. (ii-1) above), i.e., $\{x\} \cup\{p(x, u)\} \subset \operatorname{Cl}(\operatorname{Int}(\{x\} \cup\{p(x, u)\}))$. Namely, $\{x\} \cup\{p(x, u)\}$ is semi-open in $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$ for each u with $1 \leq u \leq 2^{n}$.
(iii) (iii-1) By the definition of $B(x)$, it is obviously shown that $\# B(x)=2^{r}$. A point $p(x, u)$ of $B(x)$ is expressible as $p(x, u)=\left(z(u)_{1}, z(u)_{2}, \ldots, z(u)_{n}\right)$, where $z(u)_{e(k)} \in\left\{x_{e(k)}-\right.$ $\left.1, x_{e(k)}+1\right\}(1 \leq k \leq r)$ and $z(u)_{o(j)}=x_{o(j)}(1 \leq j \leq n-r)$. We recall that the r components $x_{e(1)}, x_{e(2)}, \ldots, x_{e(r)}$ are all even and the $n-r$ components $x_{o(1)}, x_{o(2)}, \ldots, x_{o(n-r)}$ are all odd, because we assume that $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in\left(\mathbb{Z}^{n}\right)_{\operatorname{mix}(r)}$ where $1 \leq r \leq n-1(n \geq 2)$ and $I_{r}(x):=\left\{k \mid x_{k}\right.$ is even $\}=\{e(1), e(2), \ldots, e(r)\}(e(1)<e(2)<\ldots<e(r))$; and $J_{n-r}(x):=\left\{j \mid x_{j}\right.$ is odd $\}=\{o(1), o(2), \ldots, o(n-r)\}(o(1)<o(2)<\ldots<o(n-r))$ (cf. Definition $3.11(\mathrm{i})(\mathrm{i}-3),(\mathrm{II})(* 20)(\mathrm{iv})$ in Section 3 and Definition 4.3 above). Then, since the integers $x_{e(k)}-1, x_{e(k)}+1$ and $x_{o(j)}$ are odd, all the components $z(u)_{1}, z(u)_{2}, \ldots, z(u)_{n}$ are odd for each u with $1 \leq u \leq 2^{r}$. We have that the singleton $\{p(x, u)\}=\left\{\left(z(u)_{1}, z(u)_{2}, \ldots, z(u)_{n}\right)\right\}$ is open in ($\mathbb{Z}^{n}, \kappa^{n}$) (cf. Proposition 3.5(iii)(b)).
(iii-2) We recall that, for this point $x \in\left(\mathbb{Z}^{n}\right)_{\operatorname{mix}(r)}, U^{n}(x)=\prod_{i=1}^{n} U\left(x_{i}\right)$, where $U\left(x_{e(k)}\right)=\left\{x_{e(k)}-1, x_{e(k)}, x_{e(k)}+1\right\}(1 \leq k \leq r)$ and $U\left(x_{o(j)}\right)=\left\{x_{o(j)}\right\}(1 \leq j \leq n-r)$ (cf. Definition 4.3,Definition 3.7,(I)(*4)(i)(ii) in Section 3). Thus, we have that $\left(z_{1}, z_{2}, \ldots, z_{n}\right) \in$ $\left(U^{n}(x)\right)_{\kappa^{n}}$ if and only if $z_{e(k)} \in\left\{x_{e(k)}-1, x_{e(k)}+1\right\}$ and $z_{o(j)}=x_{o(j)}$ for integers k, j with $1 \leq k \leq r$ and $1 \leq j \leq n-r$ (cf. Proposition 3.5(iii)(b), Definition 4.3). Namely, we have $\left(U^{n}(x)\right)_{\kappa^{n}}=B(x)$ for the point $x \in\left(\mathbb{Z}^{n}\right)_{\operatorname{mix}(r)}$ and so $\left(U^{n}(x)\right)_{\kappa^{n}}=\left\{p(x, u) \mid 1 \leq u \leq 2^{r}\right\}$ (cf. (iii-1) above).
(iii-3) We first claim that $(*)\{x\} \cup\{p(x, u)\} \subset \operatorname{Cl}(\{p(x, u)\})$ holds in $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$ for each u with $1 \leq u \leq 2^{r}$. Indeed, for the point $p(x, u)$, we set $p(x, u):=\left(z(u)_{1}, z(u)_{2}, \ldots, z(u)_{n}\right)$ (cf. (iii-1) above). Then, for each positive integers k, j with $1 \leq k \leq r$ and $1 \leq j \leq n-r$, it is shown that: in (\mathbb{Z}, κ),
if $z(u)_{e(k)}=x_{e(k)}-1$, then $\operatorname{Cl}\left(\left\{z(u)_{e(k)}\right\}\right)=\left\{x_{e(k)}-2, x_{e(k)}-1, x_{e(k)}\right\}$ holds;
if $z(u)_{e(k)}=x_{e(k)}+1$, then $\mathrm{Cl}\left(\left\{z(u)_{e(k)}\right\}\right)=\left\{x_{e(k)}, x_{e(k)}+1, x_{e(k)}+2\right\}$ holds;
if $z(u)_{o(j)}=x_{o(j)}$, then $\mathrm{Cl}\left(\left\{z(u)_{o(j)}\right\}\right)=\left\{x_{o(j)}-1, x_{o(j)}, x_{o(j)}+1\right\}$ holds, (cf. (I) (*5)(i) in Section 3). Thus, we show that $x_{e(k)} \in \operatorname{Cl}\left(\left\{z(u)_{e(k)}\right\}\right)$ and $x_{o(j)} \in \operatorname{Cl}\left(\left\{z(u)_{o(j)}\right\}\right)(1 \leq k \leq r$ and $1 \leq j \leq n-r)$; and so $\{x\} \subset \prod_{i=1}^{n} \operatorname{Cl}\left(\left\{z(u)_{i}\right\}\right)$ holds in $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$. Since $\operatorname{Cl}(\{p(x, u)\})=$ $\prod_{i=1}^{n} \mathrm{Cl}\left(\left\{z(u)_{i}\right\}\right)$ in $\left(\mathbb{Z}^{n}, \kappa^{n}\right)(\mathrm{cf}$. (II) $(* 12)$ in Section 3), we show that $\{x\} \subset \mathrm{Cl}(\{p(x, u)\})$ and $\{x\} \cup\{p(x, u)\} \subset$
$\mathrm{Cl}(\{p(x, u)\})$ hold in $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$.
We finally finish the proof of (iii-3): there exists an open set $\{p(x, u)\}$ such that $\{p(x, u)\} \subset\{x\} \cup\{p(x, u)\} \subset \mathrm{Cl}(\{p(x, u)\})$, i.e., $\{x\} \cup\{p(x, u)\}$ is a semi-open in $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$ for each u with $1 \leq u \leq 2^{r}$.

