A NOTE ON RATIONAL OPERATOR MONOTONE FUNCTIONS

Masaru Nagisa

Received May 19, 2014 ; revised April 10, 2014

Abstract

Let f be oeprator monotone for some open interval I of \mathbb{R}. It is known that f has the analytic continuation on $\mathbb{H}_{+} \cup I \cup \mathbb{H}_{-}$, where \mathbb{H}_{+}(resp. \mathbb{H}_{-}) is the upper (resp. the lower) half plane of \mathbb{C}. In this note, we determine the form of rational operator monotone functions by using elementary argument, and prove the operator monotonicity of some meromorphic functions.

1 Introduction. We denote the set of all $n \times n$ matrices over \mathbb{C} by M_{n} and set

$$
H_{n}=\left\{A \in M_{n} \mid A^{*}=A\right\} \text { and } H_{n}^{+}=\left\{A \in H_{n} \mid A \geq 0\right\}
$$

where $A \geq 0$ means that A is non-negative, that is, the value of inner product

$$
(A x, x) \geq 0 \quad \text { for all } x \in \mathbb{C}^{n}
$$

Let I be an open interval of the set \mathbb{R} of real numbers. We also denote by $H_{n}(I)$ the set of $A \in H_{n}$ with its spectra $\operatorname{Sp}(A) \subset I$. A real continuous function f defined on the open interval I is said to be operator monotone if $A \leq B$ implies $f(A) \leq f(B)$ for any $n \in \mathbb{N}$ and $A, B \in H_{n}(I)$. In this note, we assume that an operator monotone function is not a constant function.

Let f be a real-valued continuous function on the interval I. We call f a Pick function if f has an analytic continuation on the upper half plane $\mathbb{H}_{+}=\{z \in \mathbb{C} \mid \operatorname{Im} z>0\}$ into itself. It also has an analytic continuation to the lower half plane \mathbb{H}_{-}, obtained by reflections across I.

We denote by $\mathbb{P}(I)$ the set of all Pick functions on I. It is well known that $f \in \mathbb{P}(I)$ is equivalent to that f is operator monotone on I ([1], [4], [5]).

We characterize the rational Pick function (rational operator monotone function) by an elementary method in Section 2 and give some examples using this characterization in Section 3.

2 Rational operator monotone functions. Let I be an open interval and $f(t)=$ $\frac{a t+b}{c t+d}(a, b, c, d \in \mathbb{R}, a d-b c \geq 0)$. It is well known that f is operator monotone on $\left(-\infty,-\frac{d}{c}\right)$ or $\left(-\frac{d}{c},+\infty\right)$ (see [1], [5]). So the following rational function is also operator monotone on I :

$$
b_{0}+a_{0} t-\sum_{i=1}^{n} \frac{a_{i}}{t-\alpha_{i}},
$$

where $b_{0} \in \mathbb{R}, a_{0}, a_{1}, \ldots, a_{n} \geq 0$ and $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in \mathbb{R} \backslash I$.
2000 Mathematics Subject Classification. 47A63.
Key words and phrases. Monotone matrix function, Operator monotone function, Pick function, Rational operator monotone function.

Let $g \in \mathbb{P}(I)$ be rational. Then there exists polynomials $p(t)$ and $q(t)$ with real coefficients such that

$$
g(t)=\frac{p(t)}{q(t)} \quad(t \in I)
$$

where common devisors of $p(t)$ and $q(t)$ are only scalars and a coefficient of the highest degree term of $q(t)$ is 1 . The polynomial $q(t)$ with real coefficients is represented as products of the following factors:

$$
t-a, \quad t^{2}+a t+b \quad(a, b \in \mathbb{R})
$$

Since g has the analytic continuation to the upper half plane \mathbb{H}_{+}and the lower half plane \mathbb{H}_{-},

$$
g(z)=\frac{p(z)}{q(z)} \quad\left(z \in \mathbb{H}_{+} \cup I \cup \mathbb{H}_{+}\right)
$$

