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Abstract. We discuss the problem of shrinkage estimation for the autocovariance
matrix of a Gaussian stationary vector-valued process to improve on the usual sample
autocovariance matrix with respect to the mean squares error. We propose a kind
of empirical Bayes estimators when the mean of the stochastic process is zero and
non-zero. We show that the shrinkage estimators dominate the usual estimators, and
the asymptotic risk differences are similar to that of scalar-valued Gaussian stationary
processes. This result seems to be useful for the autocovariance estimation with vector-
valued dependent observations.

1 Introduction There have been many discussions on shrinkage estimation to improve
on the sample mean and the sample covariance of independent observations. Stein [6] showed
the inadmissibility of the sample mean for k-dimensional independent normal observations
when k ≥ 3. James and Stein [5] suggested a shrinkage estimator which dominates the
sample mean with respect to the mean squares error when k ≥ 3. Furthermore, in the
univariate case, Stein [7] proposed a truncated estimator and showed the estimator improves
on the usual sample variance. Also in the multivariate case, Haff [2] proposed an empirical
Bayes estimator for the normal covariance matrix and showed the estimator improves on
the sample covariance matrix.

All mentioned above are the discussions for independent normal observations. However,
it is natural that the actual data are dependent. Therefore, it is important to consider
the shrinkage estimators which dominate the usual sample mean and the autocovariance
when the observations are dependent. For a vector-valued Gaussian process, Taniguchi and
Hirukawa [8] gave a sufficient condition for James-Stein type estimator to dominate the
sample mean. Furthermore, for the scalar-valued Gaussian stationary process, Taniguchi et
al. [9] suggested an empirical Bayes estimator motivated by Haff [2] and discussed on the
improvement by the estimator.

Since it is useful to represent the actual time series data by dependent and multivariate
statistical models, in this paper, we consider improved autocovariance estimation for vector-
valued Gaussian stationary processes motivated by Taniguchi et al. [9]. We propose shrinked
autocovariance estimators, and show that the estimators dominate the usual autocovariance
estimators in case of vector-valued Gaussian stationary processes.

This paper is organized as follows. In Section 2, we introduce empirical Bayes estimators
in view of Taniguchi et al. [9] when the mean of the stochastic process is zero and non-zero.
Then we evaluate the asymptotic risk differences by the mean squares error between the
shrinkage estimator and the usual sample autocovariance matrix. The improvements by the
shrinkage estimators are expressed in terms of the spectral density of the process. Section
3 provides the proofs of theorems in Section 2.
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Throughout this paper, Z denotes the set of all integers, and ⊗ denotes the Kronecker
product of matrices, and ◦ denotes the Hadamard product (entrywise product) of matrices.

2 Shrinkage estimators for autocovariance matrix Let {X(t), t ∈ Z} be an m-
dimensional Gaussian stationary process with mean E(X(t)) = µ and autocovariance ma-
trix γ(s) = E[(X(t) − µ)(X(t + s) − µ)′] for s ∈ Z and all t ∈ Z. We assume that γ(s)’s
satisfy

Assumption 1.
∞∑

s=−∞
|s| · ‖γ(s)‖ < ∞,

where ‖ · ‖ is the Euclidean norm. Then the spectral density matrix of the process is given
by

(1) f(λ) =
1
2π

∞∑
s=−∞

γ(s)e−isλ.

Here we consider to estimate the autocovariance matrix

(2) Γ =


γ(0) γ(−1) . . . γ(1 − p)
γ(1) γ(0) . . . γ(2 − p)

...
...

. . .
...

γ(p − 1) γ(p − 2) . . . γ(0)

 .

for positive integer p. Since γ(−s) = γ(s)′, Γ is symmetric. Suppose that an observed
stretch {X(1), . . . , X(n)} of the process {X(t)} is available. When µ = 0, the usual
estimator for Γ is

(3) Γ̂0 =
1

n − k
Sn,

where

Sn =
n∑

t=p

Y (t)Y (t)′, Y (t) = (X(t)′, . . . , X(t − p + 1)′)′,

and k = 0 or p − 1. When µ 6= 0, the usual estimator for Γ is

(4) Γ̃0 =
1

n − k
S̃n,

where

S̃n =
n∑

t=p

Ỹ (t)Ỹ (t)′, Ỹ (t) = ((X(t) − X̄n)′, . . . , (X(t − p + 1) − X̄n)′)′,

with X̄n = n−1
∑n

t=1 X(t) and k = 0 or p − 1. We measure the goodness of Γ̂0 by the
following mean squares error loss function

(5) L(Γ̂0,Γ) = tr{(Γ̂0Γ−1 − Imp)2} (Imp is the mp × mp identity matrix)

and the risk R(Γ̂0, Γ) = E{L(Γ̂0, Γ)}. Similarly, for Γ̃0 we also define L(Γ̃0, Γ) and R(Γ̃0, Γ).
Next, we consider to improve the estimators Γ̂0 and Γ̃0 with respect to the risk R(·, ·). When
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{X(t)} is a scalar-valued process, Taniguchi et al. [9] introduced the following empirical
Bayes estimators

(6) Γ̂ =
1

n − k

(
Sn +

b

n tr(S−1
n C)

C

)
and

(7) Γ̃ =
1

n − k

(
S̃n +

b

n tr(S̃−1
n C)

C

)
to improve Γ̂0 and Γ̃0, respectively, where b is a constant and C is a positive definite matrix
of the same size as Γ, and showed that Γ̂ and Γ̃ dominate Γ̂0 and Γ̃0, respectively, with
respect to the risk. Similarly, when {X(t)} is a vector-valued process, we use the estimators
in the form of (6) and (7), and show that Γ̂ and Γ̃ dominate Γ̂0 and Γ̃0, respectively. To
evaluate the improvement of the estimator, we need the following assumption.