Theorem 4.5 For the digital n-space $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$ where $n \geq 1$, we have the following properties.
(i) For any point x of $\left(\mathbb{Z}^{n}, \kappa^{n}\right), \operatorname{sKer}(\{x\})=\{x\}$.
(ii) For any subset E of $\left(\mathbb{Z}^{n}, \kappa^{n}\right), \operatorname{sKer}(E)=E$.

Proof. (i) We first note that: for the case where $n=1$,

- $\mathbb{Z}^{n}=\left(\mathbb{Z}^{n}\right)_{\kappa^{n}} \cup\left(\mathbb{Z}^{n}\right)_{\mathcal{F}^{n}}$ (disjoint union) holds, where $n=1$ (cf. (I)(*11)(iii) in Section 3); for the case where $n \geq 2$,
$\cdot \mathbb{Z}^{n}=\left(\mathbb{Z}^{n}\right)_{\kappa^{n}} \cup\left(\mathbb{Z}^{n}\right)_{\mathcal{F}^{n}} \cup\left(\bigcup\left\{\left(\mathbb{Z}^{n}\right)_{\operatorname{mix}(r)} \mid 1 \leq r \leq n-1\right\}\right)$ (disjoint union) and $\left(\mathbb{Z}^{n}\right)_{\operatorname{mix}(r)} \neq$ $\emptyset(1 \leq r \leq n-1)$ hold, where $n \geq 2$ (cf. Definition 3.11, (II) $(* 20)(i v)$ in Section 3).

Let $x \in \mathbb{Z}^{n}$. It is enough to consider the following three cases for the point $x \in \mathbb{Z}^{n}$.
Case 1. $x \in\left(\mathbb{Z}^{n}\right)_{\kappa^{n}}$ (cf. Definition 3.11(i)(i-1)): since $\{x\}$ is open in $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$, it is semiopen. Then, it is obvious that $\operatorname{sKer}(\{x\})=\{x\}$ in $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$ (cf. Definition 2.2(i)). We note this result is true for the case where $n \geq 1$.
Case 2. $x \in\left(\mathbb{Z}^{n}\right)_{\mathcal{F}^{n}}$ (cf. Definition 3.11(i)(i-2)): we put $x=\left(2 s_{1}, 2 s_{2}, \ldots, 2 s_{n}\right)$ where
$s_{i} \in \mathbb{Z}(1 \leq i \leq n)$. Note that, for the point $x \in\left(\mathbb{Z}^{n}\right)_{\mathcal{F}^{n}}, U^{n}(x):=\prod_{i=1}^{n}\left\{2 s_{i}-1,2 s_{i}, 2 s_{i}+1\right\}$ is the smallest open set containing x (cf. Definition 3.7,(I)(*4)(i) in Section 3,Theorem 3.9). Then, by Theorem 4.4(ii), there exist 2^{n} semi-open sets $\{x\} \cup\{p(x, u)\}\left(1 \leq u \leq 2^{n}\right)$ containing the point $x \in\left(\mathbb{Z}^{n}\right)_{\mathcal{F}^{n}}$ such that $\left\{p(x, u) \mid 1 \leq u \leq 2^{n}\right\}=\left(U^{n}(x)\right)_{\kappa^{n}}=\left\{\left(2 s_{1}+\right.\right.$ $\left.\left.i_{1}, 2 s_{2}+i_{2}, \ldots, 2 s_{n}+i_{n}\right) \mid i_{k} \in\{+1,-1\}(1 \leq k \leq n)\right\}$ and $\#\left(\left(U^{n}(x)\right)_{\kappa^{n}}\right)=2^{n}$. Thus, we have $\operatorname{sKer}(\{x\}) \subset \bigcap\left\{\{x\} \cup\{p(x, u)\} \mid 1 \leq u \leq 2^{n}\right\} ;$ moreover, $\bigcap\left\{\{x\} \cup\{p(x, u)\} \mid 1 \leq u \leq 2^{n}\right\}=$ $\{x\}$, because $\bigcap\left\{\{p(x, u)\} \mid 1 \leq u \leq 2^{n}\right\}=\emptyset$. We conclude that $\operatorname{sKer}(\{x\})=\{x\}$ holds for this case. We note the result above is true for the case where $n \geq 1$.
Case 3. $x \in\left(\mathbb{Z}^{n}\right)_{\operatorname{mix}(r)}$ where $1 \leq r \leq n-1(n \geq 2)$ (cf. Definition 3.11(i)(i-3)): for this point x, we set $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$; then by definition, $r=\#\left\{i \mid x_{i}\right.$ is an even integer $(1 \leq i \leq n)\}$. We recall the following subsets $I_{r}(x)$ and $J_{n-r}(x)$ as follows (cf. Definition 4.3 above):
$I_{r}(x):=\left\{k \mid x_{k}\right.$ is even $\}=\{e(1), e(2), \ldots, e(r)\}(e(1)<e(2)<\ldots<e(r)) ;$ and
$J_{n-r}(x):=\left\{j \mid x_{j}\right.$ is odd $\}=\{o(1), o(2), \ldots, o(n-r)\}(o(1)<o(2)<\ldots<o(n-r))$; and $\{1,2, \ldots, n\}=I_{r}(x) \cup J_{n-r}(x)$ (disjoint union), $I_{r}(x) \neq \emptyset, J_{n-r}(x) \neq \emptyset$.
For the point $x \in\left(\mathbb{Z}^{n}\right)_{\text {mix }(r)}, U^{n}(x)=\prod_{i=1}^{n} U\left(x_{i}\right)$ is the smallest open set containing x, where $U\left(x_{e(k)}\right)=\left\{x_{e(k)}-1, x_{e(k)}, x_{e(k)}+1\right\}(1 \leq k \leq r)$ and $U\left(x_{o(j)}\right)=\left\{x_{o(j)}\right\}(1 \leq j \leq n-$ $r)$ (cf. Definition 3.7,(I) (*4) in Section 3,Theorem 3.9). Then, using Theorem 4.4(iii), there exist the 2^{r} semi-open sets $\{x\} \cup\{p(x, u)\}\left(1 \leq u \leq 2^{r}\right)$ containing the point $x \in\left(\mathbb{Z}^{n}\right)_{\operatorname{mix}(r)}$ such that $\left\{p(x, u) \mid 1 \leq u \leq 2^{r}\right\}=\left(U^{n}(x)\right)_{\kappa^{n}}=\left\{\left(z_{1}, z_{2}, \ldots, z_{n}\right) \mid z_{e(k)} \in\left\{x_{e(k)}+1, x_{e(k)}-\right.\right.$ $\left.1\}(1 \leq k \leq r), z_{o(j)}=x_{o(j)}(1 \leq j \leq n-r)\right\}$ and $\#\left(\left(U^{n}(x)\right)_{\kappa^{n}}\right)=2^{r}$. Thus, it is shown that $\operatorname{sKer}(\{x\}) \subset \bigcap\left\{\{x\} \cup\{p(x, u)\} \mid 1 \leq u \leq 2^{r}\right\}=\{x\} \cup\left(\bigcap\left\{\{p(x, u)\} \mid 1 \leq u \leq 2^{r}\right\}\right)=\{x\}$, because $\bigcap\left\{\{p(x, u)\} \mid 1 \leq u \leq 2^{r}\right\}=\emptyset$. Then, we show that $\operatorname{sKer}(\{x\})=\{x\}$ holds for this case.

