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More on decompositions of a fuzzy set in

fuzzy topological spaces

Haruo MAKI and Sayaka HAMADA ∗

Abstract. Using new properties (Theorem B in Section 2) of the concept of fuzzy
points in the sense of Pu Pao-Ming and Liu Ying-Ming (Definition 2.1), we first prove
that every fuzzy set λ 6= 0 is decomposed by two fuzzy sets λO(X,σf ) and λ∗PC(X,σf )

(Theorem A;cf. Theorem 2.5(ii)), where (X, σf ) is a specified Chang’s fuzzy space
(Definition 1.2, Remarks 1.3,1.4). Namely, λ = λO(X,σf ) ∨ λ∗PC(X,σf ) and λO(X,σf ) ∧
λ∗PC(X,σf ) = 0 hold, and the fuzzy set λO(X,σf ) is fuzzy open in (X, σf ) (Theo-

rem 2.5(iii)). Finally, these results are applied to the case where X = Zn(n > 0)
and σf = (κn)f (Theorem 3.3 and Theorem 3.5), where the topological space (X, σ) is
the digital n-space (Zn, κn) (cf. Section 3).

1 Introduction and preliminaries In 1965, Zadeh [26] introduced the fundamen-
tal concept of fuzzy sets, which formed the backbone of fuzzy mathematics. After his works,
Chang [4] used them to introduce the concept of a fuzzy topology. Throughout the present
paper, the symbol I will denote the unit interval [0, 1] and Y a nonempty set. A fuzzy set
on Y ([26]) is a function with domain Y and values in I, i.e., an element of IY .

We recall some concepts and properties as follows. Let (Y, τY ) be a Chang’s fuzzy
topological space [4].

Definition 1.1 (C.L. Chang [4, Definition 2.2]) A Chang’s fuzzy topological space is a pair
(Y, τY ), where Y is a non-emptyset and τY is a Chang’s fuzzy topology on it, where τY ⊂ IY ,
i.e., a family τY of fuzzy sets satisfying the following three axioms:

(1) 0, 1 ∈ τY ;
(2) if λ ∈ τY and µ ∈ τY , then λ ∧ µ ∈ τY ;
(3) let J be an index set. If λj ∈ τY for each j ∈ J , then

∨{λj |j ∈ J} ∈ τY .
The elements of τY are called fuzzy open sets of (X, τY ). A fuzzy set µ is called a fuzzy
closed set of (Y, τY ) if the complement µc ∈ τY .

For a Chang’s fuzzy topological space (Y, τY ), a fuzzy set µ on Y is said to be fuzzy preopen
[23] if µ ≤Int(Cl(µ)) holds in (Y, τY ). The fuzzy complement of a fuzzy preopen set is said
to be fuzzy preclosed. Namely, a fuzzy set λ is fuzzy preclosed in (Y, τY ) if and only if
Cl(Int(λ)) ≤ λ holds in (Y, τY ). A fuzzy set λ is said to be fuzzy semi-open [1] in (Y, τY )
if there exists a fuzzy open set ν on Y such that ν ≤ λ ≤Cl(ν) holds in (Y, τY ). It is well
known that a fuzzy set λ is fuzzy semi-open if and only if λ ≤Cl(Int(λ)). For a subset A
of X, χA denotes the characteristic function of A, i.e., χA(y) := 1 if y ∈ A and χA(y) := 0
if y 6∈ A. The concept of the ordinary preopen sets (resp. ordinary semi-open sets) was
introduced by [21] (resp. [17], [10]).

Definition 1.2 (e.g., [19, Example II, p.244], [8, p.161]) Let (X, σf ) be a fuzzy topological
space induced by a topological space (X, σ), where X is a nonempty set and σf := {χU |U ∈
σ}; (X, σf ) is an example of a Chang’s fuzzy topological space [4] (cf. Definition 1.1 above).
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There is a bijection, say f , between σ and σf which is defined by f(U) = χU for every U ∈ σ,
because an ordinary subset U is open in (X, σ) (i.e., U ∈ σ) if and only if the characteristic
function χU is fuzzy open in (X, σf )(i.e., χU ∈ σf ). However, the below Remark 1.3 and
Remark 1.4 show that the fuzzy topology σf has some interesting and distinct properties
comparing the given ordinary topology σ.

Let SO(X, σ) (resp. FSO(X, σf )) denote the family of all ordinary semi-open sets (resp.
fuzzy semi-open sets) in (X, σ) (resp. (X, σf )); then σ ⊂ SO(X, σ) and σf ⊂ FSO(X, σf )
hold. An extension of f : σ → σf to SO(X, σ), say fs : SO(X, σ) → FSO(X, σf ), is well
defined by fs(A) := χA for every A ∈ SO(X, σ). The following Remark 1.3 shows that
fs : SO(X, σ) → FSO(X, σf ) is not onto.

Remark 1.3 For the following topological space (X, σ), the correspondence fs : SO(X, σ) →
FSO(X, σf ) is not onto, where fs(V ) := χV for every set V ∈ SO(X, σ). Let X := {a, b, c}
and σ := {∅, {a}, {b}, {a, b}, X}. Then, we have SO(X, σ) = σ ∪ {{a, c}, {b, c}}; and
{χU |U ∈ SO(X, σ)} = fs(SO(X, σ)). Let λc be a fuzzy set on X defined by λc(a) =
0, λc(b) = 1, λc(c) = t, where t is a real number with 0 < t < 1. Then, we see that λc is
fuzzy semi-open in (X, σf ), i.e., λc ∈ FSO(X, σf )). Indeed, there exists a fuzzy open set
χ{b} such that χ{b} ≤ λc ≤Cl(χ{b}) hold in (X, σf ), because Cl(χ{b}) = χCl({b}) = χ{b,c}
hold. Since λc(c) = t and 0 < t < 1, we see that λc 6= χA for any set A ⊂ X; and so
λc 6∈ fs(SO(X, σ)). Namely, fs : SO(X, σ) → FSO(X, σf ) is not onto.

We find an alternative example in [19, (3.5),(III-11)] which is shown on the digital plane
(X, σ) = (Z2, κ2). And, by Remark 3.6 in Section 3, it’s general version for the digital
n-space (Zn, κn) is given.

