THE EDGEWORTH EXPANSION FOR THE NUMBER OF DISTINCT OBSERVATIONS WITH THE MIXTURE OF DIRICHLET PROCESSES

HAJIME YAMATO and MASAO KONDO

Received August 17, 2014; revised September 22, 2014

Abstract

Let a random distribution \mathcal{P} on the real line \mathbb{R} have the mixture of Dirichlet processes. Let $S^{(n)}=\left(S_{1}, \cdots, S_{n}\right)$ be the random partition of the positive integer n based on a sample of size n from \mathcal{P}. For the number $K_{n}=S_{1}+\cdots+S_{n}$ of distinct observations among the sample, Yamato (2012) gives the asymptotic distribution of K_{n} and the rate $O\left(1 / \log ^{1 / 3} n\right)$ of its convergence. In this pager we give the Edgeworth expansion for K_{n} with the rate $O\left(1 / \log ^{2 / 5} n\right)$ and the rate $O\left(1 / \log ^{3 / 7} n\right)$.

1 Introduction. Let H_{0} be a continuous distribution on the real line \mathbb{R} and \mathcal{B} be the σ-field which consists of the subsets of \mathbb{R}. Let θ be a positive random variable having the distribution γ. Given θ, let the random distribution \mathcal{P} have the Dirichlet process $\mathcal{D}\left(\theta H_{0}\right)$ on $(\mathbb{R}, \mathcal{B})$ with parameters θ and H_{0}. Then this random distribution \mathcal{P} has the mixture of Dirichlet processes $\mathcal{D}\left(\theta H_{0}\right)$ with the mixing distribution γ (Antoniak (1974)). For a sample of size n from the random distribution \mathcal{P}, S_{1} denotes the number of observations which occur only once, S_{2} the number of observations which occur exactly twice, ... and so on. Then $K_{n}=S_{1}+\cdots+S_{n}$ denotes the number of distinct observations among the sample. For the convergence of K_{n}, Yamato (2012) gives

$$
\sup _{-\infty<x<\infty}\left|P\left(\frac{K_{n}}{\log n} \leq x\right)-\gamma(x)\right|=O\left(\frac{1}{\log ^{1 / 3} n}\right) .
$$

In case the distribution γ is degenerate at θ_{0}, that is the θ equals to a positive constant θ_{0}, the random distribution \mathcal{P} has the Dirichlet process $\mathcal{D}\left(\theta_{0} H_{0}\right)$. Then, K_{n} has the wellknown Ewens sampling formula and the asymptotic normality, whose Edgeworth expansion is given by

$$
P\left(\frac{K_{n}-\theta_{0} \log n}{\sqrt{\theta_{0} \log n}} \leq x\right)=\Phi(x)-\frac{1}{6 \sqrt{\theta_{0} \log n}} \phi(x)\left[x^{2}-1-6 \theta_{0} \psi\left(\theta_{0}\right)\right]+O\left(\frac{1}{\log n}\right)
$$

which holds uniformly in $x \in \mathbb{R}$ (Yamato (2013)). Here Φ and ϕ are the distribution function and the density function of the standard normal distribution, respectively, and ψ is the digamma function defined by $\psi(x)=\Gamma^{\prime}(x) / \Gamma(x)$, where $\Gamma(x)$ is the gamma function. The purpose of this paper is to give the Edgeworth expansion for K_{n}, in case \mathcal{P} has the mixture of Dirichlet processes $\mathcal{D}\left(\theta H_{0}\right)$ with the mixing distribution γ which is not degenerate. We denote the distribution function (d.f) of the distribution γ by $G(x)$. Let g be the bounded density function of the d.f. G.

In the section 2, we give the Edgeworth expansion for K_{n} with the rate $O\left(1 / \log ^{2 / 5} n\right)$. In the section 3, we give it with the rate $O\left(1 / \log ^{3 / 7} n\right)$. In the section 4, we show numerical examples.