and g has no poles on $\mathbb{H}_{+} \cup I$. So we may assume that $g(z)$ has the following form:

$$
g(z)=\frac{p(z)}{\left(z-c_{1}\right)^{n(1)}\left(z-c_{2}\right)^{n(2)} \cdots\left(z-c_{k}\right)^{n(k)}},
$$

where $c_{1}, c_{2}, \ldots, c_{k} \in \mathbb{R} \cap I^{c}$ and each $n(i)(i=1,2, \ldots, k)$ is a positive integer with $n(1)+n(2)+\cdots+n(k)=\operatorname{deg} q(z)$. By the partially fractional decomposition of $g(z)$,

$$
g(z)=r(z)+\sum_{i=1}^{k} \sum_{j=1}^{n(i)} \frac{b_{i, j}}{\left(z-c_{i}\right)^{j}},
$$

where $r(z)$ is the remainder of $p(z)$ by $q(z)$ and $\left\{b_{i . j}\right\} \subset \mathbb{R}$.
Lemma 2.1. In above setting, $g \in \mathbb{P}(I)$ satisfies the following conditions:
(1) There exist $r_{0}, r_{1} \in \mathbb{R}$ such that $r_{1} \geq 0$ and $r(z)=r_{0}+r_{1} z$.
(2) $n(i)=1$ and $b_{i, 1} \leq 0$ for all $i=1,2, \ldots, k$.

Proof. (1) We set

$$
r(z)=r_{0}+r_{1} z+\cdots+r_{d} z^{d}
$$

where $d=\operatorname{deg} r(z)$. Put

$$
\theta= \begin{cases}\frac{3 \pi}{2 d} & \text { if } d \geq 2 \text { and } r_{d}>0 \\ \frac{\pi}{2 d} & \text { if } d \geq 1 \text { and } r_{d}<0\end{cases}
$$

For a sufficiently large $R>0$ and $z=R e^{\theta \sqrt{-1}} \in \mathbb{H}_{+}$, we may assume that

$$
\left|r_{d}\right| R^{d}=\left|r_{d} z^{d}\right|>\left|\sum_{i=0}^{d-1} r_{i} z^{i}+\sum_{i=1}^{k} \sum_{j=1}^{n(i)} \frac{b_{i, j}}{\left(z-c_{i}\right)^{j}}\right| .
$$

Then we have

$$
\begin{aligned}
\operatorname{Im} g(z) & =\operatorname{Im}\left(-\left|r_{d}\right| R^{d} \sqrt{-1}+\sum_{i=0}^{d-1} r_{i} z^{i}+\sum_{i=1}^{k} \sum_{j=1}^{n(i)} \frac{b_{i, j}}{\left(z-c_{i}\right)^{j}}\right) \\
& \leq-\left|r_{d}\right| R^{d}+\left|\sum_{i=0}^{d-1} r_{i} z^{i}+\sum_{i=1}^{k} \sum_{j=1}^{n(i)} \frac{b_{i, j}}{\left(z-c_{i}\right)^{j}}\right|<0 .
\end{aligned}
$$

This contradicts to $g(z) \in \mathbb{H}_{+}$. So we have that $r(z)=r_{0}+r_{1} z$ and $r_{1} \geq 0$.
(2) In a suitable neighborhood of c_{i} in $\mathbb{H}_{+} \cup I \cup \mathbb{H}_{-}, g \in \mathbb{P}(I)$ has the form

$$
g(z)=\frac{b_{i, 1}}{z-c_{i}}+\cdots+\frac{b_{i, n(i)}}{\left(z-c_{i}\right)^{n(i)}}+h(z)
$$

where $h(z)$ is holomorphic on the neighborhood of c_{i}. Put

$$
\theta=\left\{\begin{array}{ll}
\frac{\pi}{2 n(i)} & \text { if } n(i) \geq 2 \text { and } b_{i, n(i)}>0 \\
\frac{3 \pi}{2 n(i)} & \text { if } n(i) \geq 1 \text { and } b_{i, n(i)}<0
\end{array} .\right.
$$

