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Abstract. Let a random distribution P on the real line R have the mixture of Dirich-
let processes. Let S(n) = (S1, · · · , Sn) be the random partition of the positive integer
n based on a sample of size n from P. For the number Kn = S1 + · · · + Sn of distinct
observations among the sample, Yamato (2012) gives the asymptotic distribution of
Kn and the rate O(1/ log1/3 n) of its convergence. In this pager we give the Edgeworth
expansion for Kn with the rate O(1/ log2/5 n) and the rate O(1/ log3/7 n).

1 Introduction. Let H0 be a continuous distribution on the real line R and B be the
σ-field which consists of the subsets of R. Let θ be a positive random variable having the
distribution γ. Given θ, let the random distribution P have the Dirichlet process D(θH0)
on (R, B) with parameters θ and H0. Then this random distribution P has the mixture of
Dirichlet processes D(θH0) with the mixing distribution γ (Antoniak (1974)). For a sample
of size n from the random distribution P, S1 denotes the number of observations which
occur only once, S2 the number of observations which occur exactly twice, ... and so on.
Then Kn = S1 + · · · + Sn denotes the number of distinct observations among the sample.
For the convergence of Kn, Yamato (2012) gives

sup
−∞<x<∞

∣∣∣∣P(
Kn

log n
≤ x

)
− γ(x)

∣∣∣∣ = O

(
1

log1/3 n

)
.

In case the distribution γ is degenerate at θ0, that is the θ equals to a positive constant
θ0, the random distribution P has the Dirichlet process D(θ0H0). Then, Kn has the well-
known Ewens sampling formula and the asymptotic normality, whose Edgeworth expansion
is given by

P

(
Kn − θ0 log n√

θ0 log n
≤ x

)
= Φ(x) − 1

6
√
θ0 log n

φ(x)
[
x2 − 1 − 6θ0ψ(θ0)

]
+O

(
1

log n

)
,

which holds uniformly in x ∈ R (Yamato (2013))       Φ and φ are the distribution func-
tion and the density function of the standard normal distribution, respectively, and ψ is the
digamma function defined by ψ(x) = Γ

′
(x)/Γ(x), where Γ(x) is the gamma function. The

purpose of this paper is to give the Edgeworth expansion for Kn, in case P has the mixture
of Dirichlet processes D(θH0) with the mixing distribution γ which is not degenerate. We
denote the distribution function (d.f) of the distribution γ by G(x). Let g be the bounded
density function of the d.f. G.

In the section 2 , we give the Edgeworth expansion for Kn with the rate O(1/ log2/5 n).
In the section 3, we give it with the rate O(1/ log3/7 n). In the section 4, we show numerical
examples.
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2 The Edgeworth expansion with the rate 1/ log2/5 n. We first note the random
variable P ∗

n , which has the Poisson distribution with the mean θ(logn−ψ(θ)), given θ. By
Lemma 2.1 of Yamato (2013), we have

Lemma 2.1 Under the condition that Eγθ and Eγθ
−1 are finite ,

(2.1) sup
B⊂Z+

∣∣P (Kn ∈ B) − P (P ∗
n ∈ B)

∣∣ = O

(
1

log n

)
, n→ ∞,

where where Z+ = {0, 1, 2, · · · } and Eγ denotes the expectation with respect to the distribu-
tion γ.

In this section 2, we suppose that Eγ(θ−1), Eγ(θ2), and Eγ [θ2ψ(θ)2] exist. The following
conditions are necessary for the proof of the proposition 2.2 using the smoothing lemma (see,
for example, Petrov (1995; Theorem 5.2)); (i) g(x) is twice differentiable, (ii) xψ(x+1)g(x),
g(x) and xg′(x) are the functions of bounded variation, (iii) g′(x), xg′′(x) and [xψ(x +
1)g(x)]′ are bounded, and (iv) g(x) → 0, xg′(x) → 0 as x → 0, and xψ(x + 1)g(x) → 0,
xg′(x) → 0 as x → +∞. Note that for x ≥ 0, ψ(x + 1) is monotone increasing and
ψ(x+ 1) ≥ ψ(1), where −ψ(1) equals Euler’s constant (= 0.57721 · · · ). Then we have

