A NOTE ON RATIONAL OPERATOR MONOTONE FUNCTIONS

MASARU NAGISA

Received May 19, 2014; revised April 10, 2014

ABSTRACT. Let f be operator monotone for some open interval I of \mathbb{R} . It is known that f has the analytic continuation on $\mathbb{H}_+ \cup I \cup \mathbb{H}_-$, where \mathbb{H}_+ (resp. \mathbb{H}_-) is the upper (resp. the lower) half plane of \mathbb{C} . In this note, we determine the form of rational operator monotone functions by using elementary argument, and prove the operator monotonicity of some meromorphic functions.

1 Introduction. We denote the set of all $n \times n$ matrices over \mathbb{C} by M_n and set

$$H_n = \{A \in M_n \mid A^* = A\} \text{ and } H_n^+ = \{A \in H_n \mid A \ge 0\},\$$

where $A \ge 0$ means that A is non-negative, that is, the value of inner product

$$(Ax, x) \ge 0$$
 for all $x \in \mathbb{C}^n$.

Let I be an open interval of the set \mathbb{R} of real numbers. We also denote by $H_n(I)$ the set of $A \in H_n$ with its spectra $\operatorname{Sp}(A) \subset I$. A real continuous function f defined on the open interval I is said to be operator monotone if $A \leq B$ implies $f(A) \leq f(B)$ for any $n \in \mathbb{N}$ and $A, B \in H_n(I)$. In this note, we assume that an operator monotone function is not a constant function.

Let f be a real-valued continuous function on the interval I. We call f a Pick function if f has an analytic continuation on the upper half plane $\mathbb{H}_+ = \{z \in \mathbb{C} \mid \text{Im} z > 0\}$ into itself. It also has an analytic continuation to the lower half plane \mathbb{H}_- , obtained by reflections across I.

We denote by $\mathbb{P}(I)$ the set of all Pick functions on I. It is well known that $f \in \mathbb{P}(I)$ is equivalent to that f is operator monotone on I ([1], [4], [5]).

We characterize the rational Pick function (rational operator monotone function) by an elementary method in Section 2 and give some examples using this characterization in Section 3.

2 Rational operator monotone functions. Let *I* be an open interval and $f(t) = \frac{at+b}{ct+d}$ $(a,b,c,d \in \mathbb{R}, ad-bc \ge 0)$. It is well known that *f* is operator monotone on $(-\infty, -\frac{d}{c})$ or $(-\frac{d}{c}, +\infty)$ (see [1], [5]). So the following rational function is also operator monotone on *I*:

$$b_0 + a_0 t - \sum_{i=1}^n \frac{a_i}{t - \alpha_i},$$

where $b_0 \in \mathbb{R}$, $a_0, a_1, \ldots, a_n \ge 0$ and $\alpha_1, \alpha_2, \ldots, \alpha_n \in \mathbb{R} \setminus I$.

²⁰⁰⁰ Mathematics Subject Classification. 47A63.

Key words and phrases. Monotone matrix function, Operator monotone function, Pick function, Rational operator monotone function.

$$g(t) = \frac{p(t)}{q(t)} \qquad (t \in I),$$

where common devisors of p(t) and q(t) are only scalars and a coefficient of the highest degree term of q(t) is 1. The polynomial q(t) with real coefficients is represented as products of the following factors:

$$t-a, \quad t^2+at+b \qquad (a,b\in\mathbb{R}).$$

Since g has the analytic continuation to the upper half plane \mathbb{H}_+ and the lower half plane \mathbb{H}_- ,

$$g(z) = \frac{p(z)}{q(z)} \qquad (z \in \mathbb{H}_+ \cup I \cup \mathbb{H}_+)$$

and g has no poles on $\mathbb{H}_+ \cup I$. So we may assume that g(z) has the following form:

$$g(z) = \frac{p(z)}{(z - c_1)^{n(1)}(z - c_2)^{n(2)} \cdots (z - c_k)^{n(k)}},$$

where $c_1, c_2, \ldots, c_k \in \mathbb{R} \cap I^c$ and each n(i) $(i = 1, 2, \ldots, k)$ is a positive integer with $n(1) + n(2) + \cdots + n(k) = \deg q(z)$. By the partially fractional decomposition of g(z),

$$g(z) = r(z) + \sum_{i=1}^{k} \sum_{j=1}^{n(i)} \frac{b_{i,j}}{(z - c_i)^j},$$

where r(z) is the remainder of p(z) by q(z) and $\{b_{i,j}\} \subset \mathbb{R}$.