2 The Edgeworth expansion with the rate $1 / \log ^{2 / 5} n$. We first note the random variable P_{n}^{*}, which has the Poisson distribution with the mean $\theta(\log n-\psi(\theta))$, given θ. By Lemma 2.1 of Yamato (2013), we have:
Lemma 2.1 Under the condition that $E_{\gamma} \theta$ and $E_{\gamma} \theta^{-1}$ are finite,

$$
\begin{equation*}
\sup _{B \subset \mathbb{Z}_{+}}\left|P\left(K_{n} \in B\right)-P\left(P_{n}^{*} \in B\right)\right|=O\left(\frac{1}{\log n}\right), \quad n \rightarrow \infty \tag{2.1}
\end{equation*}
$$

where where $\mathbb{Z}_{+}=\{0,1,2, \cdots\}$ and E_{γ} denotes the expectation with respect to the distribution γ.

In this section 2, we suppose that $E_{\gamma}\left(\theta^{-1}\right), E_{\gamma}\left(\theta^{2}\right)$, and $E_{\gamma}\left[\theta^{2} \psi(\theta)^{2}\right]$ exist. The following conditions are necessary for the proof of the proposition 2.2 using the smoothing lemma (see, for example, Petrov (1995; Theorem 5.2)); (i) $g(x)$ is twice differentiable, (ii) $x \psi(x+1) g(x)$, $g(x)$ and $x g^{\prime}(x)$ are the functions of bounded variation, (iii) $g^{\prime}(x), x g^{\prime \prime}(x)$ and $[x \psi(x+$ 1) $g(x)]^{\prime}$ are bounded, and (iv) $g(x) \rightarrow 0, x g^{\prime}(x) \rightarrow 0$ as $x \rightarrow 0$, and $x \psi(x+1) g(x) \rightarrow 0$, $x g^{\prime}(x) \rightarrow 0$ as $x \rightarrow+\infty$. Note that for $x \geq 0, \psi(x+1)$ is monotone increasing and $\psi(x+1) \geq \psi(1)$, where $-\psi(1)$ equals Euler's constant $(=0.57721 \cdots)$. Then we have:

Proposition 2.2 For $n>3$, we have

$$
\begin{array}{r}
\sup _{-\infty<x<\infty}\left|P\left(\frac{K_{n}}{\log n} \leq x\right)-\left[G(x)+\frac{1}{2 \log n}\left\{[2 x \psi(x+1)-1] g(x)+x g^{\prime}(x)\right\}\right]\right| \tag{2.2}\\
=O\left(\frac{1}{\log ^{2 / 5} n}\right)
\end{array}
$$

In the following proof, we use the well-known relations for any complex number z such that

$$
\begin{align*}
e^{z} & =1+z+\frac{c_{1}}{2}|z|^{2} \tag{2.3}\\
& =1+z+\frac{1}{2} z^{2}+\frac{c_{2}}{6}|z|^{3} \tag{2.4}
\end{align*}
$$

where for $i=1,2 c_{i}$ is a complex number satisfying $\left|c_{i}\right| \leq 1$.
Proof of Proposition 2.2. Given θ, the characteristic function of $P_{n}^{*} / \log n$ is given by the following; For $-\infty<t<\infty$,

$$
\begin{equation*}
E\left[\left.\exp \left\{i t \frac{P_{n}^{*}}{\log n}\right\} \right\rvert\, \theta\right]=\exp \left\{\theta[\log n-\psi(\theta)]\left[e^{i t / \log n}-1\right]\right\} \tag{2.5}
\end{equation*}
$$

which is written as

$$
=\exp \theta\left\{[\log n-\psi(\theta)]\left[\frac{i t}{\log n}-\frac{t^{2}}{2 \log ^{2} n}+\frac{c_{1 n}}{6} \frac{|t|^{3}}{\log ^{3} n}\right]\right\}
$$

by (2.4), where $c_{1 n}$ is a complex number such that $\left|c_{1 n}\right| \leq 1$. Thus we have