Proposition 2.2 For n > 3, we have

(2.2) sup
−∞<x<∞

∣∣∣∣∣P
(
Kn

log n
≤ x

)
−

[
G(x) +

1
2 log n

{[
2xψ(x+ 1) − 1

]
g(x) + xg′(x)

}]∣∣∣∣∣
= O

(
1

log2/5 n

)
.

In the following proof, we use the well-known relations for any complex number z such that

ez = 1 + z +
c1
2

| z |2,(2.3)

= 1 + z +
1
2
z2 +

c2
6

| z |3,(2.4)

where for i = 1, 2 ci is a complex number satisfying | ci |≤ 1 .

Proof of Proposition 2.2. Given θ, the characteristic function of P ∗
n/ log n is given

by the following; For −∞ < t <∞,

(2.5) E

[
exp

{
it
P ∗

n

log n

} ∣∣∣ θ] = exp
{
θ[log n− ψ(θ)

][
eit/ log n − 1

]}
,

which is written as

= exp θ
{[

log n− ψ(θ)
][ it

log n
− t2

2 log2 n
+
c1n

6
| t |3

log3 n

]}
by (2.4), where c1n is a complex number such that | c1n |≤ 1. Thus we have

(2.6) E

[
exp

{
it
P ∗

n

log n

} ∣∣∣ θ] = exp θ{it+A1} = eitθ × eθA1

where

A1 = −ψ(θ)
it

log n
− t2

2 log n
+ ψ(θ)

t2

2 log2 n
+
c1n

6
| t |3

log2 n
− ψ(θ)

c1n

6
| t |3

log3 n
.

:

:
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By using (2.3) to the term eθA1 of the right-hand side of (2.6), we have

E

[
exp

{
it
P ∗

n

log n

} ∣∣∣ θ] = eitθ

{
1 + θA1 +

c2n(θ)
2

θ2 | A1 |2
}
,

where c2n(θ) is a complex number such that | c2n(θ) |≤ 1. This is written as

E

[
exp

{
it
P ∗

n

logn

} ∣∣∣ θ] = eitθ

{
1 − θψ(θ)

it

logn
− θt2

2 log n
+B1

}
,

where

(2.7) B1 = θB10 +
c2n(θ)

2
θ2 | A1 |2, B10 =

[
ψ(θ)

t2

2 log2 n
+
c1n

6
| t |3

log2 n
−ψ(θ)

c1n

6
| t |3

log3 n

]
.

Thus we get

(2.8)

∣∣∣∣∣E
[

exp
{
it
P ∗

n

log n

} ∣∣∣ θ] − eitθ

{
1 − θψ(θ)

it

log n
− θt2

2 log n

}∣∣∣∣∣ ≤ | B1 | .

About B10, for | t |< log2/5 n (n > 3) we have

(2.9) | B10 |≤ | t |
log4/5 n

[
1
6

+
2
3
| ψ(θ) |

]
,

because of the following relations,

| t |
log2 n

<
1

log8/5 n
<

1

log4/5 n
,

t2

log2 n
<

1

log6/5 n
<

1

log4/5 n
and

t2

log3 n
<

1

log4/5 n
.