The below Remark 1.4 shows that a property for a topological space (X, σ) does not be
hereditary to (X, σf ). In order to explain it, we recall some definitions and properties (∗
1)-(∗ 3) as follows.
In 1970, the concept of T1/2-spaces (cf. (∗3) below) was studied initiately by Levine [18]
by introducing the concept of generalized closed sets for a topological space. The work on
generalized closed sets and their related works are developing by many authors until now. A
subset A of (X, σ) is said to be generalized closed [18, Definition 2.1] in (X, σ), if Cl(A) ⊂ O
holds in (X, σ) whenever A ⊂ O and O is open in (X, σ). The complement of a generalized
closed set of (X, σ) is called generalized open [18, Definition 4.1] in (X, σ). It is well known
that:

(∗1) ([18, Theorem 2.4]) the union of two “generalized closed sets” is ”generalized closed”;
and

(∗2) ([18, Example 2.5]) the intersection of two “generalized closed sets” is generally not
“generalized closed”. Moreover, it is well known that every closed set is generalized closed.

(∗3) A topological space (X, σ) is said to be T1/2 [18, Definition 5.1] if every “generalized
closed set” of (X, σ) is closed in (X, σ). By Dunham [6], it was proved that a topological
space (X, σ) is T1/2 if and only if, for each point x ∈ X, {x} is open or closed ([6, Theorem
2.5]).
In 1970, E. Khalimsky [11] studied initiately the concept of the digital line (Z, κ) and it is
also called the Khalimsky line (e.g., Section 3 below; cf. [13] and references there, [12], [14,
p.905, line −5],[15, p.175]; e.g., [7]). The digital line (Z, κ) is an interesting and importante
example of the T1/2-topological space ([5, Example 4.6]) and, moreover, (Z, κ) is a T3/4-space
([5, Definition 4, Theorem 4.1]).

Remark 1.4 The digital line (Z, κ) is a T1/2-topological space ([5, Example 4.6]); however
the induced fuzzy topological space (Z, κf ) from (Z, κ) is not fuzzy T1/2 ([8, Example 4.8]).
Here, a fuzzy topological space (Y, τY ) is said to be fuzzy T1/2 [2] if every fuzzy generalied
closed set is fuzzy closed. The above property shows that the property on such separation
axiom for a topological space (X, σ) does not be hereditary to the corresponding fuzzy
separation axiom for (X, σf ) even if there is a bijectin f : σ → σf .
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One of the purposes in the present paper is to prove the following Theorem A using some
properties on (X, σf ) in Section 2 below. Roughly speaking, when a fuzzy set on X, say
λ, is given, then we can consider a decomposition such that λ = λ1 ∨ λ2(λ1 ∧ λ2 = 0) and
λ1 and λ2 are two fuzzy sets characterized from an induced and specified fuzzy topological
space (X, σf ), where σ is a topology of X. And so, let λ ∈ IX be a given fuzzy set on X;
when we choice many topologies on X, say σ, σ′,...., we can get many decompositions of the
fuzzy set λ , which are characterized from the induced and specified fuzzy topologies on X,
say σf , (σ′)f ,...., respectively. Some analogous decomposition properties of a fuzzy set are
investigated by [19, Theorem 3.1, Corollary 3.7] and [9, Corollary 2.9, Theorem 3.6].

Theorem A (Theorem 2.5 (ii) in Section 2 below) Let λ ∈ IX be a fuzzy set such that
λ 6= 0. Let (X, σf ) be a fuzzy topological space induced by (X, σ). Then, we have the follow-
ing decomposition of λ:
λ = λO(X,σf ) ∨ λ∗PC(X,σf ) and λO(X,σf ) ∧ λ∗PC(X,σf ) = 0.

In Section 3 we have the explicite form of λO(Zn,(κn)f ) and λ∗PC(Zn,(κn)f ) for the case
where (X, σ) = (Zn, κn) and (X, σf ) = (Zn, (κn)f ) (cf. Corollary 3.1, Theorem 3.5 below).

2 Proof of Theorem A In the present section we prove Theorem A. We need the
concept of fuzzy points in the sense of Pu Pao-Ming and Liu Ying-Ming (Definition 2.1
below), the following notations (Notation I below) and a result (Theorem B below).

In the present paper, for the concept of fuzzy points, we adopt Pu’s definition of a fuzzy
point in the sense of ([22]).

Definition 2.1 (Pu Pao-Ming and Liu Ying-Ming [22, Definition 2.1], e.g., [19, Definition
1.3]) A fuzzy set on a set Y is said to be fuzzy point if it takes the value 0 for all point y ∈ Y
except one point, say x ∈ Y . If it value at x is a (0 < a ≤ 1), we denote this fuzzy point by
xa. We note that supp(xa) = {a} holds and 0 < a ≤ 1. Namely, for a point x ∈ Y and a
real number a ∈ I such that 0 < a ≤ 1,
• a fuzzy point xa ∈ IY is a fuzzy set defined as, for any point y ∈ Y, xa(y) := a if
y = x;xa(y) := 0 if y 6= x.

Notation I. For a Chang’s fuzzy topological space (Y, τY ),
(i) FPO(Y, τY ) := {λ ∈ IY | λ is fuzzy preopen in (Y, τY )},

FPC(Y, τY ) := {λ ∈ IY | λ is fuzzy preclosed in (Y, τY )}.
Namely, by definition, FPO(Y, τY ) = {λ ∈ IY |λ ≤ Int(Cl(λ)) holds in (Y, τY )} and
FPC(Y, τY ) = {λ ∈ IY | Cl(Int(λ)) ≤ λ holds in (Y, τY )}.
(ii) For a fuzzy set λ ∈ IY such that λ 6= 0 (i.e., supp(λ) := {x ∈ Y |λ(x) 6= 0} 6= ∅),

O(λ) := {y ∈ supp(λ)| yλ(y) ∈ τY },
PC(λ) := {y ∈ supp(λ)| yλ(y) ∈ FPC(Y, τY )},
PC∗(λ) := {y ∈ supp(λ)| yλ(y) ∈ FPC(Y, τY ) and yλ(y) 6∈ τY }.

In the category of fuzzy topological spaces (X, σf ) induced by topological spaces (X, σ),
we know the following theorem [19], say Theorem B in the present paper:
Theorem B (i) ([19, (3.6)(i)]) Every fuzzy point xa is fuzzy open or fuzzy preclosed in
(X, σf ). Namely, for every fuzzy point xa, we have xa ∈ σf ∪ FPC(X, σf ).