$$
\begin{equation*}
E\left[\left.\exp \left\{i t \frac{P_{n}^{*}}{\log n}\right\} \right\rvert\, \theta\right]=\exp \theta\left\{i t+A_{1}\right\}=e^{i t \theta} \times e^{\theta A_{1}} \tag{2.6}
\end{equation*}
$$

where

$$
A_{1}=-\psi(\theta) \frac{i t}{\log n}-\frac{t^{2}}{2 \log n}+\psi(\theta) \frac{t^{2}}{2 \log ^{2} n}+\frac{c_{1 n}}{6} \frac{|t|^{3}}{\log ^{2} n}-\psi(\theta) \frac{c_{1 n}}{6} \frac{|t|^{3}}{\log ^{3} n}
$$

By using (2.3) to the term $e^{\theta A_{1}}$ of the right-hand side of (2.6), we have

$$
E\left[\left.\exp \left\{i t \frac{P_{n}^{*}}{\log n}\right\} \right\rvert\, \theta\right]=e^{i t \theta}\left\{1+\theta A_{1}+\frac{c_{2 n}(\theta)}{2} \theta^{2}\left|A_{1}\right|^{2}\right\}
$$

where $c_{2 n}(\theta)$ is a complex number such that $\left|c_{2 n}(\theta)\right| \leq 1$. This is written as

$$
E\left[\left.\exp \left\{i t \frac{P_{n}^{*}}{\log n}\right\} \right\rvert\, \theta\right]=e^{i t \theta}\left\{1-\theta \psi(\theta) \frac{i t}{\log n}-\frac{\theta t^{2}}{2 \log n}+B_{1}\right\}
$$

where
(2.7) $B_{1}=\theta B_{10}+\frac{c_{2 n}(\theta)}{2} \theta^{2}\left|A_{1}\right|^{2}, \quad B_{10}=\left[\psi(\theta) \frac{t^{2}}{2 \log ^{2} n}+\frac{c_{1 n}}{6} \frac{|t|^{3}}{\log ^{2} n}-\psi(\theta) \frac{c_{1 n}}{6} \frac{|t|^{3}}{\log ^{3} n}\right]$.

Thus we get

$$
\begin{equation*}
\left|E\left[\left.\exp \left\{i t \frac{P_{n}^{*}}{\log n}\right\} \right\rvert\, \theta\right]-e^{i t \theta}\left\{1-\theta \psi(\theta) \frac{i t}{\log n}-\frac{\theta t^{2}}{2 \log n}\right\}\right| \leq\left|B_{1}\right| \tag{2.8}
\end{equation*}
$$

About B_{10}, for $|t|<\log ^{2 / 5} n(n>3)$ we have

$$
\begin{equation*}
\left|B_{10}\right| \leq \frac{|t|}{\log ^{4 / 5} n}\left[\frac{1}{6}+\frac{2}{3}|\psi(\theta)|\right] \tag{2.9}
\end{equation*}
$$

because of the following relations,

$$
\frac{|t|}{\log ^{2} n}<\frac{1}{\log ^{8 / 5} n}<\frac{1}{\log ^{4 / 5} n}, \quad \frac{t^{2}}{\log ^{2} n}<\frac{1}{\log ^{6 / 5} n}<\frac{1}{\log ^{4 / 5} n} \quad \text { and } \quad \frac{t^{2}}{\log ^{3} n}<\frac{1}{\log ^{4 / 5} n}
$$