Therefore, for all cases above, we have proved that $\operatorname{sKer}(\{x\})=\{x\}$ holds in $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$, $n \geq 1$.
(ii) Since $E=\bigcup\{\{x\} \mid x \in E\}$, by Proposition 2.4(i.e., [4, Proposition 3.1]) and (i), it is shown that $\operatorname{sKer}(E)=\bigcup\{\operatorname{sKer}(\{x\}) \mid x \in E\}=\bigcup\{\{x\} \mid x \in E\}=E$.

The following result is a characterization of the ω-closed sets in Sundaram-Sheik John's sense of $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$.

Theorem 4.6 For a subset A of $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$, where $n \geq 1, A$ is closed in $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$ if and only if A is an ω-closed set in Sundaram-Sheik John's sense of $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$.
Proof. By Theorem 2.5, it is obtained that a subset A is an ω-closed in Sundaram-Sheik John's sense of $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$ if and only if $\mathrm{Cl}(A) \subset \operatorname{sKer}(A)$. Then, by Theorem 4.5 (ii), it is well known that $A=s \operatorname{Ker}(A)$ holds. Thus, A is ω-closed in Sundaram-Sheik John's sense if and only if $\mathrm{Cl}(A) \subset A$ (i.e., A is closed in $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$).

Remark 4.7 (i) Every subset of $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$ is a Λ_{s}-set in $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$. Indeed, let E be a subset of $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$. By Theorem 4.5 (ii) and Definition 2.3, it is shown that $E=\operatorname{sKer}(E)$ holds, i.e., E is a Λ_{s}-set of $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$.
(ii) By (i) and Proposition 2.6, it is obtained that $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$ is a semi- T_{1} topological space. However, we note that, in 2004, S.I. Nada [30, Theorem 4.2, Theorem 4.1] proved that $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$ is semi- T_{2}; the proof is very elegantly done, using the semi- T_{2} separation property of (\mathbb{Z}, κ) and the product topology of κ; and hence their product space $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$ is semi- T_{2}; in 2006, present authors [11, Theorem 2.3, Theorem 4.8 (i)] proved that (\mathbb{Z}, κ) and $\left(\mathbb{Z}^{2}, \kappa^{2}\right)$ are semi- T_{2}. But, in the end of the present paper (Corollary 4.10 below), we shall mention an alternative proof of the result ([30, Theorem 4.2]) using Theorem 4.4 and ideas in [39].

Example 4.8 In general, ω-closed sets in Sundaram-Sheik John's sense of a topological space are placed between closed sets and g-closed sets (cf. Definition 2.1(ii) (i.e.,[35])). The following example shows that there is a g-closed sets which is not an ω-closed set in Sundaram-Sheik John's sense of $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$ (i.e., closed set in $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$, cf. Theorem 4.6). Suppose $n \geq 2$. Let $A:=\mathbb{Z}^{n} \backslash\left(\bigcup\left\{\left(\mathbb{Z}^{n}\right)_{\operatorname{mix}(r)} \mid 1 \leq r \leq n-1\right\}\right)$, i.e., $A=\left(\mathbb{Z}^{n}\right)_{\mathcal{F}^{n}} \cup\left(\mathbb{Z}^{n}\right)_{\kappa^{n}}$ and $A \neq \emptyset$. We consider the following figure which is shown by the symbols $\bullet \in\left(\mathbb{Z}^{n}\right)_{\mathcal{F}^{n}}$ and $\circ \in\left(\mathbb{Z}^{n}\right)_{\kappa^{n}}$ in \mathbb{Z}^{2}. The figure shows the subset A above for $n=2$.

