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Approximately derivative in a vector lattice

Toshiharu Kawasaki

February 7, 2014

Abstract. In previous paper we defined the derivative of mappings from a vector lat-
tice into a complete vector lattice. In this paper we define an approximately derivative
of mappings from a vector lattice into a complete vector lattice. Moreover we consider
a relation between these two derivatives.

1 Introduction The purpose of our researches is to consider some derivatives and some
integrals of mappings in vector spaces and to study their relations, for instance, the funda-
mental theorem of calculus, inclusive relations between integrals and so on; see [9—17].

When we consider extending from restricted Denjoy integral to improper Denjoy integral
for real valued functions, the derivative is transposed to more general derivative, called
approximately derivative. Therefore in this paper we consider approximately derivative for
mappings from a vector lattice into a vector lattice.

In [15] we defined the derivative of mappings from a vector lattice into a complete vector
lattice. In [12] we defined the approximately derivative in the case where the domain is finite
dimension. This derivative seemed to be a subset of bounded linear mappings generally,
however in [14] it was proved that the subset consists of a single point. In this paper we
consider an approximately derivative of mappings from a vector lattice into a complete
vector lattice. Moreover we consider a relation between these two derivatives.

In this paper we use notation and definitions in [15, 16]. Let X be a vector lattice. An
element e ∈ X is said to be a unit if e ∧ x > 0 for any x ∈ X with x > 0. Let KX be the
class of units of X . Let IX be the class of intervals of X and IKX the class of intervals
[a, b] with b− a ∈ KX . Let L(X,Y ) be the class of bounded linear mappings from X into
a vector lattice Y . If Y is complete, then L(X,Y ) is also so [2, 20,24, 25]. A subset D ⊂ X
is said to be open if for any x ∈ D and for any e ∈ KX there exists ε ∈ KR such that
[x − εe, x + εe] ⊂ D. Let OX be the class of open subsets of X. For an interval [a, b] and
e ∈ KX let

[a, b]e = {x | there exists ε ∈ KR such that x− a ≥ εe and b− x ≥ εe}.
Let Λ be an upward directed set. Then let UX(Λ) be the class of {vλ | λ ∈ Λ} which satisfies
the following conditions:
(U1) vλ ∈ X with vλ > 0;
(U2)u vλ1 ≥ vλ2 if λ1 ≤ λ2;
(U3) ∧

λ∈Λ vλ = 0.
Moreover we consider the following condition:
(M) There exists an interval function q : IX −→ [0,∞) such that
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(M1) q(I1) ≤ q(I2) if I1 ⊂ I2;
(M2) q(I) > 0 if I ∈ IKX ;
(M3) For any x ∈ X, for any e ∈ KX and for any ε ∈ KR there exists δ ∈ KR such

that q([x, x+ δe]) ≤ ε and q([x− δe, x]) ≤ ε.
Example 1.1. Let X be a Banach lattice, that is, it satisfies that |a| ≤ |b| implies ‖a‖ ≤ ‖b‖.
Suppose that KX �= ∅. For any a, b ∈ X with a ≤ b let q([a, b]) = ‖b− a‖. Then X endowed
with q satisfies (M). Indeed, if [a, b] ⊂ [c, d], then 0 ≤ b − a ≤ d − c and hence q([a, b]) =
‖b− a‖ ≤ ‖d − c‖ = q([c, d]). If b− a ∈ KX , then a �= b and hence q([a, b]) = ‖b− a‖ > 0.
Moreover for any x ∈ X, for any e ∈ KX and for any ε ∈ KR, taking δ ≤ ε

‖e‖ , then it holds
that q([x, x + δe]) = δ‖e‖ ≤ ε and q([x − δe, x]) = δ‖e‖ ≤ ε. For instance, since C(K),
where K is a compact Hausdorff space, and Lp, which 1 ≤ p ≤ ∞, are Banach lattices with
unit, these spaces endowed with the above q satisfy (M).
Example 1.2. Let X = Rd × X1, where X1 is any vector lattice with unit. For any a =
((a1, . . . , ad), a′), b = ((b1, . . . , bd), b′) ∈ X we define a ≤ b whenever ai ≤ bi for any i =
1, . . . , d and a′ ≤ b′. Then KX = {((e1, . . . , ed), e′) | ei > 0 for any i = 1, . . . , d and e′ ∈
KX1}. Moreover for any a = ((a1, . . . , ad), a′), b = ((b1, . . . , bd), b′) ∈ X with a ≤ b let
q([a, b]) = ∏d

i=1(bi − ai). Then X endowed with q satisfies (M). Indeed, if [a, b] ⊂ [c, d],
then bi − ai ≤ di − ci for any i = 1, . . . , d and hence q([a, b]) ≤ q([c, d]). If b − a ∈ KX ,
then ai < bi for any i = 1, . . . , d and hence q([a, b]) > 0. Moreover for any x ∈ X , for
any e = ((e1, . . . , ed), e′) ∈ KX and for any ε ∈ KR, taking δ ≤ ε∏d

i=1 ei , then it holds that
q([x, x + δe]) = δ∏d

i=1 ei ≤ ε and q([x − δe, x]) = δ∏d
i=1 ei ≤ ε. For instance, since RS ,

where S is an arbitrary nonempty set, is such a space, this space endowed with the above
q satisfies (M).