Lemma 2.1. In above setting, $g \in \mathbb{P}(I)$ satisfies the following conditions:

- (1) There exist $r_0, r_1 \in \mathbb{R}$ such that $r_1 \ge 0$ and $r(z) = r_0 + r_1 z$.
- (2) n(i) = 1 and $b_{i,1} \leq 0$ for all i = 1, 2, ..., k.

Proof. (1) We set

$$r(z) = r_0 + r_1 z + \dots + r_d z^d,$$

where $d = \deg r(z)$. Put

$$\theta = \begin{cases} \frac{3\pi}{2d} & \text{if } d \ge 2 \text{ and } r_d > 0\\ \frac{\pi}{2d} & \text{if } d \ge 1 \text{ and } r_d < 0 \end{cases}.$$

For a sufficiently large R > 0 and $z = Re^{\theta \sqrt{-1}} \in \mathbb{H}_+$, we may assume that

$$|r_d|R^d = |r_d z^d| > |\sum_{i=0}^{d-1} r_i z^i + \sum_{i=1}^k \sum_{j=1}^{n(i)} \frac{b_{i,j}}{(z-c_i)^j}|.$$

Then we have

$$\operatorname{Im}g(z) = \operatorname{Im}(-|r_d|R^d\sqrt{-1} + \sum_{i=0}^{d-1} r_i z^i + \sum_{i=1}^k \sum_{j=1}^{n(i)} \frac{b_{i,j}}{(z-c_i)^j})$$
$$\leq -|r_d|R^d + |\sum_{i=0}^{d-1} r_i z^i + \sum_{i=1}^k \sum_{j=1}^{n(i)} \frac{b_{i,j}}{(z-c_i)^j}| < 0.$$

This contradicts to $g(z) \in \mathbb{H}_+$. So we have that $r(z) = r_0 + r_1 z$ and $r_1 \ge 0$.

(2) In a suitable neighborhood of c_i in $\mathbb{H}_+ \cup I \cup \mathbb{H}_-$, $g \in \mathbb{P}(I)$ has the form

$$g(z) = \frac{b_{i,1}}{z - c_i} + \dots + \frac{b_{i,n(i)}}{(z - c_i)^{n(i)}} + h(z),$$

where h(z) is holomorphic on the neighborhood of c_i . Put

$$\theta = \begin{cases} \frac{\pi}{2n(i)} & \text{if } n(i) \ge 2 \text{ and } b_{i,n(i)} > 0\\ \frac{3\pi}{2n(i)} & \text{if } n(i) \ge 1 \text{ and } b_{i,n(i)} < 0 \end{cases}.$$

For a sufficiently small r > 0, $z = c_i + re^{\theta \sqrt{-1}} \in \mathbb{H}_+$ and we may assume that

$$\frac{|b_{i,n(i)}|}{r^{n(i)}} = |\frac{b_{i,n(i)}}{(z-c_i)^{n(i)}}| > |\sum_{j=1}^{n(i)-1} \frac{b_{i,j}}{(z-c_i)^j} + h(z)|.$$

Then we have

$$\operatorname{Im}g(z) = \operatorname{Im}\left(-\frac{|b_{i,n(i)}|}{r^{n(i)}}\sqrt{-1} + \sum_{j=1}^{n(i)-1}\frac{b_{i,j}}{(z-c_i)^j} + h(z)\right)$$
$$\leq -\frac{|b_{i,n(i)}|}{r^{n(i)}} + |\sum_{j=1}^{n(i)-1}\frac{b_{i,j}}{(z-c_i)^j} + h(z)| < 0.$$

This contradicts to $g(z) \in \mathbb{H}_+$. So we have that n(i) = 1 and $b_{i,1} \leq 0$ for all i = 1, 2, ..., k.