Let V be an open set containing A. Then, in below, it is proved that $V=\mathbb{Z}^{n}$; and hence the set A is g-closed in $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$ (cf. Definition 2.1(i), i.e., [22, Definition 2.1]).
(Proof of the property: $V \supset \mathbb{Z}^{n}$). Let $x:=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{Z}^{n}$ such that $x \notin A$. For this point x, we have $x \in\left(\mathbb{Z}^{n}\right)_{\operatorname{mix}(r)}$ for some integer r with $1 \leq r \leq n-1$. The component $x_{e(k)}$ is even, where $e(k) \in I_{r}(x)(1 \leq k \leq r)$ and $x_{o(j)}$ is odd, where $o(j) \in J_{n-r}(x)$ $(1 \leq j \leq n-r)$ (cf. the notation in Definition 4.3, the proof (Case 3) of Theorem 4.5(i) or in the proof (Case 2) of Proposition 4.1(i)). We pick a point $y:=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ as follow: $y_{e(k)}:=x_{e(k)}(1 \leq k \leq r)$ and $y_{o(j)}:=x_{o(j)}+1(1 \leq j \leq n-r)$. Then, $y \in\left(\mathbb{Z}^{n}\right)_{\mathcal{F}^{n}} \subset A$ and $x \in U^{n}(y)$. Since $y \in A \subset V$ and V is open, we have $U^{n}(y) \subset V$ (cf. Definition 3.7, $(\mathrm{I})(* 4)(\mathrm{i})(\mathrm{ii})$ in Section 3,Theorem 3.9(iii)); and so $x \in V$.
Thus, we have $\mathrm{Cl}(A) \subset \mathbb{Z}^{n}=V$ for an open set V such that $A \subset V$,i.e., A is g-closed. On the other hand, it is shown that $\mathrm{Cl}(A)=\mathbb{Z}^{n}$ and so A is not closed in $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$ (cf. Theorem 4.6).

We mention an alternative proof of the result [30, Theorem 4.2] (cf. Remark 4.7(ii) above). For $\left(\mathbb{Z}^{n}, \kappa^{n}\right)(n \geq 2)$, we can construct directly two disjoint semi-open sets separating two given distinct points (cf. Corollary 4.10). We need the following property Theorem 4.9 on the smallest open sets and Theorem 4.4.

Theorem 4.9 Let $x, x^{\prime} \in \mathbb{Z}^{n}$, where $1 \leq n$. If $x \neq x^{\prime}$ in $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$, then $\left(U^{n}(x)\right)_{\kappa^{n}} \neq$ $\left(U^{n}\left(x^{\prime}\right)\right)_{\kappa^{n}}$ holds.

Proof. We first recall that $\mathbb{Z}^{n}=\left(\mathbb{Z}^{n}\right)_{\kappa^{n}} \cup\left(\mathbb{Z}^{n}\right)_{\mathcal{F}^{n}} \cup\left(\bigcup\left\{\left(\mathbb{Z}^{n}\right)_{\operatorname{mix}(r)} \mid 1 \leq r \leq n-1\right\}\right)$ (disjoint union) holds and $\left(\mathbb{Z}^{n}\right)_{\operatorname{mix}(r)} \neq \emptyset(1 \leq r \leq n-1)$ if $n \geq 2$ (cf. (II)(*20)(iv) in Section 3). Since $\left\{x, x^{\prime}\right\} \subset \mathbb{Z}^{n}$, we should check the cases below, Case $\mathrm{i}(1 \leq \mathrm{i} \leq 3)$, in order to prove $\left(U^{n}(x)\right)_{\kappa^{n}} \neq\left(U^{n}\left(x^{\prime}\right)\right)_{\kappa^{n}}$. We secondly suppose, for a contradiction, that (*1) $\left(U^{n}(x)\right)_{\kappa^{n}}=\left(U^{n}\left(x^{\prime}\right)\right)_{\kappa^{n}}$ holds.

Case 1. $x \in\left(\mathbb{Z}^{n}\right)_{\kappa^{n}}$ and $x^{\prime} \in\left(\mathbb{Z}^{n}\right)_{\kappa^{n}}$ (cf. Definition 3.11(i)(i-1)): for these points x and x^{\prime}, we have that $\{x\}$ and $\left\{x^{\prime}\right\}$ are open singletons and $U^{n}(x)=\{x\}$ and $U^{n}\left(x^{\prime}\right)=\left\{x^{\prime}\right\}$ (cf. Definition 3.7, (I)(*4)(ii) in Section 3); and so, by $(* 1)$ above, $\{x\}=\left(U^{n}(x)\right)_{\kappa^{n}}=$ $\left(U^{n}\left(x^{\prime}\right)\right)_{\kappa^{n}}=\left\{x^{\prime}\right\}$. This contradicts the first setting of the given points x and x^{\prime} (i.e., $\left.x^{\prime} \neq x\right)$.

Case 2. $x \in\left(\mathbb{Z}^{n}\right)_{\kappa^{n}}$ and $x^{\prime} \in\left(\mathbb{Z}^{n}\right)_{\mathcal{F}^{n}} \cup\left(\bigcup\left\{\left(\mathbb{Z}^{n}\right)_{\operatorname{mix}\left(r^{\prime}\right)} \mid 1 \leq r^{\prime} \leq n-1\right\}\right)$ (cf. Definition 3.11(i)): for this case, $\{x\}=U^{n}(x)$ holds (cf. Definition 3.7(I)(*4)(ii) in Section 3); and by Theorem $4.4(\mathrm{ii})(\mathrm{iii})$, it is obtained that $\#\left(U^{n}\left(x^{\prime}\right)\right)_{\kappa^{n}}=2^{R^{\prime}}$, where $R^{\prime}:=n$ if $x^{\prime} \in\left(\mathbb{Z}^{n}\right)_{\mathcal{F}^{n}}$
and $R^{\prime}:=r^{\prime}$ if $x^{\prime} \in\left(\mathbb{Z}^{n}\right)_{\operatorname{mix}\left(r^{\prime}\right)}\left(1 \leq r^{\prime} \leq n-1\right)$. And so, by $(* 1)$, we have that $2^{R^{\prime}}=1$ holds, i.e., $2^{n}=1$ or $2^{r^{\prime}}=1$. These contradict the first setting of the given integers n with $n \geq 1$ and r^{\prime} with $1 \leq r^{\prime} \leq n-1$.