In general a lot of interval functions satisfying (M) in X can be considered. Hereafter
in the case of X = Rd we always consider the Lebesgue measure as an interval function q.
2 Definitions
Definition 2.1. Let X be a vector lattice with unit, x0 ∈ D ∈ OX and E ⊂ D. Suppose
that X satisfies (M).
x0 is said to be a right density point of E if for any e ∈ KX and for any ε ∈ KR there

exists e1 ∈ KX such that for any h ∈ KX with 0 < h ≤ e1 there exists {[ak, bk] | k = 1, 2, . . .}
which satisfies the following conditions:
(RDS) EC ∩ [x0, x0 + h] ⊂ ⋃∞

k=1[ak, bk]e.
(RD) ∑∞

k=1 q([ak, bk]) ≤ εq([x0, x0 + h]).
x0 is said to be a left density point of E if for any e ∈ KX and for any ε ∈ KR there exists
e1 ∈ KX such that for any h ∈ KX with 0 < h ≤ e1 there exists {[ak, bk] | k = 1, 2, . . .}
which satisfies the following conditions:
(LDS) EC ∩ [x0 − h, x0] ⊂ ⋃∞

k=1[ak, bk]e.
(LD) ∑∞

k=1 q([ak, bk]) ≤ εq([x0 − h, x0]).
x0 is said to be a density point of E if it is a right density point and a left density point.
x0 is said to be a right dispersion point of E if for any e ∈ KX and for any ε ∈ KR there

exists e1 ∈ KX such that for any h ∈ KX with 0 < h ≤ e1 there exists {[ak, bk] | k = 1, 2, . . .}
which satisfies (RD) and the following condition:



(RDP) E ∩ [x0, x0 + h] ⊂ ⋃∞
k=1[ak, bk]e.

x0 is said to be a left dispersion point of E if for any e ∈ KX and for any ε ∈ KR there exists
e1 ∈ KX such that for any h ∈ KX with 0 < h ≤ e1 there exists {[ak, bk] | k = 1, 2, . . .}
which satisfies (LD) and the following condition:
(LDP) E ∩ [x0 − h, x0] ⊂ ⋃∞

k=1[ak, bk]e.
x0 is said to be a dispersion point of E if it is a right dispersion point and a left dispersion
point.
Definition 2.2. Let X be a vector lattice with unit, Y a complete vector lattice, D ∈ OX
and F a mapping from D into Y . Suppose that X satisfies (M).

For any l ∈ L(X,Y ) and for any right density point x0 of {x | x ∈ D, x− x0 ∈ KX} let
E+

sup(l;F, x0) = {x | x ∈ D, x− x0 ∈ KX , F (x) − F (x0) �< l(x− x0)},
L+
sup(F, x0) =

{

l
∣

∣

∣

∣

l ∈ L(X,Y ),
x0 is a right dispersion point of E+sup(l;F, x0)

}

and o-AD+F (x0) the class of l ∈ L(X,Y ) which satisfies the following conditions:
(a-S1R) For any l′ ∈ L(X,Y ) with l′ > 0 there exists l′′ ∈ L+sup(F, x0) such that l ≤ l′′ <

l + l′.
(a-S2R) l′′ �< l for any l′′ ∈ L+sup(F, x0).
Let

E+
inf (l;F, x0) = {x | x ∈ D, x− x0 ∈ KX , F (x) − F (x0) �> l(x− x0)},
L+
inf (F, x0) =

{

l
∣

∣

∣

∣

l ∈ L(X,Y ),
x0 is a right dispersion point of E+

inf (l;F, x0)
}

and o-AD+F (x0) the class of l ∈ L(X,Y ) which satisfies the following conditions:
(a-I1R) For any l′ ∈ L(X,Y ) with l′ > 0 there exists l′′ ∈ L+

inf (F, x0) such that l ≥ l′′ >
l − l′.

(a-I2R) l′′ �> l for any l′′ ∈ L+
inf (F, x0).