For a sufficiently small $r>0, z=c_{i}+r e^{\theta \sqrt{-1}} \in \mathbb{H}_{+}$and we may assume that

$$
\frac{\left|b_{i, n(i)}\right|}{r^{n(i)}}=\left|\frac{b_{i, n(i)}}{\left(z-c_{i}\right)^{n(i)}}\right|>\left|\sum_{j=1}^{n(i)-1} \frac{b_{i, j}}{\left(z-c_{i}\right)^{j}}+h(z)\right| .
$$

Then we have

$$
\begin{aligned}
\operatorname{Im} g(z) & =\operatorname{Im}\left(-\frac{\left|b_{i, n(i)}\right|}{r^{n(i)}} \sqrt{-1}+\sum_{j=1}^{n(i)-1} \frac{b_{i, j}}{\left(z-c_{i}\right)^{j}}+h(z)\right) \\
& \leq-\frac{\left|b_{i, n(i)}\right|}{r^{n(i)}}+\left|\sum_{j=1}^{n(i)-1} \frac{b_{i, j}}{\left(z-c_{i}\right)^{j}}+h(z)\right|<0
\end{aligned}
$$

This contradicts to $g(z) \in \mathbb{H}_{+}$. So we have that $n(i)=1$ and $b_{i, 1} \leq 0$ for all $i=1,2, \ldots, k$.

We can now prove the following theorem:
Theorem 2.2. The following are equivalent:
(1) $f \in \mathbb{P}(I)$ is rational.
(2) There exist $b_{0} \in \mathbb{R}$, non-negative numbers $a_{0}, a_{1}, \ldots, a_{n}$ and real numbers $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \notin$ I such that

$$
f(t)=b_{0}+a_{0} t-\sum_{i=1}^{n} \frac{a_{i}}{t-\alpha_{i}}
$$

(3) There exist $a_{0}, c \geq 0, b_{0} \in \mathbb{R}, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \notin I$ and $\beta_{1}, \beta_{2}, \ldots, \beta_{n-1} \in \mathbb{R}$ satisfying that

$$
\begin{gathered}
f(t)=b_{0}+a_{0} t-\frac{c\left(t-\beta_{1}\right)\left(t-\beta_{2}\right) \cdots\left(t-\beta_{n-1}\right)}{\left(t-\alpha_{1}\right)\left(t-\alpha_{2}\right) \cdots\left(t-\alpha_{n}\right)} \\
\text { and } \alpha_{1}<\beta_{1}<\alpha_{2}<\beta_{2}<\cdots<\beta_{n-1}<\alpha_{n} .
\end{gathered}
$$

Proof. (1) $\Leftrightarrow(2)$ This is proved by Lemma 2.1.
$(2) \Rightarrow(3)$ We assume

$$
f(t)=b_{0}+a_{0} t-\sum_{i=1}^{n} \frac{a_{i}}{t-\alpha_{i}}
$$

where $b_{0} \in \mathbb{R}, a_{0}, a_{1}, \ldots, a_{n} \geq 0, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \notin I$ and $\alpha_{1}<\alpha_{2}<\cdots<\alpha_{n}$. We define $g(t)$ as follows:

$$
\sum_{i=1}^{n} \frac{a_{i}}{t-\alpha_{i}}=\frac{g(t)}{\left(t-\alpha_{1}\right) \cdots\left(t-\alpha_{n}\right)}
$$

that is,

$$
g(t)=\sum_{i=1}^{n} a_{i}\left(t-\alpha_{1}\right) \cdots\left(t-\alpha_{i-1}\right)\left(t-\alpha_{i+1}\right) \cdots\left(t-\alpha_{n}\right) .
$$

Since

$$
g\left(\alpha_{i}\right)=\left(\alpha_{i}-\alpha_{1}\right) \cdots\left(\alpha_{i}-\alpha_{i-1}\right)\left(\alpha_{i}-\alpha_{i+1}\right) \cdots\left(\alpha_{i}-\alpha_{n}\right)
$$

we have

$$
\operatorname{sign} g\left(\alpha_{i}\right)=(-1)^{n-i} \quad(i=1,2, \ldots, n)
$$