Case 3. $\left\{x, x^{\prime}\right\} \subset\left(\mathbb{Z}^{n}\right)_{\mathcal{F}^{n}} \cup\left(\bigcup\left\{\left(\mathbb{Z}^{n}\right)_{\operatorname{mix}(r)} \mid 1 \leq r \leq n-1\right\}\right)$ (cf. Definition 3.11(i)(i-2)(i3)):

By Theorem 4.4(ii) and (iii) for the point x, there exist the open singletons $\{p(x, u)\}(1 \leq$ $u \leq R)$ such that $\left(U^{n}(x)\right)_{\kappa^{n}}=\{p(x, u) \mid 1 \leq u \leq R\}$ holds, where $R:=n$ if $x \in\left(\mathbb{Z}^{n}\right)_{\mathcal{F}^{n}}$ and $R:=r$ if $x \in\left(\mathbb{Z}^{n}\right)_{\operatorname{mix}(r)}(1 \leq r \leq n-1, n \geq 2)$. Moreover, for the point x^{\prime}, there exist the open singletons $\left\{p\left(x^{\prime}, u^{\prime}\right)\right\}\left(1 \leq u^{\prime} \leq R^{\prime}\right)$ such that $\left(U^{n}\left(x^{\prime}\right)\right)_{\kappa^{n}}=\left\{p\left(x^{\prime}, u^{\prime}\right) \mid 1 \leq u^{\prime} \leq R^{\prime}\right\}$ holds, where $R^{\prime}:=n$ if $x^{\prime} \in\left(\mathbb{Z}^{n}\right)_{\mathcal{F}^{n}}$ and $R^{\prime}:=r^{\prime}$ if $x^{\prime} \in\left(\mathbb{Z}^{n}\right)_{\operatorname{mix}\left(r^{\prime}\right)}\left(1 \leq r^{\prime} \leq n-1\right.$ and $n \geq 2$). We may assume that $R^{\prime} \leq R$. Then, $\left\{p\left(x^{\prime}, u^{\prime}\right) \mid 1 \leq u^{\prime} \leq 2^{R^{\prime}}\right\}=\left(U^{n}\left(x^{\prime}\right)\right)_{\kappa^{n}}=$ $\left(U^{n}(x)\right)_{\kappa^{n}} \cap\left(U^{n}\left(x^{\prime}\right)\right)_{\kappa^{n}}=\left(U^{n}(x) \cap U^{n}\left(x^{\prime}\right)\right)_{\kappa^{n}} \subset U^{n}(x) \cap U^{n}\left(x^{\prime}\right)$. Namely, $U^{n}(x) \cap U^{n}\left(x^{\prime}\right)$ contains exactly the $2^{R^{\prime}}$ open singletons $\left\{p\left(x^{\prime}, u^{\prime}\right)\right\}\left(1 \leq u^{\prime} \leq 2^{R^{\prime}}\right)$. This shows that the assumptions of Theorem 3.12 (i.e., [39, Lemma 2.3]) are satisfied. And, using $(* 1)$ above, we have $2^{R^{\prime}}=\#\left(\left(U^{n}\left(x^{\prime}\right)\right)_{\kappa^{n}}\right)=\#\left(\left(U^{n}(x)\right)_{\kappa^{n}}\right)=2^{R}$ and so $R^{\prime}=R$. Then, under the assumption $(* 1)$ above, we do not have the case where that $\left(R^{\prime}, R\right)=\left(r^{\prime}, n\right)$ or (n, r), because $r, r^{\prime} \in\{1,2, \ldots, n-1\}$ hold. Namely, under $(* 1)$, the following case does not occurs : $x \in\left(\mathbb{Z}^{n}\right)_{\mathcal{F}^{n}}$ and $x^{\prime} \in\left(\mathbb{Z}^{n}\right)_{\operatorname{mix}\left(r^{\prime}\right)}\left(1 \leq r^{\prime} \leq n-1\right)\left(\right.$ or $x^{\prime} \in\left(\mathbb{Z}^{n}\right)_{\mathcal{F}^{n}}$ and $\left.x \in\left(\mathbb{Z}^{n}\right)_{\operatorname{mix}(r)}(1 \leq r \leq n-1)\right)$. For other all cases where $\left(R^{\prime}, R\right)=(n, n)$ (i.e., $\left.\left\{x, x^{\prime}\right\} \subset\left(\mathbb{Z}^{n}\right)_{\mathcal{F}^{n}}\right)$ or $\left(R^{\prime}, R\right)=\left(r^{\prime}, r\right)$ (i.e., $x \in\left(\mathbb{Z}^{n}\right)_{\operatorname{mix}(r)}$ and $\left.x^{\prime} \in\left(\mathbb{Z}^{n}\right)_{\operatorname{mix}\left(r^{\prime}\right)}\right)$ with $r, r^{\prime} \in\{1,2, \ldots, n-1\}$, using Theorem 3.12(iii)' (i.e.,[39, Lemma 2.3 (iii)']), we have $x^{\prime}=x$; this contradicts the first setting of the given points x and x^{\prime} (i.e., $x^{\prime} \neq x$).

Therefore, we show the required property that $(* 2)\left(U^{n}(x)\right)_{\kappa^{n}} \neq\left(U^{n}\left(x^{\prime}\right)\right)_{\kappa^{n}}$ holds if $x \neq x^{\prime}$ in $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$.

Corollary 4.10 (Namda [30, Theorem 4.2] for any $n \geq 1$; [11] for $n=1,2$) The digital n-space $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$ is a semi- T_{2}-space.

Proof. Suppose $n \geq 2$ in the present proof; and so we have $\left(\mathbb{Z}^{n}\right)_{\operatorname{mix}(r)} \neq \emptyset$ for each integer r with $1 \leq r \leq n-1$ (cf. Definition 3.11(i)(i-3)). We use Theorem 4.4 on the construction of semi-open sets in $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$ and Theorem 4.9 ; and we prove that $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$ is semi- T_{2}, where $n \geq 2$, as follows.

Let x and x^{\prime} be any distinct points of $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$. We set $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $x^{\prime}=$ $\left(x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}\right)$, where $x_{i} \in \mathbb{Z}$ and $x_{i}^{\prime} \in \mathbb{Z}(1 \leq i \leq n)$. Since $\left\{x, x^{\prime}\right\} \subset \mathbb{Z}^{n}=\left(\mathbb{Z}^{n}\right)_{\kappa^{n}} \cup$ $\left(\mathbb{Z}^{n}\right)_{\mathcal{F}^{n}} \cup\left(\bigcup\left\{\left(\mathbb{Z}^{n}\right)_{\operatorname{mix}(r)} \mid 1 \leq r \leq n-1\right\}\right)$ (disjoint union) (cf. (II)(*20)(iv) in Section 3), we consider the required proof for the following cases.

