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Abstract. We utilize some 2×2 matrix tricks to obtain several unitarily invariant norm inequali-
ties corresponding to the Löwner–Heinz inequality, the arithmetic–geometric mean inequality and
the Corach–Porta–Recht inequality. Among others, we establish some norm inequalities for uni-
tarily invariant norms implying an extended Löwner–Heinz inequality.

1 Introduction. Let B(H ) be the C∗-algebra of all bounded linear operators on a complex
Hilbert space (H , 〈·, ·〉) and let I be its identity. We write A ≥ 0 if A is a positive operator in the
sense that 〈Ax, x〉 ≥ 0 for all x ∈ H . Further, A ≥ B if A and B are self-adjoint and A − B ≥ 0.
By a strictly positive operator A, denoted by A > 0, we mean a positive operator being invertible. If

A,B are operators in B(H ), we write the direct sum A ⊕ B for the 2 × 2 operator matrix
[
A 0
0 B

]
,

regarded as an operator on H ⊕H . Let K(H ) denote the ideal of compact operators on H . For any
operator A ∈ K(H ), let s1(A), s2(A), · · · be the eigenvalues of |A| = (A∗A)

1
2 in decreasing order and

repeated according to multiplicity. If A ∈ Mn, we take sk(A) = 0 for k > n. A unitarily invariant
norm in K(H ) is a map ||| · ||| : K(H ) → [0,∞] given by |||A||| = g(s(A)), A ∈ K(H ), where g is a
symmetric gauge function; cf. [12]. The set I = I|||·||| = {A ∈ K(H ) : |||A||| < ∞} is a (two-sided)
ideal of B(H ) by the basic property (1) in the below. An operator A ∈ K(H ) is said to be in
the Schatten p-class Cp (1 ≤ p < ∞), if

∑
j sj(A)p < ∞. The Schatten p-norm of A is defined by

‖A‖p =
(∑

j sj(A)p
) 1

p

, which is a typical example of a unitarily invariant norm. Other examples of

unitarily invariant norms are the operator norm and the Ky Fan norms ‖A‖(k) :=
∑k

j=1 sj(A), k ∈ N
under decreasingly arranged on j. Some of basic properties are as follow:

(1) If B ∈ I, then |||B||| = ||||B|||| = |||B∗||| and |||ABC||| ≤ ‖A‖ |||B||| ‖C‖ for any A,C ∈ B(H ).

(2) It follows from the Fan dominance principle (see e.g. [1]) that |||A||| ≤ |||B||| for all unitarily
invariant norms if and only if |||A ⊕ 0||| ≤ |||B ⊕ 0||| for all unitarily invariant norms.

Let ΛkH be the subspace of the k-fold tensor product ⊗kH spanned by antisymmetric tensors.
Then the k-fold product ⊗kA of an operator A on H leaves this space invariant and the restriction of
⊗kA to it, denoted by ΛkA, is called the exterior power of A. Λk is multiplicative, ∗-preserving and
unital. We denote the weak-log majorization and the weak majorization , ≺w−log and ≺w, respectively.
The following relations among them are known; cf. [1]. Let X,Y ∈ K(H ). Then

|X| ≺w−log |Y | (i.e.,
∥∥ΛkX

∥∥ ≤
∥∥ΛkY

∥∥ for any k ≤ n)
⇒ |X| ≺w |Y | (i.e., ‖X‖(k) ≤ ‖Y ‖(k) for any k ≤ n).

So the Fan Dominance theorem is rephrased as

|X| ≺w−log |Y | =⇒ |||X||| ≤ |||Y ||| .
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Now, let us pay attention to some literature reviews. The Heinz inequality states that for A,B,X ∈
B(H ) with A,B ≥ 0,

‖AX + XB‖ ≥
∥∥AαXB1−α + A1−αXBα

∥∥
for 0 ≤ α ≤ 1, which is one of essential inequalities in operator theory.

McIntosh [11] proved that for all A,B,X ∈ B(H ),

(1.1) ‖A∗AX + XB∗B‖ ≥ 2 ‖AXB∗‖ ,

which is called the arithmetic-geometric mean inequality; see also [7]. Bhatia and Kittaneh [4] proved
that (1.1) holds for any unitarily invariant norm.

If A ∈ B(H ) is invertible and self-adjoint, Corach et al. [6] proved that∥∥A−1XA + AXA−1
∥∥ ≥ 2 ‖X‖

for every X ∈ B(H ). It plays a key role in the study of differential geometry of self-adjoint operators,
and it has been investigated in [8] as well as [5]. On the other hand, it is known that the Löwner–Heinz
inequality

A ≥ B ≥ 0 implies Ap ≥ Bp for all 0 ≤ p ≤ 1

is equivalent to the Araki–Cordes inequality (see [1], [8])

(1.2) ‖AB‖p ≥ ‖ApBp‖ for all A,B ≥ 0 and 0 ≤ p ≤ 1.