The similar inequalities to these are used, hereafter. About $\left|A_{1}\right|$, for $|t|<\log ^{2 / 5} n(n>3)$, by $t^{2}<\log n$ and $\log n>1$ we have

$$
\begin{align*}
\left|A_{1}\right|^{2} & \leq\left\{|\psi(\theta)| \frac{|t|}{\log n}+\frac{t^{2}}{2 \log n}+|\psi(\theta)| \frac{t^{2}}{2 \log n}+\frac{|t|}{6 \log n}+|\psi(\theta)| \frac{|t|}{6 \log n}\right\}^{2} \\
& =\left\{\left(\frac{7}{6}|\psi(\theta)|+\frac{1}{6}\right) \frac{|t|}{\log n}+(|\psi(\theta)|+1) \frac{t^{2}}{2 \log n}\right\}^{2} \\
& \leq 2\left\{\left(\frac{7}{6}|\psi(\theta)|+\frac{1}{6}\right)^{2} \frac{t^{2}}{\log ^{2} n}+(|\psi(\theta)|+1)^{2} \frac{t^{4}}{4 \log ^{2} n}\right\} \\
.10) & \leq 2\left\{\left(\frac{7}{6}|\psi(\theta)|+\frac{1}{6}\right)^{2}+\frac{1}{4}(|\psi(\theta)|+1)^{2}\right\} \frac{|t|}{\log ^{4 / 5} n} \tag{2.10}
\end{align*}
$$

By applying (2.9) and (2.10) to (2.7), for $|t|<\log ^{2 / 5} n(n>3)$,

$$
\begin{equation*}
\left|B_{1}\right| \leq \frac{|t|}{\log ^{4 / 5} n}\left[\frac{1}{6} \theta+\frac{2}{3} \theta|\psi(\theta)|+\left\{\left(\frac{7}{6} \theta|\psi(\theta)|+\frac{1}{6} \theta\right)^{2}+\frac{1}{4}(\theta|\psi(\theta)|+\theta)^{2}\right\}\right] \tag{2.11}
\end{equation*}
$$

Therefore, for $|t|<\log ^{2 / 5} n(n>3)$, by $E_{\gamma}\left(\theta^{2}\right)$ and $E_{\gamma}\left[\theta^{2} \psi(\theta)^{2}\right]<\infty,(2.8)$ and (2.11) yield (2.12)

$$
\left|E\left[\exp \left\{i t \frac{P_{n}^{*}}{\log n}\right\}\right]-\left\{E_{\gamma} e^{i t \theta}-\frac{i t}{\log n} E_{\gamma}\left[\theta \psi(\theta) e^{i t \theta}\right]-\frac{t^{2}}{2 \log n} E_{\gamma}\left[\theta e^{i t \theta}\right]\right\}\right| \leq d_{11} \frac{|t|}{\log ^{4 / 5} n}
$$

where d_{11} is a positive constant. Since $E_{\gamma} e^{i t \theta}$ is the characteristic function of the distribution function G, that is, it is the Fourier transform of the distribution function $G(x)$. Similarly, -itE $E_{\gamma}\left[\theta \psi(\theta) e^{i t \theta}\right]$ is the Fourier transform of the function $x \psi(x) g(x)$, and $-t^{2} E_{\gamma}\left[\theta e^{i t \theta}\right]$ is the Fourier transform of the function $\{x g(x)\}^{\prime}=g(x)+x g^{\prime}(x)$. Therefore, by applying the smoothing lemma to (2.12), we have the following.

$$
\begin{align*}
\sup _{x} \left\lvert\, P\left(\frac{P_{n}^{*}}{\log n} \leq x\right)-[G(x)\right. & \left.+\frac{1}{\log n} x \psi(x) g(x)+\frac{1}{2 \log n}\left\{g(x)+x g^{\prime}(x)\right\}\right] \mid \tag{2.13}\\
& \leq \frac{d_{11}}{\log ^{4 / 5} n} \int_{0}^{\log ^{2 / 5} n} d t+\frac{d_{12}}{\log ^{2 / 5} n}=O\left(\frac{1}{\log ^{2 / 5} n}\right)
\end{align*}
$$

where d_{12} is positive constant depending only on d_{11}. We get (2.2) by (2.1) and (2.13), using the relation $x \psi(x)=x \psi(x+1)-1$.