For the points x and x^{\prime}, we first use Theorem 4.9; we have that:
$(* 2)\left(U^{n}(x)\right)_{\kappa^{n}} \neq\left(U^{n}\left(x^{\prime}\right)\right)_{\kappa^{n}}$ holds, where $U^{n}(y)$ is the smallest open set containing each point $y \in\left\{x, x^{\prime}\right\}$. Namely, we have that:

- (*a) there exists a point $z \in\left(U^{n}(x)\right)_{\kappa^{n}}$ and $z \notin\left(U^{n}\left(x^{\prime}\right)\right)_{\kappa^{n}}$; or,
- $(* \mathrm{~b})$ there exists a point $z^{\prime} \in\left(U^{n}\left(x^{\prime}\right)\right)_{\kappa^{n}}$ and $z^{\prime} \notin\left(U^{n}(x)\right)_{\kappa^{n}}$.

Case 1. $x \in\left(\mathbb{Z}^{n}\right)_{\kappa^{n}}$ and $x^{\prime} \in\left(\mathbb{Z}^{n}\right)_{\kappa^{n}}$: it is obviouse that $\{x\}$ and $\left\{x^{\prime}\right\}$ are the required disjoint semi-open sets, because every open set is semi-open.

Case 2. $\left\{x, x^{\prime}\right\} \subset\left(\mathbb{Z}^{n}\right)_{\mathcal{F}^{n}} \cup\left(\bigcup\left\{\left(\mathbb{Z}^{n}\right)_{\operatorname{mix}(r)} \mid 1 \leq r \leq n-1\right\}\right)$:

- For Case $(* a)$ above, by Theorem $4.4(i i)$ and (iii) for the point x, it is shown that $z=p\left(x, u_{0}\right)$ holds for some point $p\left(x, u_{0}\right) \in\left(U^{n}(x)\right)_{\kappa^{n}}\left(1 \leq u_{0} \leq 2^{R}\right)$, where $R:=n$ if $x \in\left(\mathbb{Z}^{n}\right)_{\mathcal{F}^{n}}$ and $R:=r$ if $x \in\left(\mathbb{Z}^{n}\right)_{\operatorname{mix}(r)}$, because $\left(U^{n}(x)\right)_{\kappa^{n}}=\left\{p(x, u) \mid 1 \leq u \leq 2^{R}\right\}$ holds. Moreover, we have that $\{x\} \cup\{z\}$ is a semi-open set containing the point x (cf. Theorem 4.4 (ii-3) and (iii-3)). Using Theorem 4.4 (ii) and (iii) for the point x^{\prime}, we can take any semiopen sets $\left\{x^{\prime}\right\} \cup\left\{p\left(x^{\prime}, u^{\prime}\right)\right\}$ containing x^{\prime}, where $\left\{p\left(x^{\prime}, u^{\prime}\right) \mid 1 \leq u^{\prime} \leq 2^{R^{\prime}}\right\}=\left(U^{n}\left(x^{\prime}\right)\right)_{\kappa^{n}}$ and
the integer R^{\prime} is defined by $R^{\prime}:=n$ if $x^{\prime} \in\left(U^{n}\left(x^{\prime}\right)\right)_{\mathcal{F}^{n}}$ and $R^{\prime}:=r^{\prime}$ if $x^{\prime} \in\left(U^{n}\left(x^{\prime}\right)\right)_{\operatorname{mix}\left(r^{\prime}\right)}$ with $1 \leq r^{\prime} \leq n-1$. Then, we have that $(\{x\} \cup\{z\}) \cap\left(\left\{x^{\prime}\right\} \cup\left\{p\left(x^{\prime}, u^{\prime}\right)\right\}\right)=\left(\{x\} \cap\left\{x^{\prime}\right\}\right) \cup$ $\left(\{x\} \cap\left\{p\left(x^{\prime}, u^{\prime}\right)\right\}\right) \cup\left(\{z\} \cap\left\{x^{\prime}\right\}\right) \cup\left(\{z\} \cap\left\{p\left(x^{\prime}, u^{\prime}\right)\right\}\right) \subset\left(V \cap\left(\mathbb{Z}^{n}\right)_{\kappa^{n}}\right) \cup\left(\left(U^{n}(x)\right)_{\kappa^{n}} \cap V\right) \cup$ $\left(\{z\} \cap\left(U^{n}\left(x^{\prime}\right)\right)_{\kappa^{n}}\right)=\emptyset$, where $V:=\left(\mathbb{Z}^{n}\right)_{\mathcal{F}^{n}} \cup\left(\bigcup\left\{\left(\mathbb{Z}^{n}\right)_{\operatorname{mix}(r)} \mid 1 \leq r \leq n-1\right\}\right)$, because of the decomposition of \mathbb{Z}^{n} and the property in (*a) (i.e., $\left.z \notin\left(U^{n}\left(x^{\prime}\right)\right)_{\kappa^{n}}\right)$. Thus, for Case (*a), $\{x\} \cup\{z\}$ and $\left\{x^{\prime}\right\} \cup\left\{p\left(x^{\prime}, u^{\prime}\right)\right\}$ are the required disjoint semi-open sets containing the points x and x^{\prime}, respectively.
- For Case $(* \mathrm{~b})$ above, by Theorem $4.4(\mathrm{ii})$ and (iii) for the point x^{\prime}, it is shown that $z^{\prime}=p\left(x^{\prime}, u_{0}^{\prime}\right)$ for some point $p\left(x^{\prime}, u_{0}^{\prime}\right) \in\left(U^{n}\left(x^{\prime}\right)\right)_{\kappa^{n}}$, because $\left(U^{n}\left(x^{\prime}\right)\right)_{\kappa^{n}}=\left\{p\left(x^{\prime}, u^{\prime}\right) \mid 1 \leq\right.$ $\left.u^{\prime} \leq R^{\prime}\right\}$ holds, where $R^{\prime}:=n$ if $x^{\prime} \in\left(\mathbb{Z}^{n}\right)_{\mathcal{F}^{n}}$ and $R^{\prime}:=r^{\prime}$ if $x^{\prime} \in\left(\mathbb{Z}^{n}\right)_{\operatorname{mix}\left(r^{\prime}\right)}$ with $1 \leq r^{\prime} \leq n-1$. Here we note that $z^{\prime} \notin\left(U^{n}(x)\right)_{\kappa^{n}}$. It is shown that $\left\{x^{\prime}\right\} \cup\left\{z^{\prime}\right\}$ (i.e., $\left\{x^{\prime}\right\} \cup\left\{p\left(x^{\prime}, u_{0}^{\prime}\right)\right\}$) is the required semi-open set containing x^{\prime} (cf. Theorem 4.4(ii-3) and (iii-3) for the point x^{\prime}). Using Theorem 4.4 (ii) and (iii) for the point x, we can take any semi-open sets $\{x\} \cup\{p(x, u)\}$ containing x, where $\left\{p(x, u) \mid 1 \leq u \leq 2^{R}\right\}=\left(U^{n}(x)\right)_{\kappa^{n}}$ for the integer R with $R:=n$ if $x \in\left(U^{n}(x)\right)_{\mathcal{F}^{n}}$ and $R:=r$ if $x \in\left(U^{n}(x)\right)_{m i x(r)}$ with $1 \leq r \leq n-1$. Thus, the above semi-open sets $\{x\} \cup\{p(x, u)\}$ and $\left\{x^{\prime}\right\} \cup\left\{z^{\prime}\right\}$ are the required disjoint semi-open sets containing the point x and x^{\prime}, respectively. Indeed, we have that $(\{x\} \cup\{p(x, u)\}) \cap\left(\left\{x^{\prime}\right\} \cup\left\{z^{\prime}\right\}\right)=\left(\{x\} \cap\left\{x^{\prime}\right\}\right) \cup\left(\{x\} \cap\left\{z^{\prime}\right\}\right) \cup\left(\{p(x, u)\} \cap\left\{x^{\prime}\right\}\right) \cup$ $\left(\{p(x, u)\} \cap\left\{z^{\prime}\right\}\right) \subset\left(V \cap\left(\mathbb{Z}^{n}\right)_{\kappa^{n}}\right) \cup\left(\left(U^{n}(x)\right)_{\kappa^{n}} \cap V\right) \cup\left(\left(U^{n}(x)\right)_{\kappa^{n}} \cap\left\{z^{\prime}\right\}\right)=\emptyset$, where $V:=\left(\mathbb{Z}^{n}\right)_{\mathcal{F}^{n}} \cup\left(\bigcup\left\{\left(\mathbb{Z}^{n}\right)_{\operatorname{mix}(r)} \mid 1 \leq r \leq n-1\right\}\right)$, because of the setting that $x \neq x^{\prime}$, the decomposition of \mathbb{Z}^{n} and $z^{\prime} \notin\left(U^{n}(x)\right)_{\kappa^{n}}$ for the Case $(* \mathrm{~b})$.