(ii) ([19, (3.6)(ii)]) A fuzzy point xa is fuzzy open in (X, σf ) if and only if a = 1 and {x}
is open in (X, σ).

(iii) ([19, (3.2)]) For a fuzzy set λ on X, Cl(λ) = χCl(supp(λ)) holds in (X, σf ); and
Int(λ) = χInt(λ−1({1})) holds in (X, σf ). ¤

Theorem B (i) above is a fuzzy version of the following property:([3, Lemma 2.4]) for a
topological space (X, σ), every singleton {x} is open or preclosed in (X, σ).
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For a fuzzy set λ on Y and a fuzzy topological space (Y, τY ), we define three fuzzy sets
λO(Y,τY ), λPC(Y,τY ) and λ∗PC(Y,τY ) as follows.

Definition 2.2 Let λ ∈ IY be a fuzzy set such that λ 6= 0 and (Y, τY ) a Chang’s fuzzy
topological space. The following fuzzy sets are well defined: for λ above,

(i) λO(Y,τY ) :=
∨{xλ(x) ∈ IY | xλ(x) ∈ τY } if O(λ) 6= ∅; λO(Y,τY ) := 0 if O(λ) = ∅;

(ii) λPC(Y,τY ) :=
∨{xλ(x) ∈ IY | xλ(x) ∈ FPC(Y, τY )} if PC(λ) 6= ∅; λPC(Y,τY ) := 0 if

PC(λ) = ∅,
(iii) λ∗PC(Y,τY ) :=

∨{xλ(x) ∈ IY | xλ(x) ∈ FPC(Y, τY ) and xλ(x) 6∈ τY } if PC∗(λ) 6= ∅;
λ∗PC(Y,τY ) := 0 if PC∗(λ) = ∅.

Lemma 2.3 Let λ be a fuzzy set in Y such that λ 6= 0, i.e., supp(λ) 6= ∅ and (Y, τY ) a
Chang’s fuzzy topological space. Then, we have the following properties:

(i) λO(Y,τY ) = 0 holds if and only if xλ(x) 6∈ τY for each point x ∈supp(λ) (i.e., O(λ) = ∅).
(ii) λ∗PC(Y,τY ) = 0 if and only if xλ(x) 6∈ FPC(Y, τY ) or xλ(x) ∈ τY for each point

x ∈supp(λ) (i.e., PC∗(λ) = ∅).
(iii) (a) If O(λ) 6= ∅, then λO(Y,τY ) =

∨{xλ(x)| x ∈ O(λ)}.
(b) If PC(λ) 6= ∅, then λPC(Y,τY ) =

∨{xλ(x)| x ∈ PC(λ)}.
(c) If PC∗(λ) 6= ∅, then λ∗PC(Y,τY ) =

∨{xλ(x)| x ∈ PC∗(λ)}.
(iv) λ∗PC(Y,τY ) ≤ λPC(Y,τY ) ≤ λ hold.

Proof. (i) (Necessity) Suppose that there exists a point z ∈supp(λ) such that zλ(z) ∈ τY .
Then, O(λ) 6= ∅. For the point z we set Az := {xλ(x)(z) ∈ I|xλ(x) ∈ τY }; and so Az 6= ∅.
Then, by Definition 2.2 (i), (λO(Y,τY ))(z) = supAz and so λO(Y,τY )(z) = sup{λ(z), 0} =
λ(z). Indeed, xλ(x)(z) = λ(z) or 0. Thus we have λO(Y,τY ) 6= 0; this contradicts the
assumption. (Sufficiency) The proof is obtained by Definition 2.2 (i). (ii) The
sufficiency is obtained by Definition 2.2 (iii). (Necessity) Suppose that there exists a
point z ∈supp(λ) such that zλ(z) ∈ FPC(Y, τY ) and zλ(z) 6∈ τY . Then, PC∗(λ) 6= ∅. For
the point z, we set B∗z : ={xλ(x)(z) ∈ I|xλ(x) ∈ FPC(Y, τY ) and xλ(x) 6∈ τY } and note
B∗z 6= ∅. Then λ∗PC(Y,τY )(z) = supB∗z . Since xλ(x)(z) = λ(z) or 0 and z ∈supp(λ) we have
λ∗PC(Y,τY )(z) = sup{λ(z), 0} = λ(z) and hence λ∗PC(Y,τY )(z) > 0 for the point z. Namely,
we have λ∗PC(Y,τY ) 6= 0; this contradicts the assumption. (iii) By using definitions (cf.
Notation I, Definition 2.2), it is shown that {xλ(x)| xλ(x) ∈ τY } = {xλ(x)| x ∈ O(λ)},
{xλ(x)| xλ(x) ∈ FPC(Y, τY )}={xλ(x)| x ∈ PC(λ)} and {xλ(x)| xλ(x) ∈ FPC(Y, τY ), xλ(x) 6∈
τY }={xλ(x)| x ∈ PC∗(λ)} hold. Thus we have the required equalities. (iv) It is obvious
that supp(λ) ⊃ PC(λ) ⊃ PC∗(λ) (cf. Notation above). Therefore, we have that λ ≥
λPC(Y,τY ) ≥ λ∗PC(Y,τY ), because λ =

∨{xλ(x)| x ∈supp(λ)} holds ([22, Definition 2.2]; e.g.,
[16, Lemma 2.1], [19, Lemma 2.5(i)]) and the equalities (b) and (c) hold in (iii) above. ¤

Theorem 2.4 Let λ ∈ IX be a fuzzy set such that λ 6= 0. For a fuzzy topological space
(X, σf ) induced by a topological space (X, σ), λO(X,σf ) = 0 if and only if λ = λ∗PC(X,σf ) =
λPC(X,σf ) hold.

