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ABSTRACT. Using new properties (Theorem B in Section 2) of the concept of fuzzy
points in the sense of Pu Pao-Ming and Liu Ying-Ming (Definition 2.1), we first prove
that every fuzzy set A # 0 is decomposed by two fuzzy sets Ap(x ,r) and A;;C(X of)
(Theorem Aj;cf. Theorem 2.5(ii)), where (X,o7) is a specified Chang’s fuzzy space
(Definition 1.2, Remarks 1.3,1.4). Namely, A = Ao(x.05) V Ape(x,0r) 804 Ao(x,05) A

pe(x,ofy = 0 hold, and the fuzzy set Ap(x ,s) is fuzzy open in (X, o’) (Theo-
rem 2.5(iii)). Finally, these results are applied to the case where X = Z"(n > 0)
and ¢ = (k™)? (Theorem 3.3 and Theorem 3.5), where the topological space (X, o) is
the digital n-space (Z", k") (cf. Section 3).

1 Introduction and preliminaries In 1965, Zadeh [26] introduced the fundamen-
tal concept of fuzzy sets, which formed the backbone of fuzzy mathematics. After his works,
Chang [4] used them to introduce the concept of a fuzzy topology. Throughout the present
paper, the symbol I will denote the unit interval [0, 1] and Y a nonempty set. A fuzzy set
on Y ([26]) is a function with domain Y and values in I, i.e., an element of I .

We recall some concepts and properties as follows. Let (Y,7y) be a Chang’s fuzzy
topological space [4].

Definition 1.1 (C.L. Chang [4, Definition 2.2]) A Chang’s fuzzy topological space is a pair
(Y, 7y), where Y is a non-emptyset and 7y is a Chang’s fuzzy topology on it, where 7y C I,
i.e., a family 7y of fuzzy sets satisfying the following three axioms:

(1) 0,1€7y;

(2) if X €7y and p € 7y, then A A p € Ty;

(3) let J be an index set. If \; € 7y for each j € J, then \/{\;|j € J} € 1y.
The elements of Ty are called fuzzy open sets of (X, 7y). A fuzzy set p is called a fuzzy
closed set of (Y, y) if the complement u® € 7y.

For a Chang’s fuzzy topological space (Y, 7y ), a fuzzy set p on Y is said to be fuzzy preopen
[23] if 1 <Int(Cl(p)) holds in (Y, 7y). The fuzzy complement of a fuzzy preopen set is said
to be fuzzy preclosed. Namely, a fuzzy set A is fuzzy preclosed in (Y, 7y) if and only if
Cl(Int(A)) < X holds in (Y, 7y). A fuzzy set A is said to be fuzzy semi-open [1] in (Y, 7y)
if there exists a fuzzy open set v on Y such that v < A <Cl(v) holds in (Y, 7y). It is well
known that a fuzzy set A is fuzzy semi-open if and only if A <Cl(Int()A)). For a subset A
of X, x4 denotes the characteristic function of A, i.e., xa(y) :=1if y € A and xa(y) :=0
if y ¢ A. The concept of the ordinary preopen sets (resp. ordinary semi-open sets) was
introduced by [21] (resp. [17], [10]).

Definition 1.2 (e.g., [19, Example II, p.244], [8, p.161]) Let (X, o) be a fuzzy topological
space induced by a topological space (X, o), where X is a nonempty set and of := {xy|U €
o}; (X, 07) is an example of a Chang’s fuzzy topological space [4] (cf. Definition 1.1 above).
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There is a bijection, say f, between o and o/ which is defined by f(U) = xy for every U € o,
because an ordinary subset U is open in (X, o) (i.e., U € o) if and only if the characteristic
function xy is fuzzy open in (X,o/)(i.e., xu € of). However, the below Remark 1.3 and
Remark 1.4 show that the fuzzy topology o/ has some interesting and distinct properties
comparing the given ordinary topology o.