For any l ∈ L(X,Y ) and for any left density point x0 of {x | x ∈ D, x0 − x ∈ KX} let
E−sup(l;F, x0) = {x | x ∈ D, x0 − x ∈ KX , F (x0) − F (x) �< l(x0 − x)},
L−
sup(F, x0) =

{

l
∣

∣

∣

∣

l ∈ L(X,Y ),
x0 is a left dispersion point of E−sup(l;F, x0)

}

and o-AD−F (x0) the class of l ∈ L(X,Y ) which satisfies the following conditions:
(a-S1L) For any l′ ∈ L(X,Y ) with l′ > 0 there exists l′′ ∈ L−sup(F, x0) such that l ≤ l′′ <

l + l′.
(a-S2L) l′′ �< l for any l′′ ∈ L−sup(F, x0).
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Let
E−

inf (l;F, x0) = {x | x ∈ D, x0 − x ∈ KX , F (x0) − F (x) �> l(x0 − x)},
L−
inf (F, x0) =

{

l
∣

∣

∣

∣

l ∈ L(X,Y ),
x0 is a left dispersion point of E−

inf (l;F, x0)
}

and o-AD−F (x0) the class of l ∈ L(X,Y ) which satisfies the following conditions:
(a-I1L) For any l′ ∈ L(X,Y ) with l′ > 0 there exists l′′ ∈ L−

inf (F, x0) such that l ≥ l′′ >
l − l′.

(a-I2L) l′′ �> l for any l′′ ∈ L−
inf (F, x0).

F is said to be approximately right upper differentiable, approximately right lower differ-
entiable, approximately left upper differentiable and approximately left lower differentiable
at x0 if o-AD+F (x0), o-AD+F (x0), o-AD−F (x0) and o-AD−F (x0) are not empty, respec-
tively. If o-AD+F (x0) = o-AD+F (x0) ∩ o-AD+F (x0) and o-AD−F (x0) = o-AD−F (x0) ∩
o-AD−F (x0) are not empty, then F is said to be approximately right differentiable and
approximately left differentiable at x0, respectively. If o-ADF (x0) = o-AD+F (x0) ∩
o-AD−F (x0) is not empty, then F is said to be approximately differentiable at x0.
3 Properties
Theorem 3.1. Let X be a vector lattice with unit, Y a complete vector lattice, x0 ∈ D ∈ OX
and F a mapping from D into Y . Suppose that X satisfies (M).
(1) If F is approximately right upper differentiable at right density point x0 of {x | x ∈

D,x−x0 ∈ KX}, then any two different elements in o-AD+F (x0) are incomparable.
(2) If F is approximately right lower differentiable at right density point x0 of {x | x ∈

D,x−x0 ∈ KX}, then any two different elements in o-AD+F (x0) are incomparable.
(3) If F is approximately left upper differentiable at left density point x0 of {x | x ∈

D,x0−x ∈ KX}, then any two different elements in o-AD−F (x0) are incomparable.
(4) If F is approximately left lower differentiable at left density point x0 of {x | x ∈

D,x0−x ∈ KX}, then any two different elements in o-AD−F (x0) are incomparable.
Proof. Assume that l1 < l2 for l1, l2 ∈ o-AD+F (x0). By (a-S1R) for l1 there exists l′′ ∈
L+sup(F, x0) such that l1 ≤ l′′ < l1 + (l2 − l1) = l2. However it is a contradiction to (a-S2R)
for l2, that is, l′′ �< l2 for any l′′ ∈ L+sup(F, x0). Therefore any two different elements in
o-AD+F (x0) must be incomparable. The rest can be proved similarly.
Lemma 3.1. Let X be a vector lattice with unit, Y a complete vector lattice, x0 ∈ D ∈ OX
and F a mapping from D into Y . Suppose that X satisfies (M).
(1) If l ∈ L±sup(F, x0) and l′ ∈ L(X,Y ) with l′ > l, then l′ ∈ L±sup(F, x0).
(2) If l ∈ L±

inf (F, x0) and l′ ∈ L(X,Y ) with l′ < l, then l′ ∈ L±
inf (F, x0).

Proof. It is clear by definition.



Let X be a vector lattice and A,B ⊂ X. We write A ≤ B if a ≤ b for any a ∈ A and
for any b ∈ B. Similarly we write A < B and A �< B if a < b and a �< b, respectively, for
any a ∈ A and for any b ∈ B, and so on. Moreover we write A � B if for any a ∈ A there
exists b ∈ B such that a ≤ b and if for any b ∈ B there exists a ∈ A such that a ≤ b.
Lemma 3.2. Let X be a vector lattice with unit, Y a complete vector lattice, x0 ∈ D ∈ OX
and F a mapping from D into Y . Suppose that X satisfies (M).

Then
(1) L±

inf (F, x0) ∩ L±sup(F, x0) = ∅.
(2) L±

inf (F, x0) �> L±sup(F, x0).
(3) L±

inf (F, x0) � L±sup(F, x0).
Proof. (1) Assume that L+

inf (F, x0) ∩ L+sup(F, x0) �= ∅. Let l ∈ L+
inf (F, x0) ∩ L+sup(F, x0).