We can now prove the following theorem:

Theorem 2.2. The following are equivalent:

- (1) $f \in \mathbb{P}(I)$ is rational.
- (2) There exist $b_0 \in \mathbb{R}$, non-negative numbers a_0, a_1, \ldots, a_n and real numbers $\alpha_1, \alpha_2, \ldots, \alpha_n \notin I$ such that

$$f(t) = b_0 + a_0 t - \sum_{i=1}^n \frac{a_i}{t - \alpha_i}.$$

(3) There exist $a_0, c \ge 0$, $b_0 \in \mathbb{R}$, $\alpha_1, \alpha_2, \ldots, \alpha_n \notin I$ and $\beta_1, \beta_2, \ldots, \beta_{n-1} \in \mathbb{R}$ satisfying that

$$f(t) = b_0 + a_0 t - \frac{c(t-\beta_1)(t-\beta_2)\cdots(t-\beta_{n-1})}{(t-\alpha_1)(t-\alpha_2)\cdots(t-\alpha_n)}$$

and $\alpha_1 < \beta_1 < \alpha_2 < \beta_2 < \cdots < \beta_{n-1} < \alpha_n.$

Proof. (1) \Leftrightarrow (2) This is proved by Lemma 2.1. (2) \Rightarrow (3) We assume

$$f(t) = b_0 + a_0 t - \sum_{i=1}^n \frac{a_i}{t - \alpha_i},$$

$$\sum_{i=1}^{n} \frac{a_i}{t - \alpha_i} = \frac{g(t)}{(t - \alpha_1) \cdots (t - \alpha_n)},$$

that is,

$$g(t) = \sum_{i=1}^{n} a_i (t - \alpha_1) \cdots (t - \alpha_{i-1}) (t - \alpha_{i+1}) \cdots (t - \alpha_n).$$

Since

$$g(\alpha_i) = (\alpha_i - \alpha_1) \cdots (\alpha_i - \alpha_{i-1})(\alpha_i - \alpha_{i+1}) \cdots (\alpha_i - \alpha_n),$$

we have

sign
$$g(\alpha_i) = (-1)^{n-i}$$
 $(i = 1, 2, ..., n).$

By the fact deg g(t) = n - 1 and the continuity of g, there exist a positive number c and $\beta_1, \beta_2, \ldots, \beta_{n-1}$ such that

$$g(t) = c(t - \beta_1)(t - \beta_2) \cdots (t - \beta_{n-1})$$

and $\alpha_1 < \beta_1 < \alpha_2 < \beta_2 < \dots < \beta_{n-1} < \alpha_n$. (3) \Rightarrow (2) Set

$$g(t) = \frac{c(t-\beta_1)(t-\beta_2)\cdots(t-\beta_{n-1})}{(t-\alpha_1)(t-\alpha_2)\cdots(t-\alpha_n)},$$

where c > 0, $\alpha_1 < \beta_1 < \alpha_2 < \beta_2 < \cdots < \beta_{n-1} < \alpha_n$. Then g(t) has the following form:

$$g(t) = \sum_{i=1}^{n} \frac{b_i}{t - \alpha_i}$$

for some $b_i \in \mathbb{R} \setminus \{0\}$. It suffices to show that $b_i > 0$ for i = 1, 2, ..., n - 1. When we choose t such that $\beta_{i-1} < t < \alpha_i$ and $\alpha_i - t$ is sufficiently small, we have

sign
$$g(t) = -\text{sign } b_i$$
.