Assumption 2. C is symmetric.

The assumption seems to be natural because Sn in (6) and S̃n in (7) are symmetric and
Γ̂ in (6) and Γ̃ in (7) should be symmetric. Then, the following theorem holds.

Theorem 1. When µ = 0, suppose that Assumptions 1 and 2 hold. Then the asymptotic
risk difference for the estimator Γ̂0 and Γ̂ is

(8) lim
n→∞

n2[R(Γ̂0,Γ) − R(Γ̂, Γ)] = −b
tr{(CΓ−1)2}
{tr(Γ−1C)}2

[b + B],

where
(9)

B =



2(−p + 1)
{tr(Γ−1C)}2

tr{(CΓ−1)2}

+
8π

tr{(CΓ−1)2}

∫ π

−π

tr{[{{(G(λ) ⊗ Im)Γ−1CΓ−1} ◦ (Ip ⊗ Um)}(Up ⊗ f(λ))]2}dλ,

(if k = 0),

8π

tr{(CΓ−1)2}

∫ π

−π

tr{[{{(G(λ) ⊗ Im)Γ−1CΓ−1} ◦ (Ip ⊗ Um)}(Up ⊗ f(λ))]2}dλ,

(if k = p − 1).

with G(λ) = (e−i(h−l)λ)h,l=1,...,p (p × p matrix), Um = 1m1′
m and 1m = (1, . . . , 1)′ (m ×

1 vector).

We can see that this result includes Theorem 1 of Taniguchi et al. [9] as special case.

When µ 6= 0, we can show the following theorem for Γ̃0 and Γ̃.

Theorem 2. When µ 6= 0, suppose that Assumptions 1 and 2 hold. Then the asymptotic
risk difference for the estimator Γ̃0 and Γ̃ is

(10) lim
n→∞

n2[R(Γ̃0,Γ) − R(Γ̃, Γ)] = −b
tr{(CΓ−1)2}
{tr(Γ−1C)}2

[b + B̃],

where

(11) B̃ = B − 4π
tr{(Up ⊗ f(0))Γ−1CΓ−1} · tr{Γ−1C}

tr{(CΓ−1)2}
.

We can see that this result includes Theorem 2 of Taniguchi et al. [9] as special case.
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3 Proofs This section provides the proofs of the theorems. We need the following
lemma to prove Theorem 1 (for the proofs, see Lemma A2.3 of Hosoya and Taniguchi [4]
and Theorem 4.5.1 of Brillinger [1]).

Lemma 1. Suppose that Assumption 1 holds.
(a) Denote the α-th component of X(t) by Xα(t), and denote the (α, β)-th component of
f(λ) by fαβ(λ). If {X(t)} is Gaussian, Then

lim
n→∞

nCov

{
1
n

n∑
t=p

Xα1(t − j1)Xα2(t − j2),
1
n

n∑
t=p

Xα3(t − j3)Xα4(t − j4)

}

= 2π

∫ π

−π

{fα1α3(λ)fα2α4(λ)e−i(j1−j2+j4−j3)λ + fα1α4(λ)fα2α3(λ)ei(j2−j1+j4−j3)λ}dλ

= Wα1,...,α4
j1,...,j4

(say) (0 ≤ j1, . . . , j4 ≤ p − 1).

(b) Denote the (α, β)-th component of γ(s) by γαβ(s). Then

1√
n

n∑
t=p

{Xα(t − j1)Xβ(t − j2) − γαβ(j1 − j2)} = O(
√

log n), a.s.

Proof of Theorem 1 We can calculate the asymptotic risk difference in the vector-valued
case as same as (19) of Taniguchi et al. [9]. In the proof of Theorem 1 of [9], we can use the
form of (23) of [9]. Therefore we only evaluate the numerator in the expectation of (23) of
[9]. The numerator is given by

(12) E

[(
tr

{√
n

(
1

n − k
Sn − E

(
1

n − k
Sn

))
Γ−1CΓ−1

})2
]

.

Here we set Z =
1

n − k
Sn − E

(
1

n − k
Sn

)
and V = Γ−1CΓ−1. Then (12) is equal to

(13) nE

{
p∑

h=1

p∑
l=1

tr
(
ZhlV lh

)}2
 ,

where Zhl and V hl are the (h, l)-th m×m block matrices of Z and V , respectively. Denote
the (i, j)-th component of Zhl and V lh by Zhl

ij and V lh
ij , respectively. Then (13) is equal to

(14)
p∑

h,l,h′,l′=1

m∑
i,j,i′,j′=1

nE[Zhl
ij Zh′l′

i′j′ ]V lh
ji V l′h′

j′i′ .