In particular, the case p = 1
2 in (1.2), i.e.

(1.3)
∥∥A2B2

∥∥ ≥
∥∥AB2A

∥∥ for all A,B ≥ 0,

is essential, which is implied by the Heinz inequality; see [7] and [8].
In this paper, we investigate several unitarily invariant norm inequalities corresponding to the

Löwner–Heinz inequality, the arithmetic–geometric mean inequality and the Corach–Porta–Recht in-
equality. Among others, we propose some norm inequalities for unitarily invariant norms implying an
extended Löwner–Heinz inequality.

2 Löwner–Heinz type inequalities. As stated in [1], a Heinz type inequality can be regarded
as the arithmetic–geometric mean inequality as follows: Let A ≥ 0 be a matrix and X a self-adjoint
matrix. Then

|||Re (αAX + (1 − α)XA)||| ≥
∣∣∣∣∣∣Re (AαXA1−α)

∣∣∣∣∣∣ for α ∈ [0, 1].

We note that the equivalence among Heinz type inequalities for matrices is discussed by Furuta
[9]. Now we recall some relations among the Heinz inequality, the Löwner–Heinz inequality and
corresponding norm inequalities for the operator norm ‖·‖; see [7]:

Heinz inequality ⇐⇒ ‖Re AX‖ ≥ ‖XA‖ if A ≥ 0 and XA is self-adjoint,
Löwner–Heinz inequality ⇐⇒ ‖AX‖ ≥ ‖XA‖ if A ≥ 0 and XA is self-adjoint.

In the above inequality, if we take X = AY for any Y = Y ∗, then we have the inequality
∥∥A2Y

∥∥ ≥
‖AY A‖ for A ≥ 0. In other word, we have

(2.1) ‖AX‖ ≥
∥∥∥A1/2XA1/2

∥∥∥ for A ≥ 0 and X = X∗.

Conversely, if we assume that (2.1) holds for A ≥ 0 and X = X∗, then it implies

‖AB‖ ≥
∥∥∥A1/2B1/2

∥∥∥2

,

that is, (1.3) is obtained and so it ensures the Löwner–Heinz inequality. Namely it is proved that (2.1)
is equivalent to the Löwner–Heinz inequality.
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We here remark that (2.1) does not hold for nonselfadjoint X in general. As a matter of fact, we
have a counterexample as follows: Let

A =
(

1 0
0 2

)
and X =

(
0 3
1 0

)
.

Then ‖A2X‖ = 4 and ‖AXA‖ = 6.
In succession, we consider the convexity of the function

h(t) =
∥∥AtXA1−t

∥∥ for t ∈ [0, 1],

where A ≥ 0 and X = X∗.

Theorem 2.1. The function h(t) defined above is convex.

Proof. For µ < ν, we take t = (µ + ν)/2 and p = t − µ = ν − t > 0. Then

h(t)2 =
∥∥∥AtXA2(1−t)XAt

∥∥∥
= r(AtXA2(1−t)XAt) = r(AµXA1−µA1−νXAν)

≤
∥∥AµXA1−µA1−νXAν

∥∥
≤

∥∥AµXA1−µ
∥∥∥∥AνXA1−ν

∥∥ = h(µ) · h(ν),

where r(C) denotes the spectral radius of the operator C ∈ B(H ). Therefore

h(t) ≤ h(µ)1/2h(ν)1/2 ≤ 1
2
(h(µ) + h(ν))

so that the continuous function h(t) is convex.

Next we consider the function

(2.2) g(t) :=
∣∣∣∣∣∣AtXA1−t

∣∣∣∣∣∣ for t ∈ [0, 1],

where A ≥ 0 and X ∈ I with X = X∗. Here we remark that every normalized unitarily invariant
norm is submultiplicative (see [1, p.94]):

(2.3) |||AB||| ≤ |||A||| · |||B||| for all A,B ∈ K(H ).

Corollary 2.2. If |||·||| is normalized and X = X∗, then the function g(t) defined in (2.2) is log-convex
on [0, 1] and is symmetric at 1

2 . Consequently, g(t) is convex for arbitrary unitarily invariant norm
and so g(t) ≥ g( 1

2 ).