Case 3. $x \in\left(\mathbb{Z}^{n}\right)_{\kappa^{n}}$ and $x^{\prime} \in\left(\mathbb{Z}^{n}\right)_{\mathcal{F}_{n}} \cup\left(\bigcup\left\{\left(\mathbb{Z}^{n}\right)_{m i x(r)} \mid 1 \leq r \leq n-1\right\}\right)$: for this case, we have that $\{x\}=U^{n}(x)$ and $\{x\} \cap\left(U^{n}\left(x^{\prime}\right)\right)_{\kappa^{n}}=\emptyset$ and so $\{x\}$ is the required semi-open set containing the point x. We can construct the required semi-open set containing x^{\prime} using Theorem 4.4; the construction is done by an argument similar to that in Case 2.

Therefore, by Case 1, Case 2, Case 3 above for distinct points x and x^{\prime}, there exist disjoint semi-open sets containing the point x and x^{\prime}, respectively; and so $\left(\mathbb{Z}^{n}, \kappa^{n}\right)$ is semiT_{2}.

Remark 4.11 (cf. Remark 4.7(ii)) The digital n-space ($\mathbb{Z}^{n}, \kappa^{n}$) is semi- T_{2}, where $n \geq 1$ $[30] ;(\mathbb{Z}, \kappa)$ and $\left(\mathbb{Z}^{2}, \kappa^{2}\right)$ are semi- $\mathrm{T}_{2}[11]$. The results are confirmed directly by Corollary 4.10 above. Moreover, since the semi- T_{2} separation axiom implies the semi- T_{1} separation axiom, using Proposition 2.6(i), we have an alternative proof of Theorem 4.5(ii) (cf. Definition 2.3). The above proof of Corollary 4.10 is done constructively; the present authors believe that we applies the same method to other topological properties on ($\mathbb{Z}^{n}, \kappa^{n}$) which are not proved by arguments preserving of topological products of (\mathbb{Z}, κ) and we have further applications.