By the fact $\operatorname{deg} g(t)=n-1$ and the continuity of g, there exist a positive number c and $\beta_{1}, \beta_{2}, \ldots, \beta_{n-1}$ such that

$$
g(t)=c\left(t-\beta_{1}\right)\left(t-\beta_{2}\right) \cdots\left(t-\beta_{n-1}\right)
$$

and $\alpha_{1}<\beta_{1}<\alpha_{2}<\beta_{2}<\cdots<\beta_{n-1}<\alpha_{n}$.
(3) $\Rightarrow(2)$ Set

$$
g(t)=\frac{c\left(t-\beta_{1}\right)\left(t-\beta_{2}\right) \cdots\left(t-\beta_{n-1}\right)}{\left(t-\alpha_{1}\right)\left(t-\alpha_{2}\right) \cdots\left(t-\alpha_{n}\right)}
$$

where $c>0, \alpha_{1}<\beta_{1}<\alpha_{2}<\beta_{2}<\cdots<\beta_{n-1}<\alpha_{n}$. Then $g(t)$ has the following form:

$$
g(t)=\sum_{i=1}^{n} \frac{b_{i}}{t-\alpha_{i}},
$$

for some $b_{i} \in \mathbb{R} \backslash\{0\}$. It suffices to show that $b_{i}>0$ for $i=1,2, \ldots, n-1$.
When we choose t such that $\beta_{i-1}<t<\alpha_{i}$ and $\alpha_{i}-t$ is sufficiently small, we have

$$
\operatorname{sign} g(t)=-\operatorname{sign} b_{i} .
$$

Because $\alpha_{1}<\cdots<\beta_{i-1}<t<\alpha_{i}<\cdots<\alpha_{n}$,

$$
\operatorname{sign} g(t)=(-1)^{(n-1)-(i-1)+n-(i-1)}=-1
$$

So we have $b_{i}>0$.

For a rational function $f(t)$, we can choose polynomials $p(t)$ and $q(t)$ such that

$$
f(t)=\frac{p(t)}{q(t)}
$$

and common devisors of $p(t)$ and $q(t)$ are only scalars. Then we call f of order n if $n=\max \{\operatorname{deg} p(t), \operatorname{deg} q(t)\}$.

Corollary 2.3. The followings are equivalent:

(1) $f \in \mathbb{P}(I)$ is rational of order n.
(2) f has one of the following forms:
(a) $f(t)=\frac{a\left(t-\beta_{2}\right)\left(t-\beta_{3}\right) \cdots\left(t-\beta_{n+1}\right)}{\left(t-\alpha_{1}\right)\left(t-\alpha_{2}\right) \cdots\left(t-\alpha_{n}\right)}$,
(b) $f(t)=\frac{a\left(t-\beta_{1}\right)\left(t-\beta_{2}\right) \cdots\left(t-\beta_{n}\right)}{\left(t-\alpha_{1}\right)\left(t-\alpha_{2}\right) \cdots\left(t-\alpha_{n-1}\right)}$,
(c) $f(t)=-\frac{a\left(t-\beta_{1}\right)\left(t-\beta_{2}\right) \cdots\left(t-\beta_{n}\right)}{\left(t-\alpha_{1}\right)\left(t-\alpha_{2}\right) \cdots\left(t-\alpha_{n}\right)}$
or
(d) $f(t)=-\frac{a\left(t-\beta_{2}\right)\left(t-\beta_{3}\right) \cdots\left(t-\beta_{n}\right)}{\left(t-\alpha_{1}\right)\left(t-\alpha_{2}\right) \cdots\left(t-\alpha_{n}\right)}$,
where $a>0, \alpha_{i} \notin I$ and