The similar inequalities to these are used, hereafter. About |A1|, for |t| < log2/5 n (n > 3),
by t2 < log n and log n > 1 we have

| A1 |2 ≤
{

| ψ(θ) | | t |
log n

+
t2

2 log n
+ | ψ(θ) | t2

2 log n
+

| t |
6 log n

+ | ψ(θ) | | t |
6 log n

}2

=
{ (

7
6
| ψ(θ) | +

1
6

)
| t |
log n

+
(
| ψ(θ) | +1

) t2

2 log n

}2

≤ 2
{(

7
6
| ψ(θ) | +

1
6

)2
t2

log2 n
+

(
| ψ(θ) | +1

)2 t4

4 log2 n

}
≤ 2

{(
7
6
| ψ(θ) | +

1
6

)2

+
1
4
(
| ψ(θ) | +1

)2
}

| t |
log4/5 n

.(2.10)

By applying (2.9) and (2.10) to (2.7), for |t| < log2/5 n (n > 3),

(2.11) | B1 |≤ | t |
log4/5 n

[
1
6
θ +

2
3
θ | ψ(θ) | +

{(
7
6
θ | ψ(θ) | +

1
6
θ

)2

+
1
4
(
θ | ψ(θ) | +θ

)2
}]
.

Therefore, for |t| < log2/5 n (n > 3), by Eγ(θ2) and Eγ [θ2ψ(θ)2] <∞, (2.8) and (2.11) yield
(2.12)∣∣∣∣E[

exp
{
it
P ∗

n

log n

}]
−

{
Eγe

itθ − it

log n
Eγ

[
θψ(θ)eitθ

]
− t2

2 log n
Eγ

[
θeitθ

]}∣∣∣∣ ≤ d11
| t |

log4/5 n
,
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where d11 is a positive constant. Since Eγe
itθ is the characteristic function of the distribution

function G, that is, it is the Fourier transform of the distribution function G(x). Similarly,
−itEγ [θψ(θ)eitθ] is the Fourier transform of the function xψ(x)g(x), and −t2Eγ [θeitθ] is
the Fourier transform of the function {xg(x)}′

= g(x) + xg
′
(x). Therefore, by applying the

smoothing lemma to (2.12), we have the following.

(2.13) sup
x

∣∣∣∣∣P
(
P ∗

n

log n
≤ x

)
−

[
G(x) +

1
log n

xψ(x)g(x) +
1

2 log n
{
g(x) + xg′(x)

}]∣∣∣∣∣
≤ d11

log4/5 n

∫ log2/5 n

0

dt +
d12

log2/5 n
= O

(
1

log2/5 n

)
,

where d12 is positive constant depending only on d11. We get (2.2) by (2.1) and (2.13),
using the relation xψ(x) = xψ(x+ 1) − 1.

3 The Edgeworth expansion with the rate 1/ log3/7 n. In addition to the assump-
tion of the section 2, we assume that g(x) is differentiable four times, {x2g(x)}3 is the
function of bounded variation and {x2g(x)}4 is bounded. Besides, we suppose Eγ(θ3) and
E[θ3|ψ(θ)|3] exist. Then we have

Proposition 3.1 For n > 3, we have

(3.1) sup
−∞<x<∞

∣∣∣∣∣P
(
Kn

log n
≤ x

)
−

[
G(x) +

1
2 log n

{[
2xψ(x+ 1) − 1

]
g(x) + xg′(x)

}
+

1
8 log2 n

{x2g(x)}(3)

]∣∣∣∣∣ = O

(
1

log3/7 n

)
.

In the following proof, in addition to (2.4) we use the well-known relation for any complex
number z such that

(3.2) ez = 1 + z +
1
2
z2 +

1
6
z3 +

c3
24

| z |4,

where c3 is a complex number satisfying | c3 |≤ 1.

Proof of Proposition 3.1. Given θ, the characteristic function (2.5) of P ∗
n/ log n is

written as

E

[
exp

{
it
P ∗

n

log n

} ∣∣∣ θ] = exp
{
θ[logn− ψ(θ)]

[
it

log n
− t2

2 log2 n
− it3

6 log3 n
+
c3n

24
t4

log4 n

]}
,

by (3.2), where −∞ < t < ∞ and c3n is a complex number satisfying | c3n |≤ 1. Thus we
can write

(3.3) E

[
exp

{
it
P ∗

n

log n

} ∣∣∣ θ] = exp θ{it+A2} = eitθ × eθA2 ,

where

A2 = −ψ(θ)
it

logn
− t2

2 log n
+ψ(θ)

t2

2 log2 n
− it3

6 log2 n
+ψ(θ)

it3

6 log3 n
+
c3n

24
t4

log3 n
−c3n

24
ψ(θ)

t4

log4 n
.