Proof. As in the proof of Theorem 2.1, we have, under the same notation,∥∥Λk(AtXA1−t)
∥∥2

=
∥∥(ΛkAt)(ΛkX)(ΛkA1−t)

∥∥2

≤
∥∥(ΛkAµ)(ΛkX)(ΛkA1−µ)(ΛkA1−ν)(ΛkX)(ΛkAν)

∥∥
=

∥∥Λk(AµXA1−µ · A1−νXAν)
∥∥ ,

whence ∣∣∣∣∣∣AtXA1−t
∣∣∣∣∣∣2 ≤

∣∣∣∣∣∣AµXA1−µ · A1−νXAν
∣∣∣∣∣∣ .

Moreover, since every normalized unitarily invariant norm is submultiplicative, we get∣∣∣∣∣∣AtXA1−t
∣∣∣∣∣∣2 ≤

∣∣∣∣∣∣AµXA1−µ
∣∣∣∣∣∣ ∣∣∣∣∣∣A1−νXAν

∣∣∣∣∣∣ ,

that is, g(t)2 ≤ g(µ)g(ν). Therefore g(t) is log-convex and so

g(t) ≤ 1
2
(g(µ) + g(ν)).

Hence the continuous function g(t) is convex. In addition, since the convexity is invariant under
positive scalar multiple, g(t) is convex for any arbitrary unitarily invariant norm.
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As a result, the following inequalities are obtained:

Corollary 2.3. (1) The following inequality holds:

(2.4) |||AX||| ≥
∣∣∣∣∣∣AαXA1−α

∣∣∣∣∣∣ for A ≥ 0, X = X∗ ∈ I and 0 ≤ α ≤ 1.

(2) The function g(t) defined in (2.2) is monotone decreasing on [0, 1
2 ] and monotone increasing

on [12 , 1] and consequently∣∣∣∣∣∣AtXA1−t
∣∣∣∣∣∣ ≥ ∣∣∣∣∣∣∣∣∣A 1

2 XA
1
2

∣∣∣∣∣∣∣∣∣ (0 ≤ t ≤ 1) and |||AX||| ≥
∣∣∣∣∣∣∣∣∣A 1

2 XA
1
2

∣∣∣∣∣∣∣∣∣ .

Remark 2.4. We should mention that inequality (2.4) follows from [2, Theorem 2], and (2) of Corol-
lary 2.3 follows from the generalized Heinz inequality proved by Bhatia and Davis in [3], but our both
approaches are rather different.

Under these preparations, we have several Löwner–Heinz type inequalities as follows:

Theorem 2.5. The following mutually equivalent inequalities hold:∣∣∣∣∣∣AXA−1
∣∣∣∣∣∣ ≥ |||X||| for any invertible A and X = X∗ ∈ I;(2.5)

|||AX||| ≥ |||XA||| for any invertible A and X ∈ I such that XA is selfadjoint;(2.6)

|||AA∗X||| ≥ |||A∗XA||| for any invertible A and X = X∗ ∈ I.(2.7)

Proof. First of all, by putting α = 1
2 and replacing A by AA∗ = |A∗|2 in (2.4), (2.7) is obtained:

|||AA∗X||| ≥ ||||A∗|X|A∗|||| = |||A∗XA|||

because A∗ = U |A∗| with unitary U .
Next we show that (2.5) ⇒ (2.6) ⇒ (2.7) ⇒ (2.5).
(2.5) ⇒ (2.6): Since XA is selfadjoint, it follows from (2.5) that

|||XA||| ≤
∣∣∣∣∣∣A(XA)A−1

∣∣∣∣∣∣ = |||AX||| .

(2.6) ⇒ (2.7): Since a given X is selfadjoint, so is A∗XA. Hence (2.7) is obtained by replacing X
by X1 = A∗X in (2.6), that is,

|||AA∗X||| = |||AX1||| ≥ |||X1A||| = |||A∗XA||| .

(2.7) ⇒ (2.5): It is obtained by replacing X by A∗−1XA−1 in (2.7).

Theorem 2.6. For A,B ≥ 0 and X ∈ I it holds that

|||AX ⊕ BX∗||| ≥
∣∣∣∣∣∣AαXB1−α ⊕ BαX∗A1−α

∣∣∣∣∣∣ for 0 ≤ α ≤ 1.(2.8)

Consequently,

(2.9)
∣∣∣∣∣∣A2m+nXB−n ⊕ B2m+nX∗A−n

∣∣∣∣∣∣ ≥ ∣∣∣∣∣∣A2mX ⊕ B2mX∗∣∣∣∣∣∣ ,

where m,n are arbitrary nonnegative integers.