Proof. (Necessity) It follows from assumption and Lemma 2.3(i) that xλ(x) 6∈ σf for ev-
ery point x ∈supp(λ). Thus, by Theorem B(i) above, it is shown that, for every point
x ∈supp(λ), xλ(x) is fuzzy preclosed in (X, σf ). Thus, we have λ =

∨{xλ(x)| x ∈supp(λ)} =∨{xλ(x)| xλ(x) ∈ FPC(X, σf ) and xλ(x) 6∈ σf} = λ∗PC(X,σf ). Therefore, using Lemma 2.3(iv),
we conclude that λ = λ∗PC(X,σf ) = λPC(X,σf ) hold. (Sufficiency) Assume that
λ = λPC(X,σf )=λ∗PC(X,σf ) hold. We recall that λ∗PC(X,σf )=

∨{xλ(x)|xλ(x) ∈ FPC(X, σf )
and xλ(x) 6∈ σf}= ∨{xλ(x)| x ∈ PC∗(λ)} (cf. Lemma 2.3 (iii)). Suppose PC∗(λ) = ∅.
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Then, λ∗PC(X,σf ) = 0 ( cf. Definition 2.2(iii)); and so we have λ = 0; this contradicts the
assumption on λ (i.e., supp(λ) 6= ∅ ). Thus, we consider the case where PC∗(λ) 6= ∅ for
λ. We claime that supp(λ) ⊂ PC∗(λ). Indeed, let w be any point such that w 6∈ PC∗(λ).
Then, for each point x ∈ PC∗(λ), we have xλ(x)(w) = 0, because of w 6= x. Here, we put
B∗w := {xλ(x)(w) ∈ I|x ∈ PC∗(λ)}; then B∗w = {0}; and so we have (λ∗PC(X,σf ))(w) =sup
B∗w = 0. By using the assumption of the present Sufficiency, it is shown that λ(w) = 0 and
so w 6∈supp(λ). Therefore, we show supp(λ) ⊂ PC∗(λ). Therefore, we have xλ(x) 6∈ σf

for every point x ∈supp(λ), because of x ∈ PC∗(λ). By Lemma 2.3(i), it is obtained that
λO(X,σf ) = 0. ¤

We shall prove Theorem A as follows; Theorem A is included in Theorem 2.5 below (i.e.,
Theorem 2.5 (ii)). First we recall the following notation:
Notation II: for a topological space (X, σ) and a subset E of X,
let Xσ := {x ∈ X| {x} ∈ σ}; and Eσ := E ∩Xσ. It is obvious that Eσ is open in (X, σ) for
any subset E ⊂ X.
Notation III : for a fuzzy set λ on X and a topological space (X, σ),
(i) λ−1({1}) := {y ∈ X| λ(y) = 1}; then λ−1({1}) is a subset of X, because λ ∈ IX ;
(ii) (λ−1({1}))σ := λ−1({1}) ∩ Xσ (i.e., (λ−1({1}))σ = {y| y ∈ λ−1({1}), {y} is open in
(X, σ)}).
Theorem 2.5 Let λ ∈ IX be a fuzzy set such that λ 6= 0. Let (X, σ) be a topological
space and (X, σf ) a fuzzy topological space induced by (X, σ). Then, we have the following
properties of λ:

(i) λ = λO(X,σf ) ∨ λPC(X,σf ).
(ii) λ = λO(X,σf ) ∨ λ∗PC(X,σf ) and λO(X,σf ) ∧ λ∗PC(X,σf ) = 0.
(iii) λO(X,σf ) = χE, where E := Xσ ∩ λ−1({1}) = (λ−1({1}))σ; λO(X,σf ) is fuzzy open

in (X, σf ).

Proof. We first recall the following (∗1) with Notation I and we claim the following properties
(∗2) and (∗3):
(∗1) supp(λ) ⊃ PC(λ) ⊃ PC∗(λ) and supp(λ) ⊃ O(λ) hold in (X, σ) (cf. Notation I);
(∗2) supp(λ) = O(λ) ∪ PC(λ) holds in (X, σ);
(∗3) supp(λ) = O(λ) ∪ PC∗(λ) and O(λ) ∩ PC∗(λ) = ∅ hold in (X, σ).

Proof of (∗2). By Theorem B, it is shown that, for a point x ∈ supp(λ), the fuzzy point
xλ(x) is fuzzy open or fuzzy preclosed in (X, σf ), i.e., xλ(x) ∈ σf or xλ(x) ∈ FPC(λ). Thus,
for a point x ∈supp (λ), x ∈ O(λ) or x ∈ PC(λ); and so we have supp(λ) ⊂ O(λ) ∪ PC(λ).
Since O(λ) ⊂supp(λ) and PC(λ) ⊂supp(λ), we have the required equality (∗2). (¦)

Proof of (∗3). By definition, it is easily shown that PC∗(λ) ⊂ PC(λ). And, we have
PC∗(λ) = {y ∈supp(λ)| yλ(y) ∈ FPC(X, σf )} ∩ {y ∈supp(λ)| yλ(y) 6∈ σf} =PC(λ)∩[supp
(λ) \O(λ)]; and so PC∗(λ) = PC(λ) ∩ [supp (λ) \O(λ)]. Thus, we have PC∗(λ) ∪O(λ) =
[PC(λ)∩(supp(λ) \ O(λ)] ∪ O(λ) =supp(λ) ( cf. (∗2)) and PC∗(λ) ∩ O(λ) ⊂ PC(λ) ∩ [X \
O(λ)] ∩O(λ) = ∅. ¦
In the finnal stage, we prove (i), (ii) and (iii) as follows.

(i). For the proof of (i) we consider the following three cases. And it is well known that
λ =

∨{xλ(x)| x ∈supp(λ)} holds (cf. [22, Definition 2.2], e.g., [16, lemma 2.2],[19, Lemma
2.5(i)]).

Case 1. O(λ) 6= ∅, PC(λ) 6= ∅: for this case, using (∗2) above and Lemma 2.3 (iii), we
have λ =

∨{xλ(x)| x ∈supp(λ)}= (
∨{xλ(x)| x ∈ O(λ)})∨(

∨{xλ(x)| x ∈ PC(λ)}=λO(X,σf )∨
λPC(X,σf ).

Case 2. O(λ) 6= ∅, PC(λ) = ∅: for this case, we have λPC(X,σf ) = 0 (cf. Definition 2.2(ii))
and supp(λ) = O(λ) (cf. (∗2) above). Thus, we have λ =

∨{xλ(x)| x ∈supp(λ)}=∨{xλ(x)| x ∈
O(λ)}=λO(X,σf ) ∨ λPC(X,σf ), because λPC(X,σf ) = 0.
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Case 3. O(λ) = ∅: for this case, by (∗2) above and Lemma 2.3(i), it is shown that
λO(X,σf ) = 0 and supp(λ) = PC(λ); and so PC(λ) 6= ∅, because of λ 6= 0. Thus, we have
λ =

∨{xλ(x)| x ∈supp(λ)}=0 ∨ (
∨{xλ(x)| x ∈ PC(λ)}= λO(X,σf ) ∨ λPC(X,σf ).