3 The Edgeworth expansion with the rate $1 / \log ^{3 / 7} n$. In addition to the assumption of the section 2 , we assume that $g(x)$ is differentiable four times, $\left\{x^{2} g(x)\right\}^{3}$ is the function of bounded variation and $\left\{x^{2} g(x)\right\}^{4}$ is bounded. Besides, we suppose $E_{\gamma}\left(\theta^{3}\right)$ and $E\left[\theta^{3}|\psi(\theta)|^{3}\right]$ exist. Then we have:

Proposition 3.1 For $n>3$, we have

$$
\begin{align*}
\sup _{-\infty<x<\infty} \left\lvert\, P\left(\frac{K_{n}}{\log n} \leq x\right)-\left[G(x)+\frac{1}{2 \log n}\{ \right.\right. & {\left.[2 x \psi(x+1)-1] g(x)+x g^{\prime}(x)\right\} } \tag{3.1}\\
& \left.+\frac{1}{8 \log ^{2} n}\left\{x^{2} g(x)\right\}^{(3)}\right] \left\lvert\,=O\left(\frac{1}{\log ^{3 / 7} n}\right)\right.
\end{align*}
$$

In the following proof, in addition to (2.4) we use the well-known relation for any complex number z such that

$$
\begin{equation*}
e^{z}=1+z+\frac{1}{2} z^{2}+\frac{1}{6} z^{3}+\frac{c_{3}}{24}|z|^{4} \tag{3.2}
\end{equation*}
$$

where c_{3} is a complex number satisfying $\left|c_{3}\right| \leq 1$.
Proof of Proposition 3.1. Given θ, the characteristic function (2.5) of $P_{n}^{*} / \log n$ is written as

$$
E\left[\left.\exp \left\{i t \frac{P_{n}^{*}}{\log n}\right\} \right\rvert\, \theta\right]=\exp \left\{\theta[\log n-\psi(\theta)]\left[\frac{i t}{\log n}-\frac{t^{2}}{2 \log ^{2} n}-\frac{i t^{3}}{6 \log ^{3} n}+\frac{c_{3 n}}{24} \frac{t^{4}}{\log ^{4} n}\right]\right\}
$$

by (3.2), where $-\infty<t<\infty$ and $c_{3 n}$ is a complex number satisfying $\left|c_{3 n}\right| \leq 1$. Thus we can write

$$
\begin{equation*}
E\left[\left.\exp \left\{i t \frac{P_{n}^{*}}{\log n}\right\} \right\rvert\, \theta\right]=\exp \theta\left\{i t+A_{2}\right\}=e^{i t \theta} \times e^{\theta A_{2}} \tag{3.3}
\end{equation*}
$$

where
$A_{2}=-\psi(\theta) \frac{i t}{\log n}-\frac{t^{2}}{2 \log n}+\psi(\theta) \frac{t^{2}}{2 \log ^{2} n}-\frac{i t^{3}}{6 \log ^{2} n}+\psi(\theta) \frac{i t^{3}}{6 \log ^{3} n}+\frac{c_{3 n}}{24} \frac{t^{4}}{\log ^{3} n}-\frac{c_{3 n}}{24} \psi(\theta) \frac{t^{4}}{\log ^{4} n}$.

By using (2.4) to the term $e^{\theta A_{2}}$ of the right-hand side of (3.3), we have

$$
E\left[\left.\exp \left\{i t \frac{P_{n}^{*}}{\log n}\right\} \right\rvert\, \theta\right]=e^{i t \theta}\left\{1+\theta A_{2}+\frac{1}{2} \theta^{2} A_{2}^{2}+\frac{c_{4 n}(\theta)}{6} \theta^{3}\left|A_{2}\right|^{3}\right\}
$$

where $c_{4 n}(\theta)$ is a complex number such that $\left|c_{4 n}(\theta)\right| \leq 1$. This is written as