:
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By using (2.4) to the term eθA2 of the right-hand side of (3.3), we have

E

[
exp

{
it
P ∗

n

logn

} ∣∣∣ θ] = eitθ

{
1 + θA2 +

1
2
θ2A2

2 +
c4n(θ)

6
θ3 | A2 |3

}
,

where c4n(θ) is a complex number such that | c4n(θ) |≤ 1. This is written as

(3.4) E

[
exp

{
it
P ∗

n

log n

} ∣∣∣ θ] = eitθ

{
1 − θψ(θ)

it

log n
− θt2

2 log n
+

θ2t4

8 log2 n
+B2

}
,

where

B2 = θB21 +
θ2

2
B22 +

c4n(θ)
6

θ3 | A2 |3,

B21 = ψ(θ)
t2

2 log2 n
− it3

6 log2 n
+ ψ(θ)

it3

6 log3 n
+
c3n

24
t4

log3 n
− c3n

24
ψ(θ)

t4

log4 n
,

B22 = A2
2 −

t4

4 log2 n
.

For |t| < log3/7 n (n > 3), by |t| < log1/2 n we have

(3.5) | B21 |≤
(

5
24

+
17
24

| ψ(θ) |
)

| t |
logn

<

(
5
24

+
17
24

| ψ(θ) |
)

| t |
log6/7 n

.

About | A2 |, at first for |t| < log3/7 n (n > 3), by |t| < log1/2 n we have

| A2 |≤| ψ(θ) | | t |
log n

+
t2

2 log n
+ | ψ(θ) | t2

2 log2 n
+

| t |3

6 log2 n

+ | ψ(θ) | | t |3

6 log3 n
+

t4

24 log3 n
+ | ψ(θ) | t4

24 log4 n

≤| ψ(θ) | | t |
log n

+
t2

2 log n
+ | ψ(θ) | | t |

2 log3/2 n
+

| t |
6 log n

+ | ψ(θ) | | t |
6 log2 n

+
| t |

24 log3/2 n
+ | ψ(θ) | | t |

24 log5/2 n
.

Thus, for |t| < log3/7 n (n > 3), we have

(3.6) | A2 |≤ | t |
log n

η(θ) +
t2

2 log n
where η(θ) =

41
24

| ψ(θ) | +
5
24
.

Therefore, for |t| < log3/7 n (n > 3) we have

(3.7) | A2 |3≤ 4
{

| t |3

log3 n
η(θ)3 +

t6

8 log3 n

}
≤ 4

{
η(θ)3 +

1
8

}
| t |

log6/7 n
.

For the evaluation of B22, at first we write A2 as

A2 = − t2

2 log n
+A21
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where

A21 = −ψ(θ)
it

log n
+ ψ(θ)

t2

2 log2 n
− it3

6 log2 n
+ ψ(θ)

it3

6 log3 n
+
c3n

24
t4

log3 n
− c3n

24
ψ(θ)

t4

log4 n
.

Then we

(3.8) | B22 |≤ t2

logn
| A21 | + | A21 |2 .

We note that A21 is obtained by deleting −t2/(2 log n) from A2. Similarly to (3.6), for
|t| < log3/7 n (n > 3), we have

(3.9) | A21 |≤ | t |
logn

η(θ).

Applying (3.9) to (3.8), for |t| < log3/7 n (n > 3), we have

(3.10) | B22 |≤ | t |3

log2 n
η(θ) +

t2

log2 n
η(θ)2 ≤

{
η(θ) + η(θ)2

} | t |
log n

.