Then x0 is a right dispersion point of E+
inf (l;F, x0) and E+sup(l;F, x0), that is, for any e ∈ KX

and for any ε ∈ KR there exists einf ∈ KX such that for any h ∈ KX with 0 < h ≤ einf
there exists {[ak, bk] | k = 1, 2, . . .} which satisfies

E+
inf (l;F, x0) ∩ [x0, x0 + h] ⊂

∞
⋃

k=1
[ak, bk]e,

∞
∑

k=1
q([ak, bk]) ≤ εq([x0, x0 + h]),

and there exists esup ∈ KX such that for any h ∈ KX with 0 < h ≤ esup there exists
{[ck, dk] | k = 1, 2, . . .} which satisfies

E+sup(l;F, x0) ∩ [x0, x0 + h] ⊂
∞
⋃

k=1
[ck, dk]e,

∞
∑

k=1
q([ck, dk]) ≤ εq([x0, x0 + h]).

Let e1 = einf ∧ esup. Then the above two inequalities are true for any h ∈ KX with
0 < h ≤ e1. Since

E+
inf (l;F, x0) ∪ E+

sup(l;F, x0) = {x | x ∈ D, x− x0 ∈ KX},
it holds that

(E+
inf (l;F, x0) ∪ E+

sup(l;F, x0)) ∩ [x0, x0 + h]
= {x | x ∈ D, x− x0 ∈ KX} ∩ [x0, x0 + h].

Therefore

{x | x ∈ D, x− x0 ∈ KX} ∩ [x0, x0 + h] ⊂
∞
⋃

k=1
([ak, bk]e ∪ [ck, dk]e),

∞
∑

k=1
q([ak, bk]) +

∞
∑

k=1
q([ck, dk]) ≤ 2εq([x0, x0 + h]).

343



344

It is a contradiction to that x0 is a right density point of {x | x ∈ D, x−x0 ∈ KX}. Therefore
L+
inf (F, x0)∩L+sup(F, x0) = ∅. It can be proved similarly that L−

inf (F, x0)∩L−sup(F, x0) = ∅.
(2) Assume that l1 ∈ L±

inf (F, x0), l2 ∈ L±sup(F, x0) and l1 > l2. By Lemma 3.1 it holds
that l1 ∈ L±sup(F, x0) and l2 ∈ L±

inf (F, x0). However it is a contradiction to (1). Therefore
L±
inf (F, x0) �> L±sup(F, x0).

(3) Let l1 ∈ L±
inf (F, x0) and l2 ∈ L±sup(F, x0). By Lemma 3.1 it holds that l1 ∨ l2 ∈

L±sup(F, x0) and l1 ≤ l1∨ l2. By Lemma 3.1 it holds that l1∧ l2 ∈ L±
inf (F, x0) and l1∧ l2 ≤ l2.

Therefore L±
inf (F, x0) � L±sup(F, x0).

Theorem 3.2. Let X be a vector lattice with unit, Y a complete vector lattice, x0 ∈ D ∈ OX
and F a mapping from D into Y . Suppose that X satisfies (M).
(1) If F is approximately right upper differentiable and approximately right lower differ-

entiable at right density point x0 of {x | x ∈ D, x− x0 ∈ KX}, then o-AD+F (x0) �<
o-AD+F (x0).

(2) If F is approximately left upper differentiable and approximately left lower differen-
tiable at left density point x0 of {x | x ∈ D, x0 − x ∈ KX}, then o-AD−F (x0) �<
o-AD−F (x0).

Proof. Assume that l1 ∈ o-AD+F (x0), l2 ∈ o-AD+F (x0) and l1 < l2. Let l = 1
2 (l1 + l2).

Then l1 < l < l2. By (a-S1R) for l1 there exists l′′1 ∈ L+sup(F, x0) such that l1 ≤ l′′1 < l.
By (a-I1R) for l2 there exists l′′2 ∈ L+

inf (F, x0) such that l2 ≥ l′′2 > l. By Lemma 3.1 l is
belonging to both L+sup(F, x0) and L+

inf (F, x0), however it is a contradiction to Lemma 3.2.
Therefore o-AD+F (x0) �< o-AD+F (x0). It can be proved similarly that o-AD−F (x0) �<
o-AD−F (x0).
Lemma 3.3. Let X be a vector lattice with unit, Y a complete vector lattice, x0 ∈ D ∈ OX ,
F,F1, F2 mappings from D into Y and α ∈ R. Suppose that X satisfies (M).