References

[1] B.Al-Nasef, On semipreopen sets, Questions Answers Gen. Topology, 19(2006), 203-212.
[2] N. Araki, M. Ganster, H. Maki and A. Nishi, On new characterizations of semi- T_{i}-spaces, where $i=0,1 / 2$, Sci. Math. Japon., 64(2006), 551-555 : online e-2006, 609-613.
[3] A.V.Arhangel'skii and P.J. Collin, On submaximal spaces, Topology Appl., 64(1995), 219-241.
[4] M. Caldas and J. Dontchev, G. Λ_{s}-sets and g. V_{s}-sets, Mem. Fac. Sci. Kochi Univ. Ser.A Math., 21 (2000), 21-30.
[5] R. Devi, K. Bhuvaneswari and H. Maki, Weak form on $g \rho$-closed sets, where $\rho \in\left\{\alpha, \alpha^{*}, \alpha^{* *}\right\}$, and digital planes, Mem. Fac. Sci. Kochi Univ. Ser.A Math., 25 (2004), 37-54.
[6] R. Devi, V. Kokilavani and H. Maki, More on $g^{\#} \alpha$-open sets in digital planes, Sci. Math. Japon., 70(1)(2009), 53-62: online e-2009, 301-310.
[7] R. Devi, S.N. Rajappriya, K. Muthukumaraswamy and H. Maki, ξ-closed sets in topological spaces and digital planes, Sci. Math. Japon., 64(3) (2006), 533-549: online e-2006,615-631.
[8] J. Dontchev and M. Ganster, On δ-generalized closed sets and $T_{3 / 4}$-spaces, Mem. Fac. Sci. Kochi Univ. Ser. A., Math., 17 (1996), 15-42.
[9] W. Dunham, $T_{1 / 2}$-spaces, Kyungpook Math. J., 17(1977), 161-169.
[10] M. Fujimoto, H. Maki, T. Noiri and S. Takigawa, The digital plane is quasi-submaximal, Questions Answers Gen. Topology, 22(2004), 163-168.
[11] M. Fujimoto, S. Takigawa, J. Dontchev, T. Noiri and H. Maki, The topological structures and groups of digital n-spaces, Kochi J. Math., 1(2006), 31-55.
[12] T. Fukutake, P. Sundaram and M. Sheik John, ω-closed sets, ω-open sets and ω-continuity in bitopological spaces, Bull. Fukuoka Univ. Ed. Part III, 51(2002), 1-9.
[13] M. Ganster, Preopen sets and resolvable spaces, Kyungpook Math. J., 27 (1987), 135-134.
[14] H.Z. Hdreib, ω-closed mapping, Rev. Colombiana Mat., 16(1982), 65-78.
[15] E. D. Khalimsky, Applications of connected ordered topological spaces in topology, Conference of Math. Departments of Povolsia, (1970).
[16] E. D. Khalimsky, Topological structures in computer sciences, J. Appl. Math. Simulation, 1(1) (1987), 25-40.
[17] E. D. Khalimsky, R. Kopperman and P. R. Meyer, Computer graphics and connected topologies on finite ordered sets, Topology Appl., 36(1990), 1-17.
[18] R. Kopperman, Digital topology, Section J-4 in Encyclopedia of General Topology; edited by K.P. Hart, J. Nagata and J.E. Vaughan, Elsevier(2004), 428-432.
[19] T. Y. Kong, R. Kopperman and P. R. Meyer, A topological approach to digital topology, Amer. Math. Monthly, 98(1991), 901-917.
[20] V. Kovalevsky and R. Kopperman, Some topology-based image processing algorithms, Annals of the New York Academy of Sciences, Papers on General Topology and its Applications, 728(1994), 174-182.
[21] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
[22] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo(2), 19(1970), 89-96.
[23] A. S. Maheshwari and R. Prasada, On s-normal spaces, Bull. Math. Soc. Sci. R.S.Roumanie, 22(70)(1)(1978), 27-29.
[24] H. Maki, Generalized Λ-sets and the associated closure operator, The special Issue in commemoration of Professor IKEDA's retirement, (1986), 139-146.
[25] A. S. Mashhour, Abd El-Monsef and S.N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Phys. Math. Soc. Egypt., 53(1982), 47-53.
[26] Erik Melin, Extension of continuous functions in digital spaces with the Khalimsky topology, Topology Appl., 153(2005), 52-65.
[27] Erik Melin, Continuous extension in topological digital spaces, Applied General Topology, 9 (2008), 51-61.
[28] M. Mršević, On pairwise R_{0} and pairwise R_{1} bitopological spaces, Bull. Math. Soc. Sci. Math. R.S. Roumanie (N.S), 30(1986), 141-148.
[29] F. Nakaoka, F. Tamari and H. Maki, On generalized digital lines, (submitting).
[30] S.I. Nada, Semi-open and semi-closed sets in digital topological spaces, Commun. Fac. Sci. Univ. Ank. Series A1, 53(1)(2004), 1-6.
[31] O. Njåstad, On some classes of nearly open sets, Pacific J. Math., 15(1965), 961-970.
[32] A.A. Nasef and H. Maki, On some maps concerning gp-closed sets and related groups, Sci. Math. Japon., 71(1)(2010), 55-81: online e-2009, 649-675.
[33] T. Noiri, Modified open and closed sets(semi-open sets etc), Section A-2 in Encyclopedia of General Topology; edited by K.P. Hart, J. Nagata and J.E. Vaughan, Elsevier(2004), 8-10.
[34] K. Nôno, R. Devi, M. Devipriya, K. Muthukumaraswamy and H. Maki, On g\# α-closed sets and the digital plane, Bull. Fukuoka Univ. Ed. Part III, 53(2004), 15-24.
[35] M. Sheik John, A study on generalizations of closed sets and continuous maps in topological spaces, Ph. D. Thesis, Bharathiar University, Coimbatore, India, 2000.
[36] P. Sundaram and M. Sheik John, Weakly closed sets and weakly continuous maps in topological spaces, Proc. 82nd Indian Science Congress Calcutta, 49(1995).
[37] P. Sundaram and M. Sheik John, On ω-closed sets in topology, Acta Cienc. Indica Math., 26M(4)(2000),389-392.
[38] S. Takigawa, M. Ganster, H. Maki, T. Noiri and M. Fujimoto, The digital n-space is quasisubmaximal, Questions Answers Gen. Topology, 26(1) (2008), 45-52.
[39] S.Takigawa and H.Maki, Every nonempty open set of the digital n-space is expressible as the union of finitely many nonempty regular open sets, Sci. Math. Japon., $\mathbf{6 7}(3)(2008)$, 365376;Online e-2007, 601-612.

Communicated by Yasunao Hattori
H. Maki

Wakagi-dai 2-10-13, Fukutsu-shi
Fukuoka-ken 811-3221, Japan
e-mail: makih@pop12.odn.ne.jp
S. TAKIGAWA

Department of Mathematics Faculty of Culture and Education, Saga University Saga 840-8502, Japan

M. Fujimoto

Department of Mathematics Fukuoka University of Education 1-1 Akamabunkyo-machi, Munakata, Fukuoka 811-4192, Japan

P. Sundaram

12 Alagappa Lay Out, Mahalingapuram
Pollachi 642002, India
M. Sheik John

Department of Mathematics
Nallamuthu Gounder Mahalingam College
Pollachi 642001, India