From (3.4) we get

(3.11)
∣∣∣∣E[

exp
{
it
P ∗

n

log n

} ∣∣∣ θ] − eitθ

{
1 − θψ(θ)

it

log n
− θt2

2 log n
+

θ2t4

8 log2 n

}∣∣∣∣ ≤ B2,

and from (3.5), (3.7) and (3.10) we have

(3.12) | B2 |≤ θ

(
5
24

+
17
24

| ψ(θ) |
)

| t |
log6/7 n

+
1
2
θ2

{
η(θ) + η(θ)2

} | t |
log n

+
2
3
θ3

{
η(θ)3 +

1
8

}
| t |

log6/7 n
.

Therefore, for |t| < log3/7 n (n > 3), under the condition Eγ(θ3), Eγ [θ3|ψ(θ)|3] <∞, (3.11)
and (3.12) give∣∣∣∣∣E

[
exp

{
it
P ∗

n

log n

}]
−

{
Eγe

itθ − it

log n
Eγ

[
θψ(θ)eitθ

]
− t2

2 log n
Eγ

[
θeitθ

]
+

t4

8 log2 n
Eγ

[
θ2eitθ

]}∣∣∣∣∣ ≤ d21
|t|

log6/7 n
,

where d21 is a positive constant. Since t4Eγ [θ2eitθ] is the Fourier transform of the function
{xg(x)}(3), by the reason similar to (2.13) we have

(3.13) sup
x

∣∣∣∣∣P
(
P ∗

n

log n
≤ x

)
−

[
G(x) +

1
log n

xψ(x)g(x) +
1

2 log n
{
g(x) + xg′(x)

}
+

1
8 log2 n

{x2g(x)}(3)

]∣∣∣∣∣ = O

(
1

log3/7 n

)
.

Therefore we get (3.1) by (2.1) and (3.13), using the relation xψ(x) = xψ(x+ 1) − 1.
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4 numerical examples. We examine the Propositions 2.2 and 3.1 graphically by using
the gamma distribution as γ whose density is given by gc(x) = xc−1e−x/Γ(c). The distri-
bution function of Kn/ log n is obtained approximately by using the random numbers of R
and described by the step function.

At first, for the examination of (2.2) by taking c > 1. Then, the conditions of the
Propositions 2.2 are satisfied. The approroximate function G1(x) = G(x) +

{
[2xψ(x+ 1)−

1]g(x)+xg′(x)
}
/(2 log n) is described by the broken curve. The distribution function Gc of

gc(x) is described by the dotted curve. For n = 50, the Figure’s 1, 2, 3 and 4 give the cases
of c = 1.1, c = 1.5, c = 2 and c = 3. If c is small and near 1, then the function G1(x) is good
approximation to the distribution function of Kn/ log n. Even if c increases, the function
G1(x) is better than Gc(x) as the approximation to the distribution function of Kn/ log n.
But, the tail is not good approximation, similar to the usual Edgeworth expansion.
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Figure 1: c=1.1, n=50
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Figure 2: c=1.5, n=50
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Figure 3: c=2.0, n=50
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Figure 4: c=3.0, n=50
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Next, we examine the relation (3.5) by taking c = 4. Then, the conditions of the
Propositions 3.1 are satisfied.

The approximate distribution G1 is described by the broken curve. The approximate
function G2(x) = G(x) +

{
[2xψ(x+ 1)− 1]g(x) + xg′(x)

}
/(2 log n) + {x2g(x)}(3)/(8 log2 n)
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is described by the dot-broken curve. The distribution function Gc of gc(x) is described by
the dotted curves. For c = 4, the Figure’s 5 and 6 give the cases of n = 50 and n = 100,
respectively. Both the functionsG1 andG2 give a little good approximate to the distribution
function of Kn/ logn. But there are no obvious difference between G1 and G2, becuase the
value of G2(x) −G1(x) = {x2g(x)}(3)/(8 log2 n) is small. The little difference may be seen
at the left tail.
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Figure 5 : c=4, n=50
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Figure 6 : c=4, n=100
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