Then
(1)

L±
sup(αF, x0) =

{ αL±sup(F, x0) if α ≥ 0,
αL±

inf (F, x0) if α < 0.
L±
inf (αF, x0) =

{ αL±
inf (F, x0) if α ≥ 0,

αL±sup(F, x0) if α < 0.
(2)

L±
sup(F1, x0) + L±

sup(F2, x0) ⊂ L±
sup(F1 + F2, x0),

L±
inf (F1, x0) + L±

inf (F2, x0) ⊂ L±
inf (F1 + F2, x0).

Proof. (1) is clear by definition. We show (2). Let l1 ∈ L+sup(F1, x0) and l2 ∈ L+sup(F2, x0).
If

F1(x) − F1(x0) + F2(x) − F2(x0) �< l1(x− x0) + l2(x− x0),
then

F1(x) − F1(x0) �< l1(x− x0) or F2(x) − F2(x0) �< l2(x− x0).



Therefore
E+

sup(l1 + l2;F1 + F2, x0) ⊂ E+
sup(l1;F1, x0) ∪ E+

sup(l2;F2, x0).
If x0 is a right dispersion point of E+sup(l1;F1, x0) and of E+sup(l2;F2, x0), then it is right
dispersion point of E+sup(l1 + l2;F1 + F2, x0). Therefore l1 + l2 ∈ L+sup(F1 + F2, x0). The
rest can be proved similarly.
Theorem 3.3. Let X be a vector lattice with unit, Y a complete vector lattice, x0 ∈ D ∈
OX , F, F1, F2 mappings from D into Y and α ∈ R with α > 0. Suppose that X satisfies
(M).
(1) If F is approximately right upper differentiable at right density point x0 of {x |

x ∈ D, x − x0 ∈ KX}, then αF is also so and o-AD+(αF )(x0) = αo-AD+F (x0)
and −αF is approximately right lower differentiable at x0 and o-AD+(−αF )(x0) =
−αo-AD+F (x0). If F is approximately right lower differentiable at x0, then αF is
also so and o-AD+(αF )(x0) = αo-AD+F (x0) and −αF is approximately right upper
differentiable at x0 and o-AD+(−αF )(x0) = −αo-AD+F (x0).

(2) If F1, F2, F1 + F2 are approximately right upper differentiable at right density point
x0 of {x | x ∈ D, x− x0 ∈ KX}, then

o-AD+F1(x0) + o-AD+F2(x0) �< o-AD+(F1 + F2)(x0).
If F1, F2, F1 + F2 are approximately right lower differentiable at x0, then

o-AD+F1(x0) + o-AD+F2(x0) �> o-AD+(F1 + F2)(x0).
(3) If F is approximately left upper differentiable at left density point x0 of {x | x ∈

D, x0 − x ∈ KX}, then αF is also so and
o-AD−(αF )(x0) = αo-AD−F (x0)

and −αF is approximately left lower differentiable at x0 and
o-AD−(−αF )(x0) = −αo-AD−F (x0).

If F is approximately left lower differentiable at x0, then αF is also so and
o-AD−(αF )(x0) = αo-AD−F (x0)

and −αF is approximately left upper differentiable at x0 and
o-AD−(−αF )(x0) = −αo-AD−F (x0).

(4) If F1, F2, F1 + F2 are approximately left upper differentiable at left density point x0
of {x | x ∈ D, x0 − x ∈ KX}, then

o-AD−F1(x0) + o-AD−F2(x0) �< o-AD−(F1 + F2)(x0).
If F1, F2, F1 + F2 are approximately left lower differentiable at x0, then

o-AD−F1(x0) + o-AD−F2(x0) �> o-AD−(F1 + F2)(x0).
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Proof. (1) and (3) are clear by definition. We show (2) and (4). Let l1 ∈ o-AD+F1(x0)
and l2 ∈ o-AD+F2(x0). By (a-S1R) for any l′ ∈ L(X,Y ) with l′ > 0 there exist l′′1 ∈
L+sup(F1, X0) and l′′2 ∈ L+sup(F2, X0) such that l1 ≤ l′′1 < l1 + l′ and l2 ≤ l′′2 < l2 + l′. Since
F1+F2 is also approximately right upper differentiable at x0, by (a-S2R) it holds that l′′ �< l
for any l ∈ o-AD+(F1 + F2)(x0) and for any l′′ ∈ L+sup(F1 + F2,X0). Since by Lemma 3.3
l′′1 + l′′2 ∈ L+sup(F1 + F2, x0), it holds that l1 + l2 ≤ l′′1 + l′′2 �< l. Note that l′′1 and l′′2 can
take near l1 and l2 enough. Therefore l1 + l2 �< l. Actually assume that l1 + l2 < l. Then
l′′1 + l′′2 < l1 + l2 + 2l′ < l for any l′ < 1