$$
\begin{equation*}
E\left[\left.\exp \left\{i t \frac{P_{n}^{*}}{\log n}\right\} \right\rvert\, \theta\right]=e^{i t \theta}\left\{1-\theta \psi(\theta) \frac{i t}{\log n}-\frac{\theta t^{2}}{2 \log n}+\frac{\theta^{2} t^{4}}{8 \log ^{2} n}+B_{2}\right\} \tag{3.4}
\end{equation*}
$$

where

$$
\begin{aligned}
B_{2} & =\theta B_{21}+\frac{\theta^{2}}{2} B_{22}+\frac{c_{4 n}(\theta)}{6} \theta^{3}\left|A_{2}\right|^{3} \\
B_{21} & =\psi(\theta) \frac{t^{2}}{2 \log ^{2} n}-\frac{i t^{3}}{6 \log ^{2} n}+\psi(\theta) \frac{i t^{3}}{6 \log ^{3} n}+\frac{c_{3 n}}{24} \frac{t^{4}}{\log ^{3} n}-\frac{c_{3 n}}{24} \psi(\theta) \frac{t^{4}}{\log ^{4} n}, \\
B_{22} & =A_{2}^{2}-\frac{t^{4}}{4 \log ^{2} n}
\end{aligned}
$$

For $|t|<\log ^{3 / 7} n(n>3)$, by $|t|<\log ^{1 / 2} n$ we have

$$
\begin{equation*}
\left|B_{21}\right| \leq\left(\frac{5}{24}+\frac{17}{24}|\psi(\theta)|\right) \frac{|t|}{\log n}<\left(\frac{5}{24}+\frac{17}{24}|\psi(\theta)|\right) \frac{|t|}{\log ^{6 / 7} n} \tag{3.5}
\end{equation*}
$$

About $\left|A_{2}\right|$, at first for $|t|<\log ^{3 / 7} n(n>3)$, by $|t|<\log ^{1 / 2} n$ we have

$$
\begin{aligned}
\left|A_{2}\right| \leq|\psi(\theta)| \frac{|t|}{\log n}+\frac{t^{2}}{2 \log n} & +|\psi(\theta)| \frac{t^{2}}{2 \log ^{2} n}+\frac{|t|^{3}}{6 \log ^{2} n} \\
& +|\psi(\theta)| \frac{|t|^{3}}{6 \log ^{3} n}+\frac{t^{4}}{24 \log ^{3} n}+|\psi(\theta)| \frac{t^{4}}{24 \log ^{4} n} \\
\leq|\psi(\theta)| \frac{|t|}{\log n}+\frac{t^{2}}{2 \log n} & +|\psi(\theta)| \frac{|t|}{2 \log ^{3 / 2} n}+\frac{|t|}{6 \log n} \\
& +|\psi(\theta)| \frac{|t|}{6 \log ^{2} n}+\frac{|t|}{24 \log ^{3 / 2} n}+|\psi(\theta)| \frac{|t|}{24 \log ^{5 / 2} n} .
\end{aligned}
$$

Thus, for $|t|<\log ^{3 / 7} n(n>3)$, we have

$$
\begin{equation*}
\left|A_{2}\right| \leq \frac{|t|}{\log n} \eta(\theta)+\frac{t^{2}}{2 \log n} \quad \text { where } \quad \eta(\theta)=\frac{41}{24}|\psi(\theta)|+\frac{5}{24} \tag{3.6}
\end{equation*}
$$

Therefore, for $|t|<\log ^{3 / 7} n(n>3)$ we have

$$
\begin{equation*}
\left|A_{2}\right|^{3} \leq 4\left\{\frac{|t|^{3}}{\log ^{3} n} \eta(\theta)^{3}+\frac{t^{6}}{8 \log ^{3} n}\right\} \leq 4\left\{\eta(\theta)^{3}+\frac{1}{8}\right\} \frac{|t|}{\log ^{6 / 7} n} \tag{3.7}
\end{equation*}
$$