Let SO(X, ) (resp. FSO(X, 7)) denote the family of all ordinary semi-open sets (resp.
fuzzy semi-open sets) in (X, o) (resp. (X, 07)); then ¢ C SO(X,0) and o/ C FSO(X, of)
hold. An extension of f : ¢ — o/ to SO(X,0), say f, : SO(X,0) — FSO(X,a7), is well
defined by fs(A) := xa for every A € SO(X,0). The following Remark 1.3 shows that
fs : SO(X,0) — FSO(X,0') is not onto.

Remark 1.3 For the following topological space (X, o), the correspondence f, : SO(X,0) —
FSO(X,0/) is not onto, where fs(V) := xy for every set V € SO(X, ). Let X := {a,b, c}
and o := {0,{a},{b},{a,b},X}. Then, we have SO(X,0) = o U {{a,c},{b,c}}; and
{xv|U € SO(X,0)} = fs(SO(X,0)). Let A\. be a fuzzy set on X defined by A.(a) =
0,A:(b) = 1, Ac(c) = t, where t is a real number with 0 < ¢ < 1. Then, we see that A, is
fuzzy semi-open in (X,o7), i.e., A\ € FSO(X,0/)). Indeed, there exists a fuzzy open set
X{p} such that xy < Ae <Cl(xypy) hold in (X, o7), because Clixg}) = Xci({p}) = X{b.c}
hold. Since A.(c) =t and 0 < ¢t < 1, we see that A\, # xa for any set A C X; and so
A € fs(SO(X,0)). Namely, f, : SO(X,0) — FSO(X,o7) is not onto.

We find an alternative example in [19, (3.5),(III-11)] which is shown on the digital plane
(X,0) = (Z*k?). And, by Remark 3.6 in Section 3, it’s general version for the digital
n-space (Z", k™) is given.

The below Remark 1.4 shows that a property for a topological space (X, o) does not be

hereditary to (X, of ). In order to explain it, we recall some definitions and properties (x
1)-(x 3) as follows.
In 1970, the concept of T s-spaces (cf. (¥3) below) was studied initiately by Levine [18]
by introducing the concept of generalized closed sets for a topological space. The work on
generalized closed sets and their related works are developing by many authors until now. A
subset A of (X, o) is said to be generalized closed [18, Definition 2.1] in (X, o), if C1(4) C O
holds in (X, o) whenever A C O and O is open in (X, ). The complement of a generalized
closed set of (X, o) is called generalized open [18, Definition 4.1] in (X, o). It is well known
that:

(x1) ([18, Theorem 2.4]) the union of two “generalized closed sets” is ” generalized closed”;
and

(x2) ([18, Example 2.5]) the intersection of two “generalized closed sets” is generally not
“generalized closed”. Moreover, it is well known that every closed set is generalized closed.

(x3) A topological space (X, o) is said to be T 5 [18, Definition 5.1] if every “generalized

closed set” of (X, o) is closed in (X, o). By Dunham [6], it was proved that a topological
space (X, o) is T} 5 if and only if, for each point x € X, {«} is open or closed ([6, Theorem
2.5]).
In 1970, E. Khalimsky [11] studied initiately the concept of the digital line (Z, ) and it is
also called the Khalimsky line (e.g., Section 3 below; cf. [13] and references there, [12], [14,
p.905, line —5],[15, p.175]; e.g., [7]). The digital line (Z, ) is an interesting and importante
example of the T} jo-topological space ([5, Example 4.6]) and, moreover, (Z, x) is a Tj34-space
([5, Definition 4, Theorem 4.1}).