2 (l − l1 − l2). It is a contradiction. Therefore

o-AD+F1(x0) + o-AD+F2(x0) �< o-AD+(F1 + F2)(x0).
The rest can be proved similarly.
Lemma 3.4. Let X be a vector lattice with unit, Y a complete vector lattice, x0 ∈ D ∈ OX
and F a mapping from D into Y . Suppose that X satisfies (M).
(1) l ∈ o-AD+F (x0) if and only if l satisfies (a-S1R) and (a-I1R).
(2) l ∈ o-AD−F (x0) if and only if l satisfies (a-S1L) and (a-I1L).
Proof. The necessity is clear. We show the sufficiency. We show that if l ∈ L(X,Y ) satisfies
(a-S1R), then it satisfies (a-I2R). Assume that l does not satisfy (a-I2R). Then there exists
l′′ ∈ L+

inf (F, x0) such that l′′ > l. By (a-S1R) there exists l′′′ ∈ L+sup(F, x0) such that
l ≤ l′′′ < l′′. It is a contradiction to Lemma 3.2. Therefore l satisfies (a-I2R). The rest can
be proved similarly.
Theorem 3.4. Let X be a vector lattice with unit, Y a complete vector lattice, x0 ∈ D ∈ OX
and F1, F2 mappings from D into Y . Suppose that X satisfies (M).
(1) If F1 and F2 are approximately right differentiable at right density point x0 of {x |

x ∈ D,x− x0 ∈ KX}, then F1 + F2 is also so and
o-AD+F1(x0) + o-AD+F2(x0) = o-AD+(F1 + F2)(x0).

(2) If F1 and F2 are approximately left differentiable at left density point x0 of {x | x ∈
D,x0 − x ∈ KX}, then F1 + F2 is also so and

o-AD−F1(x0) + o-AD−F2(x0) = o-AD−(F1 + F2)(x0).

Proof. Let l1 ∈ o-AD+F1(x0) and l2 ∈ o-AD+F2(x0). For any l′ ∈ L(X,Y ) with l′ > 0 there
exist l′′1 ∈ L+sup(F1, x0) and l′′2 ∈ L+sup(F2, x0) such that l1 ≤ l′′1 < l1 + l′ and l2 ≤ l′′2 < l2 + l′.
Since by Lemma 3.3 l′′1 +l′′2 ∈ L+sup(F1+F2, x0), l1+l2 satisfies (a-S1R) for F1+F2. Similarly
l1 + l2 satisfies (a-I1R) for F1 +F2. Therefore by Lemma 3.4 F1 +F2 is approximately right
differentiable and

o-AD+F1(x0) + o-AD+F2(x0) ⊂ o-AD+(F1 + F2)(x0).
In the above formula we put −F1 into F1 and F1 + F2 into F2. Then we get

o-AD+(−F1)(x0) + o-AD+(F1 + F2)(x0) ⊂ o-AD+F2(x0).



By Theorem 3.3
o-AD+(F1 + F2)(x0) ⊂ o-AD+F2(x0) − o-AD+(−F1)(x0)

= o-AD+F2(x0) + o-AD+F1(x0).
Therefore

o-AD+F1(x0) + o-AD+F2(x0) = o-AD+(F1 + F2)(x0).
The rest can be proved similarly.
4 In the case of X = Rd Approximately derivative becomes a subset of bounded linear
mappings generally. The problem that it consists of a single point is not solved. However
it is true to show the following in the case where X is finite dimensional; see [14].
Lemma 4.1. Let X and Y be vector lattices and l ∈ L(X,Y ).

If {xn} is relatively uniformly convergent to 0 in X, then {l(xn)} is also so in Y .
Proof. Since {xn} is relatively uniformly convergent to 0 in X, there exist {εn} ∈ UR(N)
and u ∈ X with u > 0 such that |xn| ≤ εnu for any natural number n. Then there exists
a monotone sequnce {rn} of real numbers such that it is divergent to infinity and {rnxn}
is relatively uniformly convergent to 0. Actually there exists a monotone sequence {N(m)}
of natural numbers such that |xn| ≤ 1

m2u if n > N(m). Let

rn =
{ 1 if n ≤ N(1),
m if N(m) < n ≤ N(m+ 1) (m = 1, 2, . . .).

Since
|rnxn| =

{ |xn| if n ≤ N(1),
m|xn| if N(m) < n ≤ N(m+ 1) (m = 1, 2, . . .),

and m|xn| ≤ 1
mu, {rnxn} is relatively uniformly convergent to 0 and {rn} is divergent to

infinity. Since {rnxn} is relatively uniformly convergent to 0, it is bounded. Therefore
{rnl(xn)} is also so, that is, there exists v ∈ Y with v > 0 such that rn|l(xn)| ≤ v. For m
select N such that rN+1 ≥ m. Then |l(xn)| ≤ 1

rn v ≤ 1
mv for any natural number n > N .

It means that l(xn) is relatively uniformly convergent to 0.
Lemma 4.2. Let X = Rd, Y a complete vector lattice, x0 ∈ X and l ∈ L(X,Y ).