$$
\beta_{1}<\alpha_{1}<\beta_{2}<\alpha_{2}<\cdots<\alpha_{n}<\beta_{n+1} .
$$

Proof. (1) $\Rightarrow(2)$ When $f(t)$ has the form

$$
f(t)=b_{0}+a_{0} t-\sum_{i=1}^{n-1} \frac{a_{i}}{\left(t-\alpha_{i}\right)},
$$

where $a_{1}, a_{2}, \ldots, a_{n-1}>0$. Since f is rational of order n, we have $a_{0}>0$. We set

$$
\begin{aligned}
g(t)= & \left(b_{0}+a_{0} t\right)\left(t-\alpha_{1}\right)\left(t-\alpha_{2}\right) \cdots\left(t-\alpha_{n-1}\right) \\
& \quad-\sum_{i=1}^{n-1} a_{i}\left(t-\alpha_{1}\right) \cdots\left(t-\alpha_{i-1}\right)\left(t-\alpha_{i+1}\right) \cdots\left(t-\alpha_{n-1}\right),
\end{aligned}
$$

that is,

$$
f(t)=\frac{g(t)}{\left(t-\alpha_{1}\right)\left(t-\alpha_{2}\right) \cdots\left(t-\alpha_{n-1}\right)} .
$$

Then we have

$$
\begin{gathered}
\operatorname{sign}\left(\lim _{t \rightarrow \infty} g(t)\right)=1, \quad \operatorname{sign} g\left(\alpha_{n-1}\right)=-1, \quad \operatorname{sign} g\left(\alpha_{n-2}\right)=1, \\
\ldots, \quad \operatorname{sign} g\left(\alpha_{1}\right)=(-1)^{n-1}, \quad \operatorname{sign}\left(\lim _{t \rightarrow-\infty} g(t)\right)=(-1)^{n} .
\end{gathered}
$$

So f has the form (b).
When $f(t)$ has the form

$$
f(t)=b_{0}+a_{0} t-\sum_{i=1}^{n} \frac{a_{i}}{\left(t-\alpha_{i}\right)},
$$

where $a_{1}, a_{2}, \ldots, a_{n}>0$. Since f is rational of order n, we have $a_{0}=0$. We set

$$
\begin{aligned}
& g(t)=b_{0}\left(t-\alpha_{1}\right)\left(t-\alpha_{2}\right) \cdots\left(t-\alpha_{n}\right) \\
& \quad-\sum_{i=1}^{n} a_{i}\left(t-\alpha_{1}\right) \cdots\left(t-\alpha_{i-1}\right)\left(t-\alpha_{i+1}\right) \cdots\left(t-\alpha_{n}\right),
\end{aligned}
$$

that is,

$$
f(t)=\frac{g(t)}{\left(t-\alpha_{1}\right)\left(t-\alpha_{2}\right) \cdots\left(t-\alpha_{n}\right)}
$$

Using the same argument as above, f has the form (d) if $b=0$, the form (a) if $b>0$ and the form (c) if $b<0$.
$(2) \Rightarrow(1)$ When f has the form (a),(b),(c) or (d), f is rational of order n.
When f has the form (d), $f \in \mathbb{P}(I)$ by Theorem 2.2.
When f has the form (a), f is represented as the following form:

$$
f(t)=\sum_{i=1}^{n} \frac{b_{i}}{t-\alpha_{i}}+a
$$

where $a>0$ and some $b_{i} \in \mathbb{R}(i=1,2, \ldots, n)$. Since

$$
\lim _{t \rightarrow \alpha_{i}+0} f(t)=\lim _{t \rightarrow \alpha_{i}+0} \frac{a\left(t-\beta_{2}\right)\left(t-\beta_{3}\right) \cdots\left(t-\beta_{n+1}\right)}{\left(t-\alpha_{1}\right)\left(t-\alpha_{2}\right) \cdots\left(t-\alpha_{n}\right)}=-\infty
$$

we get $b_{i}<0$ from the fact

$$
\lim _{t \rightarrow \alpha_{i}+0} \sum_{i=1}^{n} \frac{b_{i}}{t-\alpha_{i}}+a=-\infty
$$

So $f \in \mathbb{P}(I)$.
By the similar reason, $f \in \mathbb{P}(I)$ if f has the form (b) or (c).
3 Examples. The following Example 3.1 has been announced by M. Uchiyama in many Conferences (cf. [7], [8]).