Therefore, we show that the equality (i) holds for all cases.
(ii). Since supp(λ) = O(λ) ∪ PC∗(λ) (cf. (∗3)), we are able to conclude that

(ii-1) λ = λO(X,σf ) ∨ λ∗PC(X,σf ); and (ii-2) λO(X,σf ) ∧ λ∗PC(X,σf ) = 0.
Proof of (ii-1). We consider the following three cases for the proof.
Case 1. O(λ) 6= ∅, PC∗(λ) 6= ∅: for this case, using (∗3) above and Lemma 2.3 (iii),

we have λ = {xλ(x)| x ∈supp(λ)}= (
∨{xλ(x)| x ∈ O(λ)}) ∨ (

∨{xλ(x)| x ∈ PC∗(λ)}=
λO(X,σf ) ∨ λ∗PC(X,σf ).

Case 2. O(λ) 6= ∅, PC∗(λ) = ∅: for this case, we have λ∗PC(X,σf ) = 0 (cf. Defini-
tion 2.2(iii)) and supp(λ) = O(λ) (cf. (∗3) above). Thus, we have λ =

∨{xλ(x)| x ∈supp(λ)}=∨{xλ(x)| x ∈ O(λ)}=λO(X,σf ) ∨ λ∗PC(X,σf ), because λ∗PC(X,σf ) = 0.
Case 3. O(λ) = ∅: for this case, we have λO(X,σf ) = 0 (cf. Definition 2.2(i)). By (∗3),

it is shown that supp(λ) = PC∗(λ); and so PC∗(λ) 6= ∅, because of λ 6= 0. Thus, we have
λ =

∨{xλ(x)| x ∈supp(λ)}=0 ∨ (
∨{xλ(x)|x ∈ PC∗(λ)}= λO(X,σf ) ∨ λ∗PO(X,σf ). (¦)

Proof of (ii-2). For a point y ∈ X, we claim that (λO(X,σf ) ∧ λ∗PC(X,σf ))(y) = 0; i.e.,
Min{λO(X,σf )(y), λ∗PC(X,σf )(y)} = 0. For the point y, we consider the following two cases.

Case 1. y ∈ O(λ): for this point y, we have y 6∈ PC∗(λ) (cf. (∗3) before the proof of
(i) above). Then, we have that y 6= x for each x ∈ PC∗(λ), i.e., xλ(x)(y) = 0 for each
x ∈ PC∗(λ). Thus, if PC∗(λ) 6= ∅ , then λ∗PC(X,σf )(y) = (

∨{xλ(x)| x ∈ PC∗(λ)})(y)
=sup{xλ(x)(y)| x ∈ PC∗(λ)} =sup{0} = 0 (cf. Lemma 2.3(iii)(c)). And, if PC∗(λ) =
∅, then λ∗PC(X,σf )(y) = 0 (cf. Definition 2.2(iii)). Thus, for this Case 1, we show that
Min{λO(X,σf )(y), λ∗PC(X,σf )(y)} = 0.

Case 2. y 6∈ O(λ): for the point y, we have that x 6= y for each point x ∈ O(λ);
and so xλ(x)(y) = 0 for each point x ∈ O(λ). Thus, if O(λ) 6= ∅, then λO(X,σf )(y) =
(
∨{xλ(x)| x ∈ O(λ)})(y) =sup{xλ(x)(y)| x ∈ O(λ)} =sup{0} = 0 (cf. Lemma 2.3(iii)(a)).

And, if O(λ) = ∅, then λO(X,σf )(y) = 0 (cf. Definition 2.2(i)). Thus, for this Case 2, we
show that Min{λO(X,σf )(y), λ∗PC(X,σf )(y)} = 0.
Therefore we prove λO(X,σf ) ∧ λ∗PC(X,σf ) = 0.

(iii). By Theorem B(ii) in the top of the present section, it is well known that a fuzzy
point xa is fuzzy open in (X, σf ) if and only if a = 1 and {x} is open in (X, σ). For a point
x ∈supp(λ), λ(x) > 0 and so a fuzzy point xλ(x) is well defined. Thus, we have that xλ(x)

is fuzzy open in (X, σf ) (i.e., xλ(x) ∈ σf ) if and only if λ(x) = 1 and {x} is open in (X, σ)
(i.e., x ∈ E := λ−1({1}) ∩Xσ, cf. Notation II, Notation III). Therefore, if E 6= ∅, then we
have that λO(X,σf ) =

∨{xλ(x)| xλ(x) ∈ σf} =
∨{xλ(x)| x ∈ λ−1({1})∩Xσ} =

∨{x1| x ∈ E}
=

∨{χ{x}| x ∈ E} = χF = χE , where F =
⋃{{x}| x ∈ E}, and hence λO(X,σf ) = χE .

If E = ∅, then O(λ) := {y ∈ supp(λ)| yλ(y) ∈ σf} ={y ∈ supp(λ)| λ(y) = 1 and {y} ∈
σ} = {y ∈ supp(λ)|y ∈ E = ∅} = ∅ and so λO(X,σf ) = 0 = χ∅. Therefore, we prove
λO(X,σf ) = χE . For the proof of λO(X,σf ) ∈ σf , it is evident from the openness of E :=
λ−1({1}) ∩Xσ = (λ−1(1))σ and the definition of σf . ¤

3 Decompositions of fuzzy sets on (Zn, (κn)f ) Let (Zn, κn) be the digital n-space
and (Zn, (κn)f ) a Chang’s fuzzy topological space induced from (Zn, κn) (cf. Definition 1.2).
In the present section, we have the following decomposition theorem (Corollary 3.1) of a
fuzzy set λ on Zn by two fuzzy sets χE and λ∗PC(Zn,(κn)f ) with fuzzy topological properties
in (Zn, (κn)f ) and the precise form of λ∗PC(Zn,(κn)f ) (Theorem 3.5).