Then
o-AD+l(x0) = o-AD+l(x0) = o-AD−l(x0) = o-AD−l(x0) = {l}.

Proof. We show that o-AD+l(x0) = {l}. The rest can be proved similarly. Since l ∈
o-AD+l(x0) is clear, we show that for any element of o-AD+l(x0) it is equals to l. First
we consider a necessary and sufficient condition for l′′ ∈ L+sup(l, x0). Note that KX =
{(e1, . . . , ed) | ei > 0 for any i} and L(X,Y ) ∼= Y d.
In the case of l′′ > l:

Since
E+

sup(l′′; l, x0) = {x | x− x0 ∈ KX , l(x− x0) �< l′′(x− x0)} = ∅,
it holds that l′′ ∈ L+sup(l, x0).
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In the case of l′′ = l:
Since

E+sup(l′′; l, x0) = {x | x− x0 ∈ KX},
it holds that for any h ∈ KX

E+
sup(l′′; l, x0) ∩ [x0, x0 + h] = {x | x− x0 ∈ KX} ∩ [x0, x0 + h].

Therefore x0 is never a right dispersion point of E+sup(l′′; l, x0). Then l′′ �∈ L+sup(l, x0).
In the case of l′′ �≥ l:

Note that for any x ∈ X with x > 0 there exist r > 0 and 0 ≤ θi ≤ π
2 (i = 1, . . . , d− 1)

such that
x = f(r, θ1, . . . , θd−1)

= r(cos θ1 · · · cos θd−1, cos θ1 · · · sin θd−1, . . . , sin θ1).
Therefore there exists f(r0, θ1,0, . . . , θd−1,0) with r0 > 0, 0 ≤ θi,0 ≤ π

2 (i = 1, . . . , d − 1)
such that

l′′(f(r0, θ1,0, . . . , θd−1,0)) �≥ l(f(r0, θ1,0, . . . , θd−1,0)).
Then there exists αi with 0 < αi+θi,0 < π

2 , αi �= 0 such that for any θi with |θi−θi,0| ≤ |αi|,
0 ≤ θi ≤ π

2 it holds that
l′′(f(r0, θ1, . . . , θd−1)) �≥ l(f(r0, θ1, . . . , θd−1)).

If not, then for αi,1 with 0 < αi,1 +θi,0 < π
2 , αi,1 �= 0 there exists θi,1 with 0 < |θi,1−θi,0| ≤

|αi,1|, 0 ≤ θi,1 ≤ π
2 such that
l′′(f(r0, θ1,1, . . . , θd−1,1)) ≥ l(f(r0, θ1,1, . . . , θd−1,1)).

Moreover for αi,2 with 0 < αi,2 + θi,0 < π
2 , 0 �= αi,2 ≤ 1

2 |αi,1| there exists θi,2 with
0 < |θi,2 − θi,0| ≤ |αi,2|, 0 ≤ θi,2 ≤ π

2 such that
l′′(f(r0, θ1,2, . . . , θd−1,2)) ≥ l(f(r0, θ1,2, . . . , θd−1,2)).

Repeat this way, then we get a sequence {f(r0, θ1,k, . . . , θd−1,k)} such that it is relatively
uniformly convergent to f(r0, θ1,0, . . . , θd−1,0) and

l′′(f(r0, θ1,k, . . . , θd−1,k)) ≥ l(f(r0, θ1,k, . . . , θd−1,k)).
It is a contradiction to Lemma 4.1. Therefore there exists αi with 0 < αi + θi,0 < π

2 , αi �= 0
such that for any θi with |θi − θi,0| ≤ |αi|, 0 ≤ θi ≤ π

2 it holds that
l′′(f(r0, θ1, . . . , θd−1)) �≥ l(f(r0, θ1, . . . , θd−1)).

Since l′′ and l are linear, the above inequality is true for any r > 0. Let
W =

{

f(r, θ1, . . . , θd−1)
∣

∣

∣ r > 0, |θi − θi,0| ≤ |αi|, 0 ≤ θi ≤ π
2 (i = 1, . . . , d− 1)

}

.