Remark 1.4 The digital line (Z, k) is a T} /o-topological space ([5, Example 4.6]); however
the induced fuzzy topological space (Z, k/) from (Z, r) is not fuzzy Ty 5 ([8, Example 4.8]).
Here, a fuzzy topological space (Y, 7y) is said to be fuzzy Ty, [2] if every fuzzy generalied
closed set is fuzzy closed. The above property shows that the property on such separation
axiom for a topological space (X,0) does not be hereditary to the corresponding fuzzy
separation axiom for (X, o/) even if there is a bijectin f : 0 — o7.
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One of the purposes in the present paper is to prove the following Theorem A using some
properties on (X, o) in Section 2 below. Roughly speaking, when a fuzzy set on X, say
A, is given, then we can consider a decomposition such that A = A\; V Aa(A1 A A2 = 0) and
A1 and Ag are two fuzzy sets characterized from an induced and specified fuzzy topological
space (X, of), where o is a topology of X. And so, let A € IX be a given fuzzy set on X;
when we choice many topologies on X, say o,0”,...., we can get many decompositions of the
fuzzy set A , which are characterized from the induced and specified fuzzy topologies on X,
say o/, (0/)7,...., respectively. Some analogous decomposition properties of a fuzzy set are
investigated by [19, Theorem 3.1, Corollary 3.7] and [9, Corollary 2.9, Theorem 3.6].

Theorem A (Theorem 2.5 (ii) in Section 2 below) Let A € IX be a fuzzy set such that
A#0. Let (X,07%) be a fuzzy topological space induced by (X, o). Then, we have the follow-
ing decomposition of A:

A=dox,0f) V Apeix,or) @ Ao(x.at) N Ape(x,0r) = 0-

In Section 3 we have the explicite form of Apzn (xn)s) and A;’;C(Z” (s)F) for the case
where (X,0) = (Z", k") and (X,0f) = (Z", (k™)/) (cf. Corollary 3.1, Theorem 3.5 below).

2 Proof of Theorem A In the present section we prove Theorem A. We need the
concept of fuzzy points in the sense of Pu Pao-Ming and Liu Ying-Ming (Definition 2.1
below), the following notations (Notation I below) and a result (Theorem B below).

In the present paper, for the concept of fuzzy points, we adopt Pu’s definition of a fuzzy
point in the sense of ([22]).

Definition 2.1 (Pu Pao-Ming and Liu Ying-Ming [22, Definition 2.1], e.g., [19, Definition
1.3]) A fuzzy set on a set Y is said to be fuzzy point if it takes the value 0 for all point y € YV
except one point, say € Y. If it value at z is a (0 < a < 1), we denote this fuzzy point by
Zq. We note that supp(z,) = {a} holds and 0 < a < 1. Namely, for a point z € Y and a
real number a € I such that 0 < a <1,

o a fuzzy point x, € IV is a fuzzy set defined as, for any point y € Y, z,(y) := a if
y=1z;24(y) :=0if y # .

Notation I. For a Chang’s fuzzy topological space (Y, 1y ),
(i) FPO(Y,1y) := {\ € IV| X is fuzzy preopen in (Y, 7y)},
FPO(Y,1y) := {\ € IV| X is fuzzy preclosed in (Y, 7y)}.
Namely, by definition, FPO(Y,1y) = {A € IY |A < Int(Cl()\)) holds in (Y,7y)} and
FPCO(Y,1y) = {\ € IY| Cl(Int(\)) < A holds in (Y, 7y)}.
(ii) For a fuzzy set A € IV such that X # 0 (i.e., supp()\) := {z € Y|\(x) # 0} # 0),
O(\) :={y € supp(N)| Yay) € 7v},
PC(A) :={y € supp(A)| yay) € FPC(Y,7v)},
PC*(X\) == {y € supp(\)| yr) € FPC(Y,7y) and yx(y) &€ v }-

In the category of fuzzy topological spaces (X, o) induced by topological spaces (X, o),
we know the following theorem [19], say Theorem B in the present paper:
Theorem B (i) ([19, (3.6)(1)]) Every fuzzy point x, is fuzzy open or fuzzy preclosed in
(X,07). Namely, for every fuzzy point x4, we have z, € of U FPC(X, o).

(ii) ([19, (3.6)(ii)]) A fuzzy point x, is fuzzy open in (X, o) if and only if a = 1 and {x}
is open in (X,0).

(i) ([19, (3.2)]) For a fuzzy set A on X, CU(A) = Xci(supp(r)) holds in (X,o7); and
[Tlt()\) = X]nt(A—l({l})) holds in (X, O'f). O

Theorem B (i) above is a fuzzy version of the following property:([3, Lemma 2.4]) for a
topological space (X, ), every singleton {x} is open or preclosed in (X, o).
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For a fuzzy set A on Y and a fuzzy topological space (Y, 7y ), we define three fuzzy sets
AO(Y,7y )s APC(Y,ry) and A'*PC(Y,Ty) as follows.