Example 3.1. Let $\left\{p_{n}(x)\right\}$ be the orthogonal polynomials on a closed interval $[a, b]$ whose leading coefficient is positive. It is well known that the zeros $\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$ of $p_{n}(x)$ satisfies that

$$
a=c_{0}<c_{1}<c_{2} \cdots<c_{n}<c_{n+1}=b,
$$

and each interval $\left(c_{i}, c_{i+1}\right)(i=0,1, \ldots, n)$ contains exactly one zeros of $p_{n+1}(x)$ ([6]). So $p_{n+1}(x) / p_{n}(x)$ has the form (b) in Corollary 2.3. This means that $p_{n+1}(x) / p_{n}(x)$ is operator monotone on any interval which does not contain any zeros of $p_{n}(x)$.

Example 3.2. Let $0=a_{0}<a_{1}<a_{2}<\cdots<a_{2 n-1}<a_{2 n}=\pi$. Then

$$
f(x)=\frac{\cos \left(x-a_{1}\right) \cos \left(x-a_{3}\right) \cdots \cos \left(x-a_{2 n-1}\right)}{\cos \left(x-a_{0}\right) \cos \left(x-a_{2}\right) \cdots \cos \left(x-a_{2 n-2}\right)}
$$

is operator monotone on any interval I contained in $\mathbb{R} \backslash\left\{\left.\frac{(2 m+1) \pi}{2}+a_{2 i} \right\rvert\, m \in \mathbb{Z}, i=\right.$ $0,1, \ldots, n-1\}$.

In particular, $\tan x$ is operator monotone on any interval contained in $\mathbb{R} \backslash\left\{\left.m \pi-\frac{\pi}{2} \right\rvert\,\right.$ $m \in \mathbb{Z}\} \quad\left(\right.$ when $\left.n=1, a_{0}=0, a_{1}=\frac{\pi}{2}\right)$.

Proof. The function $\cos x$ is represented by the infinite product as follows:

$$
\cos x=\lim _{m \rightarrow \infty} f_{m}(x)
$$

where

$$
f_{m}(x)=\prod_{k=-m}^{m-1}\left(1-\frac{2 x}{(2 k+1) \pi}\right)
$$

Remarking the fact

$$
f_{m}(x)=\frac{(-1)^{m} 2^{4 m-2}((m-1)!)^{2}}{((2 m-1)!)^{2}} \prod_{k=-m}^{m-1}\left(x-\frac{2 k+1}{2} \pi\right)
$$

we have that

$$
\begin{aligned}
& g_{m}(x)=\frac{f_{m}\left(x-a_{1}\right) f_{m}\left(x-a_{3}\right) \cdots f_{m}\left(x-a_{2 n-1}\right)}{f_{m}\left(x-a_{0}\right) f_{m}\left(x-a_{2}\right) \cdots f_{m}\left(x-a_{2 n-2}\right)} \\
= & \prod_{k=-m}^{m-1} \frac{\left(x-\left(\frac{(2 k+1) \pi}{2}+a_{1}\right)\right)\left(x-\left(\frac{(2 k+1) \pi}{2}+a_{3}\right)\right) \cdots\left(x-\left(\frac{(2 k+1) \pi}{2}+a_{2 n-1}\right)\right)}{\left(x-\left(\frac{(2 k+1) \pi}{2}+a_{0}\right)\right)\left(x-\left(\frac{(2 k+1) \pi}{2}+a_{2}\right)\right) \cdots\left(x-\left(\frac{(2 k+1) \pi}{2}+a_{2 n-2}\right)\right)}
\end{aligned}
$$

belongs to $\mathbb{P}(I)$ by Corollary 2.3. Since

$$
f(x)=\lim _{m \rightarrow \infty} g_{m}(x)
$$

$f(x)$ is operator monotone on I.