We recall that:
• the digital n-space (Zn, κn) (e.g., [15, Definition 4],[7]) is the topological product of n-
copies of the digital line (Z, κ) (cf. this is called the Khalimsky line in the contents between
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Remark 1.4 and (∗3) in Section 1), where n is an integer with n ≥ 2. The digital line (Z, κ) is
the set of the integers, Z, equipped with the topology κ having {{2m−1, 2m, 2m+1}|m ∈ Z}
as a subbace (e.g., [15, p.175]). Some joint papers by the one of the present authors include
a short survey or frequently used properties on (Zn, κn) where n ≥ 1 (cf. [20, Section 3],
[25], [7]). It is well known that a singleton {2m} is closed and not open and {2m + 1} is
open and not closed in (Z, κ), where m ∈ Z; moreover Cl({2s + 1}) = {2s, 2s + 1, 2s + 2}
holds and Int({2s}) = ∅ holds in (Z, κ), where s ∈ Z. We use the following notation (cf. [7,
Section 6], [24, Section 2], [25, Definition 2.1], [20, Definition 3.11]): for n ≥ 1,
• (Zn)κn :={(y1, y2, ..., yn) ∈ Zn| yi is odd for each integer i with 1 ≤ i ≤ n}; for any element
x of (Zn)κn , {x} is an open singleton of (Zn, κn) (cf. Notation II in Section 2 for X := Zn

and σ := κn);
• (Zn)Fn := {(y1, y2, ..., yn) ∈ Zn| yi is even for each integer i with 1 ≤ i ≤ n}; for any
element x of (Zn)Fn , {x} is a closed singleton of (Zn, κn);
• (Zn)mix(r) := {(y1, y2, ..., yn) ∈ Zn| r = #{i ∈ {1, 2, ..., n}| yi is even}}, where 1 ≤ r ≤ n
and #A denotes the cardinality of a set A. Especially, for the case where r = n, we note
(Zn)mix(n) = (Zn)Fn .
• For a nonempty subset E of (Zn, κn), the following subsets Eκn , EFn and Emix(r) are
well defined as follows: Eκn := E ∩ (Zn)κn , EFn := E ∩ (Zn)Fn , Emix(r) := E ∩ (Zn)mix(r)

(1 ≤ r ≤ n). Namely, we have that Eκn := {x ∈ E| {x} is open in (Zn, κn)} ⊂ E and
EFn := {x ∈ E| {x} is closed in (Zn, κn)} ⊂ E; and Eκn is an open subset of (Zn, κn).

First we apply Theorem 2.5 to the digital n-space (Zn, κn); then we have the following
corollary of Theorem 2.5.

Corollary 3.1 Let λ ∈ IZ
n

be a fuzzy set on Zn such that λ 6= 0. Then, we have the
following properties.

(i) λO(Zn,(κn)f ) = χE, where E := (λ−1({1}))κn .
(ii) Any fuzzy set λ has a decomposition: λ = χE∨λ∗PC(Zn,(κn)f ) and χE∧λ∗PC(Zn,(κn)f ) =

0, where E := (λ−1({1}))κn .

Proof. (i) (resp. (ii)) By Theorem 2.5(iii) (resp. Theorem 2.5(ii)) for (X, σ) = (Zn, κn), (i)
(resp. (ii)) is obtained. ¤

In the below, we shall show an exlicite expression of the fuzzy set λ∗PC(Zn,(κn)f ) above
(cf. Theorem 3.5).

Theorem 3.2 For a fuzzy topological space (Zn, (κn)f ) induced by the digital n-space (Zn, κn),
where n ≥ 1, and a fuzzy point xa in Zn, where x ∈ Zn and 0 < a ≤ 1, we have the following
properties.

(i) (i-1) Let x ∈ (Zn)κn (i.e., x = (2m1 + 1, 2m2 + 1, ..., 2mn + 1), where mi ∈ Z(1 ≤ i ≤
n)). Then,

Cl(xa) = χEo
x
, where Eo

x :=
∏n

i=1{2mi, 2mi + 1, 2mi + 2}.
(i-2) Let x ∈ (Zn)Fn (i.e, x = (y1, y2, ..., yn) for some even integers yi(1 ≤ i ≤ n)).

Then,
Cl(xa) = χ{x}.
(i-3) Suppose that n ≥ 2. Let x := (y1, y2, ..., yn) ∈ (Zn)mix(r)(1 ≤ r ≤ n − 1) and

Em(yi) = {yi}, if yi is even in Z(1 ≤ i ≤ n); Em(yi) = {yi − 1, yi, yi + 1}, if yi is odd in
Z(1 ≤ i ≤ n). Then,

Cl(xa) = χEm
x

, where Em
x :=

∏n
i=1 Em(yi).

(ii) (ii-1) If x ∈ (Zn)κn and a = 1, then Int(xa) = χ{x} = xa holds.
(ii-2) If x ∈ (Zn)κn and a 6= 1, then Int(xa) = 0 holds.
(ii-3) If x ∈ (Zn)Fn , then Int(xa) = 0 holds.
(ii-4) If x ∈ (Zn)mix(r) with 1 ≤ r ≤ n− 1, then Int(xa) = 0 holds.
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Proof. (i) (i-1) It is well known that {x} is an open singleton in (Zn, κn) and Cl({x}) =∏n
i=1 Cl({2mi + 1}) =

∏n
i=1{2mi, 2mi + 1, 2mi + 2} = Eo

x in (Zn, κn). Thus, we have
Cl(xa) = χCl({x}) = χEo

x
in (Zn, (κn)f ) for a point x ∈ (Zn)κn , because supp(xa) = {x} (cf.

Theorem B (iii)).
(i-2) We have Cl(xa) = χCl({x}) = χ{x} in (Zn, (κn)f ) (cf. Theorem B (iii)) for a point
x ∈ (Zn)Fn (i.e., {x} is a closed singleton of (Zn, κn)).
(i-3) Let x = (y1, y2, ..., yn) ∈ (Zn)mix(r)(1 ≤ r ≤ n− 1) (i.e., r = #{i| yi is even }). Since
Cl({x}) =

∏n
i=1 Cl(yi) =

∏n
i=1 Em(yi) = Em

x in (Zn, κn), it is shown that Cl(xa) = χEm
x

in
(Zn, (κn)f ) (cf. Theorem B(iii)).