Because $\alpha_1 < \cdots < \beta_{i-1} < t < \alpha_i < \cdots < \alpha_n$,

sign
$$g(t) = (-1)^{(n-1)-(i-1)+n-(i-1)} = -1.$$

So we have $b_i > 0$.

For a rational function f(t), we can choose polynomials p(t) and q(t) such that

$$f(t) = \frac{p(t)}{q(t)}$$

and common devisors of p(t) and q(t) are only scalars. Then we call f of order n if

$$n = \max\{\deg p(t), \deg q(t)\}\$$

- (1) $f \in \mathbb{P}(I)$ is rational of order n.
- (2) f has one of the following forms:

(a)
$$f(t) = \frac{a(t-\beta_2)(t-\beta_3)\cdots(t-\beta_{n+1})}{(t-\alpha_1)(t-\alpha_2)\cdots(t-\alpha_n)},$$

(b) $f(t) = \frac{a(t-\beta_1)(t-\beta_2)\cdots(t-\beta_n)}{(t-\alpha_1)(t-\alpha_2)\cdots(t-\alpha_{n-1})},$
(c) $f(t) = -\frac{a(t-\beta_1)(t-\beta_2)\cdots(t-\beta_n)}{(t-\alpha_1)(t-\alpha_2)\cdots(t-\alpha_n)}$

or

(d)
$$f(t) = -\frac{a(t-\beta_2)(t-\beta_3)\cdots(t-\beta_n)}{(t-\alpha_1)(t-\alpha_2)\cdots(t-\alpha_n)},$$

where a > 0, $\alpha_i \notin I$ and

$$\beta_1 < \alpha_1 < \beta_2 < \alpha_2 < \dots < \alpha_n < \beta_{n+1}.$$

Proof. $(1) \Rightarrow (2)$ When f(t) has the form

$$f(t) = b_0 + a_0 t - \sum_{i=1}^{n-1} \frac{a_i}{(t - \alpha_i)},$$

where $a_1, a_2, \ldots, a_{n-1} > 0$. Since f is rational of order n, we have $a_0 > 0$. We set

$$g(t) = (b_0 + a_0 t)(t - \alpha_1)(t - \alpha_2) \cdots (t - \alpha_{n-1}) - \sum_{i=1}^{n-1} a_i(t - \alpha_1) \cdots (t - \alpha_{i-1})(t - \alpha_{i+1}) \cdots (t - \alpha_{n-1}),$$

that is,

$$f(t) = \frac{g(t)}{(t - \alpha_1)(t - \alpha_2)\cdots(t - \alpha_{n-1})}$$

Then we have

$$\operatorname{sign}(\lim_{t \to \infty} g(t)) = 1, \quad \operatorname{sign} g(\alpha_{n-1}) = -1, \quad \operatorname{sign} g(\alpha_{n-2}) = 1,$$
$$\cdots, \quad \operatorname{sign} g(\alpha_1) = (-1)^{n-1}, \quad \operatorname{sign}(\lim_{t \to -\infty} g(t)) = (-1)^n.$$

So f has the form (b).

When f(t) has the form

$$f(t) = b_0 + a_0 t - \sum_{i=1}^n \frac{a_i}{(t - \alpha_i)},$$

where $a_1, a_2, \ldots, a_n > 0$. Since f is rational of order n, we have $a_0 = 0$. We set

$$g(t) = b_0(t - \alpha_1)(t - \alpha_2) \cdots (t - \alpha_n)$$
$$- \sum_{i=1}^n a_i(t - \alpha_1) \cdots (t - \alpha_{i-1})(t - \alpha_{i+1}) \cdots (t - \alpha_n),$$

that is,

$$f(t) = \frac{g(t)}{(t - \alpha_1)(t - \alpha_2)\cdots(t - \alpha_n)}$$

Using the same argument as above, f has the form (d) if b = 0, the form (a) if b > 0 and the form (c) if b < 0.

 $(2) \Rightarrow (1)$ When f has the form (a),(b),(c) or (d), f is rational of order n.