Let Shl
n be the (h, l)-th m × m block matrix of Sn. Since Zhl =

1
n − k

{Shl
n − E[Shl

n ]} and

Shl
n =

∑n
t=p X(t − h + 1)X(t − l + 1)′, (14) is equal to

(15)

p∑
h,l,h′,l′=1

m∑
i,j,i′,j′=1

n2

(n − k)2
V lh

ji V l′h′

j′i′

×nCov

(
1
n

n∑
t=p

Xi(t − h + 1)Xj(t − l + 1) ,
1
n

n∑
t=p

Xi′(t − h′ + 1)Xj′(t − l′ + 1)

)
.
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Using Lemma 1(a), as n → ∞, (15) converges to

(16)

p∑
h,l,h′,l′=1

m∑
i,j,i′,j′=1

V lh
ji V l′h′

j′i′

×2π

∫ π

−π

{fii′(λ)fj′j(λ)e−i(h−l+l′−h′)λ + fij′(λ)fi′j(λ)ei(l−h+l′−h′)λ}dλ.

Here, by Assumption 2, V is symmetric and then (V lh)′ = V hl. Therefore (16) is equal to

(17) 4π

∫ π

−π

tr


p∑

h,l=1

e−(h−l)λ V lhf(λ)
p∑

h′,l′=1

e−(h′−l′)λ V l′h′
f(λ)

 dλ.

Therefore (17) can be expressed as

(18) 4π

∫ π

−π

tr{[{{(G(λ) ⊗ Im)V } ◦ (Ip ⊗ Um)}(Up ⊗ f(λ))]2}dλ,

which completes the proof of Theorem 1.

Next, we prove Theorem 2. To prove the theorem we need the following lemma.

Lemma 2. Suppose that Assumption 1 holds. Then,
(a)

nE[(X̄n − µ)(X̄n − µ)′] = 2πf(0) + o(1).

(b)

E

(
1

n − k
S̃n

)
=

(
1 +

k − p + 1
n − k

)
Γ − 2π

n − k
(Up ⊗ f(0)) + o(n−1).

(c) Denote the α-th component of X̄n by X̄α
n . Then

lim
n→∞

nCov

{
1
n

n∑
t=p

(Xα1(t − j1) − X̄α1
n )(Xα2(t − j2) − X̄α2

n ),

1
n

n∑
t=p

(Xα3(t − j3) − X̄α3
n )(Xα4(t − j4) − X̄α4

n )

}
= Wα1,...,α4

j1,...,j4
.

(d)

1√
n

(S̃n − nΓ) = O(
√

log n), a.s.

Proof of Lemma 2 (a) is due to [3] (p.208, Corollary 4).
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(b) S̃hl
n denotes the (h, l)-th m × m block matrix of S̃n. Then

1
n − k

S̃hl
n(19)

=
1

n − k

n∑
t=p

(X(t − h + 1) − X̄n)(X(t − l + 1) − X̄n)′

=
1

n − k

n∑
t=p

(X(t − h + 1) − µ + µ − X̄n)(X(t − l + 1) − µ + µ − X̄n)′

=
1

n − k

n∑
t=p

(X(t − h + 1) − µ)(X(t − l + 1) − µ)′ +
n − p + 1

n − k
(X̄n − µ)(X̄n − µ)′

+
1

n − k
(µ − X̄n)

n∑
t=p

(X(t − l + 1) − µ)′ +
1

n − k

n∑
t=p

(X(t − l + 1) − µ)(µ − X̄n)′

=
1

n − k

n∑
t=p

(X(t − h + 1) − µ)(X(t − l + 1) − µ)′ − n

n − k
(X̄n − µ)(X̄n − µ)′

+
1

n − k
op(1).

From (a), we obtain

E

(
1

n − k
S̃hl

n

)
=

n − p + 1
n − k

γ(h − l) − 1
n − k

(2πf(0) + o(1)) +
1

n − k
o(1)

=
(

1 +
k − p + 1

n − k

)
γ(h − l) − 2π

n − k
f(0) + o(n−1).

Then we get the result.

(c) From (19), Gaussianity of {Xt}, and the properties of cumulant, we can show this
lemma.

(d) Noting that Theorem 4.5.1 of Brillinger [1], we obtain
√

n(X̄n − µ) = O(
√

log n) a.s.

From Lemma 1 (b), we can see that (d) holds.

Proof of Theorem 2 We can prove the theorem similarly to Theorem 1, except for the
evaluation of

(20) − 2n2b

n − k
tr

[{
E

(
1

n − k
S̃n

)
− Γ

}
Γ−1CΓ−1

]
in (21) of [9]. From Lemma 2 (b) it is seen that

(21) lim
n→∞

(20) = −2b[(k − p + 1)tr{CΓ−1} − 2π tr{(Up ⊗ f(0))Γ−1CΓ−1}].

Therefore we obtain the Theorem 2.
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