(ii) (ii-1) Since a = 1, we have xa = χ{x} and (xa)−1({1}) = {x}. And, since {x} is an
open singleton of (Zn, κn), it is shown that Int(xa) = χInt(x1)−1({1}) = χInt({x}) (cf. Theorem
B (iii)).
(ii-2) For this fuzzy point xa, where a 6= 1, we have (xa)−1({1}) = ∅ and so Int(xa) =
χInt(∅) = 0 in (Zn, (κn)f ) (cf. Theorem B (iii)).
(ii-3) For this fuzzy point xa, we have (∗) Int(xa) = χInt((xa)−1({1})) = χInt({x}) if a = 1;
Int(xa) = χInt((xa)−1({1})) = χ∅ = 0 if a 6= 1 (cf. Theorem B (iii)).
Thus, we show (ii-3) for the case where a = 1 only. Since Int({x}) = ∅ in (Zn, κn) for this
point x. we have Int(x1) = χInt({x}) = χ∅ = 0 (cf. Theorem B (iii)).
(ii-4) For this point x, say x = (y1, y2, ..., yn), there exists even integers, say yi(e)(1 ≤ e ≤ r),
where {i(1), i(2), ..., i(r)} ⊂ {1, 2, ..., n}, because 1 ≤ r ≤ n − 1 and r = #{i|1 ≤ i ≤ n, yi

is even}; and Int({yi(e)}) = ∅ for each e with 1 ≤ e ≤ r in (Z, κ). Then, we have
Int({x}) =

∏n
j=1 Int(yj) = ∅ in (Zn, κn). Thus, if a = 1, then supp(xa) = (x1)−1({1}) = {x}

and so Int(xa) = χInt(supp(x1)) = χInt({x}) = χ∅ = 0 in (Zn, (κn)f ); if a 6= 1, then
supp(xa) = (xa)−1({1}) = ∅ and so Int(xa) = χInt(supp(xa)) = χ∅ = 0 in (Zn, (κn)f ) (cf.
Theorem B (iii)). Therefore, for this fuzzy point xa, we show Int(xa) = 0. ¤

Theorem 3.3 A fuzzy point xa is fuzzy open, otherwise xa is fuzzy preclosed in (Zn, (κn)f ).

Proof. In general, by Theorem B(i) in Section 2, every fuzzy point is fuzzy open or fuzzy
preclosed in (X, σf ), where (X, σ) is a topological space. Then we prove only that non-
existence of fuzzy point xa which is fuzzy open and fuzzy preclosed in (Zn, (κn)f ). Suppose
that there exists a fuzzy point xa such that xa ∈ FPC(Zn, (κn)f ) and xa ∈ (κn)f . Since xa

is fuzzy open in (Zn, (κn)f ), we have a = 1 and {x} is open in (Zn, κn) (cf. Theorem B(ii) in
Section 2). Thus, we can put x := (2m1 + 1, 2m2 + 1, ..., 2mn + 1) ∈ (Zn)κn . For this point
x and fuzzy singleton xa, where a = 1, by Theorem 3.2, Cl(Int(xa))=Cl(xa) = χEO

x
, where

EO
x :=

∏n
i=1{2mi, 2mi + 1, 2mi + 2} in (Zn, (κn)f ). Put x+ := (2m1 + 2, 2m2 + 2, ..., 2mn +

2). Then, we have x 6= x+ and so Cl(Int(x1))(x+) = χEO
x

(x+) = 1 6≤ x1(x+) = 0; this
contradicts xa ∈ FPC(Zn, (κn)f ) (cf. Notation I in Section 2). ¤

Since Zn = (Zn)κn ∪ (Zn)Fn ∪ (
⋃{(Zn)mix(r)|1 ≤ r ≤ n − 1}) (disjoint union), we see

obviously that Zn \ (Zn)κn = (Zn)Fn ∪ (
⋃{(Zn)mix(r)|1 ≤ r ≤ n − 1}) holds in the digital

n-space (Zn, κn), where n ≥ 2. And, we see Z \ Zκ = ZF hold in the digital line (Z, κ).

Corollary 3.4 Let xa be a fuzzy point on Zn, where 0 < a ≤ 1. The following properties
are equivalent:

(1) xa ∈ FPC(Zn, (κn)f );
(2) x ∈ E or 0 < a < 1, where E := Zn \ (Zn)κn ;
(2)’ x 6∈ (Zn)κn or a 6= 1;
(3) xa 6∈ (κn)f (i.e., xa is not fuzzy open in (Zn, (κn)f )).

Proof. (1)⇒(2) Suppose that x ∈ (Zn)κn and a = 1. Then, by Theorem B(ii) in Section 2,
xa is fuzzy open; and hence by Theorem 3.3, xa is not fuzzy preclosed in (Zn, (κn)f ); this
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contradicts the assumption (1). Therefore, we showed that x ∈ E or 0 < a < 1. (2)⇔(2)’
It is obvious.
(2)⇒(3) By Theorem B(ii) in Section 2 for (X, σ) = (Zn, κn), xa is not fuzzy open in
(Zn, (κn)f ). (3)⇒(1) It is proved by Theorem 3.3. ¤

Finally we show some explicite forms of λPC(Zn,(κn)f ).

Theorem 3.5 Let λ be a fuzzy set on Zn with λ 6= 0. Then, we have the following properties:
(i) λ∗PC(Zn,(κn)f ) =λPC(Zn,(κn)f ) holds.
(ii) If supp(λ) ∩ (Zn \ (Zn)κn) 6= ∅, then
(ii-1) λPC(Zn,(κn)f ) 6= 0;
(ii-2) λPC(Zn,(κn)f ) =

∨{xλ(x) ∈ IZ
n | x ∈supp(λ) \ (λ−1({1}))κn}; and

(ii-3) λPC(Zn,(κn)f ) =A(λ)0 ∨ (
∨{A(λ)r| 1 ≤ r ≤ n}), where

A(λ)0 :=
∨{xλ(x)| x ∈ ( supp(λ)\λ−1({1}))κn} and A(λ)r :=

∨{xλ(x)| x ∈ (supp(λ))mix(r)}
for each integer r with 1 ≤ r ≤ n.