When f has the form (d), $f \in \mathbb{P}(I)$ by Theorem 2.2.

When f has the form (a), f is represented as the following form:

$$f(t) = \sum_{i=1}^{n} \frac{b_i}{t - \alpha_i} + a,$$

where a > 0 and some $b_i \in \mathbb{R}$ (i = 1, 2, ..., n). Since

$$\lim_{t \to \alpha_i + 0} f(t) = \lim_{t \to \alpha_i + 0} \frac{a(t - \beta_2)(t - \beta_3) \cdots (t - \beta_{n+1})}{(t - \alpha_1)(t - \alpha_2) \cdots (t - \alpha_n)} = -\infty,$$

we get $b_i < 0$ from the fact

$$\lim_{t \to \alpha_i + 0} \sum_{i=1}^n \frac{b_i}{t - \alpha_i} + a = -\infty.$$

So $f \in \mathbb{P}(I)$.

By the similar reason, $f \in \mathbb{P}(I)$ if f has the form (b) or (c).

3 Examples. The following Example 3.1 has been announced by M. Uchiyama in many Conferences (cf. [7], [8]).

Example 3.1. Let $\{p_n(x)\}$ be the orthogonal polynomials on a closed interval [a, b] whose leading coefficient is positive. It is well known that the zeros $\{c_1, c_2, \ldots, c_n\}$ of $p_n(x)$ satisfies that

$$a = c_0 < c_1 < c_2 \cdots < c_n < c_{n+1} = b,$$

and each interval (c_i, c_{i+1}) (i = 0, 1, ..., n) contains exactly one zeros of $p_{n+1}(x)$ ([6]). So $p_{n+1}(x)/p_n(x)$ has the form (b) in Corollary 2.3. This means that $p_{n+1}(x)/p_n(x)$ is operator monotone on any interval which does not contain any zeros of $p_n(x)$.

Example 3.2. Let $0 = a_0 < a_1 < a_2 < \cdots < a_{2n-1} < a_{2n} = \pi$. Then

$$f(x) = \frac{\cos(x - a_1)\cos(x - a_3)\cdots\cos(x - a_{2n-1})}{\cos(x - a_0)\cos(x - a_2)\cdots\cos(x - a_{2n-2})}$$

is operator monotone on any interval I contained in $\mathbb{R} \setminus \{\frac{(2m+1)\pi}{2} + a_{2i} \mid m \in \mathbb{Z}, i = 0, 1, \dots, n-1\}.$

In particular, $\tan x$ is operator monotone on any interval contained in $\mathbb{R} \setminus \{m\pi - \frac{\pi}{2} \mid m \in \mathbb{Z}\}$ (when $n = 1, a_0 = 0, a_1 = \frac{\pi}{2}$).

150

Proof. The function $\cos x$ is represented by the infinite product as follows:

$$\cos x = \lim_{m \to \infty} f_m(x),$$

where

$$f_m(x) = \prod_{k=-m}^{m-1} (1 - \frac{2x}{(2k+1)\pi}).$$

Remarking the fact

$$f_m(x) = \frac{(-1)^m 2^{4m-2} ((m-1)!)^2}{((2m-1)!)^2} \prod_{k=-m}^{m-1} (x - \frac{2k+1}{2}\pi),$$

we have that

$$g_m(x) = \frac{f_m(x-a_1)f_m(x-a_3)\cdots f_m(x-a_{2n-1})}{f_m(x-a_0)f_m(x-a_2)\cdots f_m(x-a_{2n-2})}$$
$$= \prod_{k=-m}^{m-1} \frac{(x-(\frac{(2k+1)\pi}{2}+a_1))(x-(\frac{(2k+1)\pi}{2}+a_3))\cdots (x-(\frac{(2k+1)\pi}{2}+a_{2n-1}))}{(x-(\frac{(2k+1)\pi}{2}+a_0))(x-(\frac{(2k+1)\pi}{2}+a_2))\cdots (x-(\frac{(2k+1)\pi}{2}+a_{2n-2}))}$$

belongs to $\mathbb{P}(I)$ by Corollary 2.3. Since

$$f(x) = \lim_{m \to \infty} g_m(x),$$

f(x) is operator monotone on I.