Proof. We note that

|||AX ⊕ BX∗||| =
∣∣∣∣∣∣∣∣∣∣∣∣[AX 0

0 BX∗

]∣∣∣∣∣∣∣∣∣∣∣∣
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=
∣∣∣∣∣∣∣∣∣∣∣∣[A 0

0 B

] [
X 0
0 X∗

]∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣[A 0
0 B

] [
X 0
0 X∗

] [
0 I
I 0

]∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣[A 0
0 B

] [
0 X

X∗ 0

]∣∣∣∣∣∣∣∣∣∣∣∣
and ∣∣∣∣∣∣AαXB1−α ⊕ BαX∗A1−α

∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣∣∣∣[Aα 0

0 Bα

] [
X 0
0 X∗

] [
B1−α 0

0 A1−α

]∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣[Aα 0
0 Bα

] [
X 0
0 X∗

] [
0 I
I 0

] [
0 I
I 0

] [
B1−α 0

0 A1−α

]∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣[Aα 0
0 Bα

] [
0 X

X∗ 0

] [
A1−α 0

0 B1−α

]∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
[
A 0
0 B

]α [
0 X

X∗ 0

] [
A 0
0 B

]1−α
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ .

Hence the desired inequality (2.8) is ensured by (2.4). Inequality (2.9) can be obtained from (2.8) if we
replace A, B, X by A2m+2n, B2m+2n, A−nXB−n, respectively and put α = (2m+n)(2m+2n)−1.

Remark 2.7. Related to inequality (2.8), we have the following complementary inequality:∣∣∣∣∣∣AβXB1−β ⊕ BβX∗A1−β
∣∣∣∣∣∣ ≥ |||AX ⊕ BX∗||| (β 6∈ (0, 1)).

Indeed, it can be shown by replacing A, B, X and α by A2β−1, B2β−1, A1−βXB1−β and β
2β−1 ,

respectively in (2.8).
If A and B are positive invertible, then (2.7) holds for β 6∈ (0, 1).

Corollary 2.8. The following inequalities hold and equivalent:

|||A∗AX ⊕ B∗BX∗||| ≥ |||AXB∗ ⊕ BX∗A∗||| for A,B ∈ B(H ) and X ∈ I;(2.10) ∣∣∣∣∣∣AXB−1 ⊕ BX∗A−1
∣∣∣∣∣∣ ≥ |||X ⊕ X∗||| for any invertible A, B and X ∈ I.(2.11)

Proof. First of all, we show (2.10) by utilizing (2.8). Let A = U |A| and B = V |B| be the polar
decompositions of A and B, respectively. We replace A and B by A∗A and B∗B, respectively, in (2.8)
and put α = 1

2 . Then we have

|||A∗AX ⊕ B∗BX∗||| ≥ ||||A|X|B| ⊕ |B|X∗|A||||
= ‖U ⊕ V ‖ ||||A|X|B| ⊕ |B|X∗|A|||| ‖V ∗ ⊕ U∗‖
≥ |||(U ⊕ V )(|A|X|B| ⊕ |B|X∗|A|)(V ∗ ⊕ U∗)|||
= |||AXB∗ ⊕ BX∗A∗||| .(2.12)

Next (2.10) ⇒ (2.11) has been mentioned in [10]. We state its proof for the sake of completeness.
Replacing X by A−1XB∗−1 in (2.10), we have∣∣∣∣∣∣A∗XB∗−1 ⊕ B∗X∗A∗−1

∣∣∣∣∣∣ ≥ |||X ⊕ X∗||| ,

so that (2.11) is obtained by replacing A∗ and B∗ by A and B, respectively.
Finally we show (2.11) ⇒ (2.10). Let A = U |A| and B = V |B| be the polar decompositions of A

and B. We may assume that |A|, |B| are invertible. It follows from (2.11) that

|||A∗AX ⊕ B∗BX∗||| =
∣∣∣∣∣∣|A|(|A|X|B|)|B|−1 ⊕ |B|(|B|X∗|A|)|A|−1

∣∣∣∣∣∣
≥ ||||A|X|B| ⊕ |B|X∗|A||||
≥ |||AXB∗ ⊕ BX∗A∗|||

as we observed in (2.12).
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Remark 2.9. We comment that (2.11) is implied by (2.7). Put C =
[
A 0
0 B

]
and Y =

[
0 X

X∗ 0

]
. It

follows from (2.7) that∣∣∣∣∣∣AXB−1 ⊕ BX∗A−1
∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣[ 0 AXB−1

BX∗A−1 0

]∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣CY C−1
∣∣∣∣∣∣ =

∣∣∣∣∣∣C2(C−1Y C−1)
∣∣∣∣∣∣

≥
∣∣∣∣∣∣C(C−1Y C−1)C

∣∣∣∣∣∣ = |||Y ||| = |||X ⊕ X∗||| .
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