Example 3.3. Let $a_{0}<a_{1}<a_{2}<\cdots<a_{2 n-1}<a_{0}+1$ and $k(1), k(2), \ldots, k(n) \in \mathbb{Z}$. Then

$$
f(x)=\frac{\Gamma\left(x-a_{0}-k(1)\right) \Gamma\left(x-a_{2}-k(2)\right) \cdots \Gamma\left(x-a_{2 n-2}-k(n)\right)}{\Gamma\left(x-a_{1}-k(1)\right) \Gamma\left(x-a_{3}-k(2)\right) \cdots \Gamma\left(x-a_{2 n-1}-k(n)\right)}
$$

is operator monotone on any interval I contained in $\mathbb{R} \backslash\left\{a_{2 i-1}+k(i)-m \mid i=1,2, \ldots, n, m=\right.$ $0,1,2, \ldots\}$, where $\Gamma(x)$ is the Gamma function, i.e.,

$$
\Gamma(x)=\int_{0}^{\infty} e^{-t} t^{x-1} d t \quad(x>0)
$$

Proof. We use Gauss's Formula of $\Gamma(x)$ as follows:

$$
\Gamma(x)=\lim _{m \rightarrow \infty} g_{m}(x)
$$

where $g_{m}(x)=\frac{m^{x} m!}{x(x+1) \cdots(x+m)}$ and the convergence is uniformly on any compact subset of $\mathbb{R} \backslash\{0,-1,-2, \ldots\}([3])$. For $a<b<a+1$,

$$
\frac{g_{m}(x-a)}{g_{m}(x-b)}=m^{b-a} \frac{(x-b)(x-(b-1)) \cdots(x-(b-m))}{(x-a)(x-(a-1)) \cdots(x-(a-m))}
$$

is operator monotone on any interval contained in $\mathbb{R} \backslash\{a, a-1, \ldots, a-m\}$ by Corollary 2.4. Then we have that

$$
h_{m}(x)=\frac{g_{m}\left(x-a_{0}-k(1)\right) g_{m}\left(x-a_{2}-k(2)\right) \cdots g_{m}\left(x-a_{2 n-2}-k(n)\right)}{g_{m}\left(x-a_{1}-k(1)\right) g_{m}\left(x-a_{3}-k(2)\right) \cdots g_{m}\left(x-a_{2 n-1}-k(n)\right)}
$$

also has the form (a) in Corollary 2.3, and is operator monotone on I. So is $f(x)$, because $f(x)=\lim _{m \rightarrow \infty} h_{m}(x)$.

Acknowledgement. This work was partially supported by Grant-in-Aid for Scientific Research (C)22540220.

References

[1] R. Bhatia, Matrix Analysis, Graduate Texts in Math. 169, Springer-Verlag, 1997.
[2] R. Bhatia, Positive Definite Matrices, Princeton University Press, 2007.
[3] J. B. Conway. Functions of One Complex Variable, Second Edition, Graduate Texts in Math. 11, Springer-Verlag, 1978.
[4] W. F. Donoghue, Jr., Monotone matrix functions and analytic continuation, Springer-Verlag, 1974.
[5] F. Hiai, Matrix Analysis: Matrix monotone functions, matrix means, and majorization, Interdecip. Inform. Sci. 16 (2010) 139-248.
[6] G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Colloquium Publ. Vol. 23 Revised ed., 1959.
[7] M. Uchiyama, Inverse functions of polynomials and orthogonal polynomials as operator monotone functions, Trans. Amer. Math. Soc. 355(2003), 4111-4123.
[8] M. Uchiyama, Operator monotone functions, Jacobi operators and orthogonal polynomials, J. Math. Anal. Appl. 401(2013), 501-509.

Communicated by Hiroyuki Osaka

Department of Mathematics and Informatics,
Graduate School of Science,
Chiba University, Chiba, 263-8522, Japan.
E-mail: nagisa@math.s.chiba-u.ac.jp