For the evaluation of B_{22}, at first we write A_{2} as

$$
A_{2}=-\frac{t^{2}}{2 \log n}+A_{21}
$$

where

$$
A_{21}=-\psi(\theta) \frac{i t}{\log n}+\psi(\theta) \frac{t^{2}}{2 \log ^{2} n}-\frac{i t^{3}}{6 \log ^{2} n}+\psi(\theta) \frac{i t^{3}}{6 \log ^{3} n}+\frac{c_{3 n}}{24} \frac{t^{4}}{\log ^{3} n}-\frac{c_{3 n}}{24} \psi(\theta) \frac{t^{4}}{\log ^{4} n}
$$

Then we

$$
\begin{equation*}
\left|B_{22}\right| \leq \frac{t^{2}}{\log n}\left|A_{21}\right|+\left|A_{21}\right|^{2} \tag{3.8}
\end{equation*}
$$

We note that A_{21} is obtained by deleting $-t^{2} /(2 \log n)$ from A_{2}. Similarly to (3.6), for $|t|<\log ^{3 / 7} n(n>3)$, we have

$$
\begin{equation*}
\left|A_{21}\right| \leq \frac{|t|}{\log n} \eta(\theta) \tag{3.9}
\end{equation*}
$$

Applying (3.9) to (3.8), for $|t|<\log ^{3 / 7} n(n>3)$, we have

$$
\begin{equation*}
\left|B_{22}\right| \leq \frac{|t|^{3}}{\log ^{2} n} \eta(\theta)+\frac{t^{2}}{\log ^{2} n} \eta(\theta)^{2} \leq\left\{\eta(\theta)+\eta(\theta)^{2}\right\} \frac{|t|}{\log n} \tag{3.10}
\end{equation*}
$$

From (3.4) we get

$$
\begin{equation*}
\left|E\left[\left.\exp \left\{i t \frac{P_{n}^{*}}{\log n}\right\} \right\rvert\, \theta\right]-e^{i t \theta}\left\{1-\theta \psi(\theta) \frac{i t}{\log n}-\frac{\theta t^{2}}{2 \log n}+\frac{\theta^{2} t^{4}}{8 \log ^{2} n}\right\}\right| \leq B_{2} \tag{3.11}
\end{equation*}
$$

and from (3.5), (3.7) and (3.10) we have

$$
\begin{align*}
\left|B_{2}\right| \leq \theta\left(\frac{5}{24}+\frac{17}{24}|\psi(\theta)|\right) \frac{|t|}{\log ^{6 / 7} n}+\frac{1}{2} \theta^{2}\{\eta(\theta) & \left.+\eta(\theta)^{2}\right\} \frac{|t|}{\log n} \tag{3.12}\\
& +\frac{2}{3} \theta^{3}\left\{\eta(\theta)^{3}+\frac{1}{8}\right\} \frac{|t|}{\log ^{6 / 7} n}
\end{align*}
$$

Therefore, for $|t|<\log ^{3 / 7} n(n>3)$, under the condition $E_{\gamma}\left(\theta^{3}\right), E_{\gamma}\left[\theta^{3}|\psi(\theta)|^{3}\right]<\infty,(3.11)$ and (3.12) give

$$
\begin{aligned}
& \left\lvert\, E\left[\exp \left\{i t \frac{P_{n}^{*}}{\log n}\right\}\right]-\left\{E_{\gamma} e^{i t \theta}-\frac{i t}{\log n} E_{\gamma}\left[\theta \psi(\theta) e^{i t \theta}\right]\right.\right. \\
&\left.-\frac{t^{2}}{2 \log n} E_{\gamma}\left[\theta e^{i t \theta}\right]+\frac{t^{4}}{8 \log ^{2} n} E_{\gamma}\left[\theta^{2} e^{i t \theta}\right]\right\} \left\lvert\, \leq d_{21} \frac{|t|}{\log ^{6 / 7} n}\right.
\end{aligned}
$$

where d_{21} is a positive constant. Since $t^{4} E_{\gamma}\left[\theta^{2} e^{i t \theta}\right]$ is the Fourier transform of the function $\{x g(x)\}^{(3)}$, by the reason similar to (2.13) we have