Proof. (i) We consider the following two cases for the proof.
Case 1. PC∗(λ) 6= ∅: by Definition 2.2(iii) and Corollary 3.4(1)⇔(3), it is obtained that
λ∗PC(Zn,(κn)f ) :=

∨{xλ(x)| xλ(x) ∈ FPC(Zn, (κn)f ) and xλ(x) 6∈ (κn)f}= ∨{xλ(x)| xλ(x) ∈
FPC(Zn, (κn)f )}. And so, we have λ∗PC(Zn,(κn)f ) =λPC(Zn,(κn)f ), because PC∗(λ) ⊂ PC(λ)
and PC(λ) 6= ∅ hold.
Case 2. PC∗(λ) = ∅: for this case, λ∗PC(Zn,(κn)f ) := 0 (cf. Notation I in Section 2,
Definition 2.2(iii)). We claim that PC(λ) = ∅ holds under the assumption of Case 2
(i.e.,PC∗(λ) = ∅). Suppose that PC(λ) 6= ∅ (cf. Notation I in Section 2, Definition 2.2(ii)).
Then, there exists a point of Zn, say z ∈ PC(λ), and so zλ(z) ∈ PC(Zn, (κn)f ) and, by
Theorem 3.3, zλ(z) 6∈ (κn)f . The above result shows that zλ(z) ∈ PC∗(Zn, (κn)f ) holds, i.e.,
z ∈ PC∗(λ) (cf. Notation I in Section 2); this contradicts the assumption of Case 2 (i.e.,
PC∗(λ) = ∅). Thus, we claimed that if PC∗(λ) = ∅ then PC(λ) = ∅. And, under the
assumption of Case 2, we show that λ∗PC(Zn,(κn)f ):=0= λPC(Zn,(κn)f ) hold.

Therefore, by Case 1 and Case 2, it is proved that λ∗PC(Zn,(κn)f ) =λPC(Zn,(κn)f ) holds.
(ii) (ii-1) It follows from the assumption of (ii) that there exists a point z ∈supp(λ)

(i.e., λ(z) > 0) and z 6∈ (Zn)κn . By Corollary 3.4(2)’⇔ (1), it is obtained that zλ(z) ∈
FPC(Zn, (κn)f ) and so z ∈ PC(λ) 6= ∅ (cf. Notation I). We have that λPC(Zn,(κn)f )

=
∨{xλ(x)| xλ(x) ∈ FPC(Zn, (κn)f )} (cf. Definition 2.2(ii)) and λPC(Zn,(κn)f )(z) 6= 0 for

the point z, i.e., λPC(Zn,(κn)f ) 6= 0.
(ii-2) For a fuzzy point xλ(x), we have that λ(x) > 0, i.e., x ∈supp(λ). Then, by using

definitions and Corollary 3.4 (1)⇔(2)’, it is shown that: xλ(x) ∈ FPC(Zn, (κn)f ) if and only
if x ∈supp(λ)\ (λ−1(1))κn . By (ii-1) and Definition 2.2(ii), it is shown that: PC(λ) 6= ∅ and
so λPC(Zn,(κn)f ) =

∨{xλ(x)| x ∈ supp(λ) \ (λ−1({1}))κn}.
(ii-3) We use the well known decomposition of Z: Zn = (Zn)κn∪(

⋃{(Zn)mix(r)| 1 ≤ r ≤
n})(disjoint union) and (Zn)mix(n) = (Zn)Fn . It follows from assumption that supp(λ) 6= ∅.
We consider the decomposition of supp(λ) in (Zn, (κn)f ):
supp(λ) = (supp(λ))κn ∪ (

⋃{(supp(λ))mix(r)| 1 ≤ r ≤ n}); then, we have the following
equality in (Zn, (κn)f ) (cf. the right hand side equality in the end of the proof of (ii-2)):

(•) supp(λ) \ (λ−1({1}))κn = (supp(λ) \ λ−1(1))κn ∪ (
⋃{(supp(λ))mix(r))| 1 ≤ r ≤ n}.

Then, using (ii-2), the equality (•) above and a property of fuzzy union of fuzzy points (e.g.
[19, Lemma 2.5(ii)]), we have that:
λPC(Zn,(κn)f ) =

∨{xλ(x)| x ∈ supp(λ) \ (λ−1({1}))κn}
=[

∨{xλ(x)| x ∈ ( supp(λ) \ λ−1({1}))κn ] ∨ [
∨{xλ(x)| x ∈ ( supp(λ))mix(r)| 1 ≤ r ≤ n}]

=A(λ)0 ∨ (
∨{A(λ)r)| 1 ≤ r ≤ n}); and hence (ii-3) is proved. ¤
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The following remark is pre-announced in Remark 1.3.

Remark 3.6 (cf. Remark 1.3, [19, (III-12) in Section 3]) The following example also shows
that the correspondence fs : SO(Zn, κn) → FSO(Zn, (κn)f ) is not onto, even if f : κn →
(κn)f is bijective, where fs(U) := χU and f(V ) := χV for every U ∈ SO(Zn, κn) and every
V ∈ κn. We choice the follwing subset A as follows:

A := {y(1), y(2)} ⊂ Zn, where y(1) := (2m1, 2m2, ..., 2mn) and y(2) = (2m1 + 1, 2m2 +
1, ..., 2mn + 1) for some integers mi(1 ≤ i ≤ n); and so y(1) ∈ (Zn)Fn and y(2) ∈ (Zn)κn .
Using the subset A, we define the fuzzy set λA ∈ IZ

n

as follows:
λA(y(2)) := 1, λA(y(1)) := 1/2 and λA(y) := 0 for every point y ∈ Zn with y 6∈ A.

Then, we have that λA ∈ FSO(Zn, (κn)f ); indeed, Cl(Int(λA)) = χCl({y(2)}) ≥ λA hold (cf.
Theorem B(iii)). However, λA 6∈ fs(SO(Zn, κn)); indeed, it follows from the definition of fs

that fs(SO(Zn, κn)) = {χU |U ∈ SO(Zn, κn)} and λA 6= χU for each U ∈ SO(Zn, κn).

Remark to [19, Definition 1.2 (i)]: the authors of the present paper have this opportunity
of taking notice the following typographical correction in [19, Definition 1.2 (i)].

(•) line +3 from the top of the text of [19, Definition 1.2]:
“ if λ ≤Int(Cl(τY )) ” should be replaced by “ if λ ≤Int(Cl(λ)) ”.
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