Example 3.3. Let $a_0 < a_1 < a_2 < \cdots < a_{2n-1} < a_0 + 1$ and $k(1), k(2), \dots, k(n) \in \mathbb{Z}$. Then $\Gamma(x - a_0 - h(1))\Gamma(x - a_0 - h(2)) = \Gamma(x - a_0 - h(n))$

$$f(x) = \frac{\Gamma(x - a_0 - k(1))\Gamma(x - a_2 - k(2)) \cdots \Gamma(x - a_{2n-2} - k(n))}{\Gamma(x - a_1 - k(1))\Gamma(x - a_3 - k(2)) \cdots \Gamma(x - a_{2n-1} - k(n))}$$

is operator monotone on any interval I contained in $\mathbb{R} \setminus \{a_{2i-1}+k(i)-m \mid i=1,2,\ldots,n, m=0,1,2,\ldots\}$, where $\Gamma(x)$ is the Gamma function, i.e.,

$$\Gamma(x) = \int_0^\infty e^{-t} t^{x-1} dt \qquad (x > 0).$$

Proof. We use Gauss's Formula of $\Gamma(x)$ as follows:

$$\Gamma(x) = \lim_{m \to \infty} g_m(x),$$

where $g_m(x) = \frac{m^x m!}{x(x+1)\cdots(x+m)}$ and the convergence is uniformly on any compact subset of $\mathbb{R} \setminus \{0, -1, -2, \ldots\}$ ([3]). For a < b < a + 1,

$$\frac{g_m(x-a)}{g_m(x-b)} = m^{b-a} \frac{(x-b)(x-(b-1))\cdots(x-(b-m))}{(x-a)(x-(a-1))\cdots(x-(a-m))}$$

is operator monotone on any interval contained in $\mathbb{R} \setminus \{a, a - 1, ..., a - m\}$ by Corollary 2.4. Then we have that

$$h_m(x) = \frac{g_m(x - a_0 - k(1))g_m(x - a_2 - k(2))\cdots g_m(x - a_{2n-2} - k(n))}{g_m(x - a_1 - k(1))g_m(x - a_3 - k(2))\cdots g_m(x - a_{2n-1} - k(n))}$$

also has the form (a) in Corollary 2.3, and is operator monotone on *I*. So is f(x), because $f(x) = \lim_{m \to \infty} h_m(x)$.

Acknowledgement. This work was partially supported by Grant-in-Aid for Scientific Research (C)22540220.

References

- [1] R. Bhatia, Matrix Analysis, Graduate Texts in Math. 169, Springer-Verlag, 1997.
- [2] R. Bhatia, Positive Definite Matrices, Princeton University Press, 2007.
- [3] J. B. Conway. Functions of One Complex Variable, Second Edition, Graduate Texts in Math. 11, Springer-Verlag, 1978.
- [4] W. F. Donoghue, Jr., Monotone matrix functions and analytic continuation, Springer-Verlag, 1974.
- [5] F. Hiai, Matrix Analysis: Matrix monotone functions, matrix means, and majorization, Interdecip. Inform. Sci. 16 (2010) 139–248.
- [6] G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Colloquium Publ. Vol. 23 Revised ed., 1959.
- [7] M. Uchiyama, Inverse functions of polynomials and orthogonal polynomials as operator monotone functions, Trans. Amer. Math. Soc. 355(2003), 4111–4123.
- [8] M. Uchiyama, Operator monotone functions, Jacobi operators and orthogonal polynomials, J. Math. Anal. Appl. 401(2013), 501-509.

Communicated by Hiroyuki Osaka

Department of Mathematics and Informatics, Graduate School of Science, Chiba University, Chiba, 263-8522, Japan. E-mail: nagisa@math.s.chiba-u.ac.jp