Then {x | x − x0 ∈ KX} ∩ (x0 + W ) ⊂ E+sup(l′′; l, x0). Let El(h) = El(h1, . . . , hd) be the
intersection of an ellipsoid, which radii are h1, . . . , hd, and {(x1, . . . , xd) | xi > 0 for any i}.
Then x0 +El(h) ⊂ [x0, x0 + h]. Since x0 is a right density point of {x | x− x0 ∈ KX}, that
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is, for any e ∈ KX and for any ε ∈ KR there exists e1 ∈ KX such that for any h ∈ KX with
0 < h ≤ e1 there exists {[ak, bk] | k = 1, 2, . . .} which satisfies

{x | x− x0 ∈ KX}C ∩ [x0, x0 + h] ⊂
∞
⋃

k=1
[ak, bk]e,

∞
∑

k=1
q([ak, bk]) ≤ εq([x0, x0 + h]),

if x0 is a right dispersion point of E+sup(l′′; l, x0), that is,

E+sup(l′′; l, x0) ∩ [x0, x0 + h] ⊂
∞
⋃

k=1
[ck, dk]e,

∞
∑

k=1
q([ck, dk]) ≤ εq([x0, x0 + h]),

then
(x0 +W ) ∩ (x0 + El(h)) ⊂

( ∞
⋃

k=1
[ak, bk]e

)

∪
( ∞
⋃

k=1
[ck, dk]e

)

,
∞
∑

k=1
q([ak, bk]) +

∞
∑

k=1
q([ck, dk]) ≤ 2εq([x0, x0 + h])

proving that (x0 +W ) ∩ (x0 + El(h)) is a null set. On the other hand

q((x0 +W ) ∩ (x0 + El(h))) ≥ |α1 · · ·αd−1|
2πd−1 × π d

2

Γ ( d
2 + 1) × h1 · · ·hd

= |α1 · · ·αd−1|
2π d

2−1Γ (d
2 + 1)h1 · · ·hd

= |α1 · · ·αd−1|
2π d

2−1Γ (d
2 + 1)q([x0, x0 + h]),

where Γ is Γ -function. It is a contradiction. Therefore x0 is never a right dispersion point
of E+sup(l′′; l, x0). Then l′′ �∈ L+sup(l, x0).

Therefore l′′ ∈ L+sup(l, x0) if and only if l′′ > l. Let l1 ∈ o-AD+l(x0). For any l′ > 0
there exists l′′ ∈ L+sup(l, x0) such that l1 ≤ l′′ < l1 + l′. Since l′ is arbitrary, it holds that
l ≤ l1, moreover by Theorem 3.1 it hold that l1 = l.
Theorem 4.1. Let X = Rd, Y a complete vector lattice, x0 ∈ D ∈ OX and l ∈ L(X,Y ).
(1) If F is approximately right differentiable at right density point x0 of {x | x ∈ D, x−

x0 ∈ KX}, then o-AD+F (x0) consists of a single point.
(2) If F is approximately left differentiable at left density pont x0 of {x | x ∈ D, x0−x ∈

KX}, then o-AD+F (x0) consists of a single point.
Proof. In Theorem 3.4 (1) put F1 = F and F2 = −F and by Lemma 4.2

o-AD+F (x0) − o-AD+F (x0) = o-AD+0(x0) = {0}.
Therefore o-AD+F (x0) consists of a single point. Similarly it can be proved that o-AD−F (x0)
consists of a single point.
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5 Relation We consider a relation between the approximately derivative and the deriva-
tive. However it is not known any desirable relation. In this section we consider the case
where X = R and Y is totally ordered.
Theorem 5.1. Let X = R, Y a complete vector lattice with total ordering, x0 ∈ D ∈ OX
and F a mapping from D into Y .
(1) If F is right differentiable at x0, then it is approximately right differentiable and

o-D+F (x0) = o-AD+F (x0).
(2) If F is left differentiable at x0, then it is approximately right differentiable and

o-D−F (x0) = o-AD−F (x0).
Proof. Let l = o-D+F (x0). Then there exists {wx0,e} ∈ UsL(X,Y )(KX ,≥) such that for any
e ∈ KX there exists δx0 ∈ KR such that |F (x0 +h)−F (x0)− l(h)| ≤ wx0,e(h) for any h ∈ X
with 0 < h ≤ δx0e. Let l′ ∈ L(X,Y ) with l′ > 0. Since UsL(X,Y )(KX ,≥) is totally ordered,
there exists e ∈ KX such that wx0,e(h) < 1

2 l′(h) for any h ∈ KX with 0 < h ≤ δx0e. Let
l′′ = l+ 1

2 l′. Then l ≤ l′′ < l+ l′ and l′′ ∈ L+sup(F, x0). Actually since for any h ∈ KX with
0 < h ≤ δx0e, x0 + h ∈ D

F (x0 + h) − F (x0) ≤ (l+ wx0,e)(h) < l′′(h),
it holds that E+sup(l′′;F, x0) ∩ [x0, x0 + h] = ∅. Therefore x0 is a right dispersion point of
E+sup(l′′;F, x0). Then l′′ ∈ L+sup(F, x0). Therefore l satisfies (a-S1R). Similarly it can be
proved that l satisfies (a-I1R). By Lemma 3.4 F is approximately right differentiable at
x0. By Theorem 4.1 we obtain that o-D+F (x0) = o-AD+F (x0). The rest can be proved
similarly.
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