$$
\begin{align*}
& \sup _{x} \left\lvert\, P\left(\frac{P_{n}^{*}}{\log n} \leq x\right)-\left[G(x)+\frac{1}{\log n} x \psi(x) g(x)+\frac{1}{2 \log n}\left\{g(x)+x g^{\prime}(x)\right\}\right.\right. \tag{3.13}\\
&\left.+\frac{1}{8 \log ^{2} n}\left\{x^{2} g(x)\right\}^{(3)}\right] \left\lvert\,=O\left(\frac{1}{\log ^{3 / 7} n}\right) .\right.
\end{align*}
$$

Therefore we get (3.1) by (2.1) and (3.13), using the relation $x \psi(x)=x \psi(x+1)-1$.

4 numerical examples. We examine the Propositions 2.2 and 3.1 graphically by using the gamma distribution as γ whose density is given by $g_{c}(x)=x^{c-1} e^{-x} / \Gamma(c)$. The distribution function of $K_{n} / \log n$ is obtained approximately by using the random numbers of R and described by the step function.

At first, for the examination of (2.2) by taking $c>1$. Then, the conditions of the Propositions 2.2 are satisfied. The approroximate function $G_{1}(x)=G(x)+\{[2 x \psi(x+1)-$ $\left.1] g(x)+x g^{\prime}(x)\right\} /(2 \log n)$ is described by the broken curve. The distribution function G_{c} of $g_{c}(x)$ is described by the dotted curve. For $n=50$, the Figure's $1,2,3$ and 4 give the cases of $c=1.1, c=1.5, c=2$ and $c=3$. If c is small and near 1 , then the function $G_{1}(x)$ is good approximation to the distribution function of $K_{n} / \log n$. Even if c increases, the function $G_{1}(x)$ is better than $G_{c}(x)$ as the approximation to the distribution function of $K_{n} / \log n$. But, the tail is not good approximation, similar to the usual Edgeworth expansion.

Next, we examine the relation (3.5) by taking $c=4$. Then, the conditions of the Propositions 3.1 are satisfied.

The approximate distribution G_{1} is described by the broken curve. The approximate function $G_{2}(x)=G(x)+\left\{[2 x \psi(x+1)-1] g(x)+x g^{\prime}(x)\right\} /(2 \log n)+\left\{x^{2} g(x)\right\}^{(3)} /\left(8 \log ^{2} n\right)$
is described by the dot-broken curve. The distribution function G_{c} of $g_{c}(x)$ is described by the dotted curves. For $c=4$, the Figure's 5 and 6 give the cases of $n=50$ and $n=100$, respectively. Both the functions G_{1} and G_{2} give a little good approximate to the distribution function of $K_{n} / \log n$. But there are no obvious difference between G_{1} and G_{2}, becuase the value of $G_{2}(x)-G_{1}(x)=\left\{x^{2} g(x)\right\}^{(3)} /\left(8 \log ^{2} n\right)$ is small. The little difference may be seen at the left tail.

Acknowledgements. The authors are grateful to the referee for his careful reading and useful comments.

References

Antoniak, C. E. (1774). Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems, Ann. Statist., 2, 1152-1174.

Petrov, V. (1995) Limit theorems of probability theory. New York: Oxford Univ. Press.
Yamato, H. (2012). Asymptotic distribution of number of distinct observations among a sample from mixture of Dirichlet processes. Bull. Inform. Cyber., 44, 41-47.

Yamato, H. (2013). Edgeworth expansion for the number of distinct components associated with Ewens Sampling Formula. J. Japan Statist. Soc, 43, 17-28

Communicated by Hisao Nagao
First author:
Emeritus of Kagoshima University, Take 3-32-1-708 Kagoshima 890-0045, Japan Second author:
Department of Mathematics and Computer Science, Kagoshima University, Kagosima 8900065, Japan