Definition 2.2 Let A € IV be a fuzzy set such that A\ # 0 and (Y, 7y) a Chang’s fuzzy
topological space. The following fuzzy sets are well defined: for A above,

(1) Ao(y’,,-y) = \/{,T)\(m) S IY‘ LU)\(:C) S Ty} if O()\) 7é @; )\o(yﬂ-y) =0 if O()\) = @;

(il) Ape(viry) = V{Za@) € IY] 2a@) € FPC(Y,7y)} if PC(A) # 0; Ape(y,ryy = 0 if
PC(\) =0,

(iii) )\;DC(Y,T‘/) = \/{:CA(I) S IY| Tx(z) € FPC(Y, Ty) and T () Q Ty} if PC*O\) 75 (Z);
)\};C(Y’Ty) =0 if PC*(\) = 0.

Lemma 2.3 Let A be a fuzzy set in' Y such that X # 0, i.e., supp(A\) # 0 and (Y,7y) a
Chang’s fuzzy topological space. Then, we have the following properties:

(1) Aov,ry) = 0 holds if and only if x5 & Ty for each point x €supp(X) (i.e., O(X) = 0).

(ii) Ape(viryy = 0 if and only if x5u) & FPC(Y,1y) or xxg) € Ty for each point
z €supp(N) (i.e., PC*(\) = 0).

(ili) (a) If O(N) # 0, then Ao(y,ry) = V{za@)| € OV}

(b) If PC() 70, then Apecyrey = Vizaw| © € PCOV}.

(c) If PC*(X) # 0, then Xpe(y .y = V{za@)| © € PC* (M)}

(IV) )\%C(Y,Ty) < )\’pc(yﬂ-y) < A hold.

Proof. (i) (Necessity) Suppose that there exists a point z €supp(A) such that zy(;) € 7y
Then, O(X) # (. For the point z we set A, := {z()(2) € I|zr) € Tv}; and so A, # 0.
Then, by Definition 2.2 (i), (Ao(v,ry))(2) = supA. and so Ao(y,y)(2) = sup{A(2),0} =
A(z). Indeed, xy(y)(2) = A(z) or 0. Thus we have Ao(y,r,) # 0; this contradicts the
assumption. (Sufficiency) The proof is obtained by Definition 2.2 (i). (ii) The
sufficiency is obtained by Definition 2.2 (iii). (Necessity) Suppose that there exists a
point z €supp(A) such that zy,) € FPC(Y,7y) and zy;) € 7y. Then, PC*(\) # ). For
the point 2z, we set B} : ={w\4)(2) € I|za@) € FPC(Y,7y) and ) € 7y} and note
B: # 0. Then Apc(yry)(2) = sup BI. Since 2(4)(2) = A(z) or 0 and z €supp(A) we have
Abe(vimy)(2) = sup{A(2),0} = A(z) and hence A%y, y(2) > 0 for the point z. Namely,
we have /\;C(Y’Ty) 2 0; this contradicts the assumption. (iii) By using definitions (cf.
Notation I, Definition 2.2), it is shown that {zx)| Zx@) € Ty} = {Za@)] 2 € OV},
{Z‘)\(w)| Tx(z) € FPC(Y,Ty)}Z{J?)\(Iﬂ x € PC()\)} and {Z‘)\(m)‘ Tx(z) € FPC(Y, Ty),.%‘/\(z) ¢
Ty }={Zx@)| z € PC*()\)} hold. Thus we have the required equalities. ~ (iv) It is obvious
that supp(A) D PC(A\) D PC*(\) (cf. Notation above). Therefore, we have that A\ >
APC(Yyry) Z Ape(yiry s Decause A = \{zy()| « €supp(A)} holds ([22, Definition 2.2; e.g.,
[16, Lemma 2.1], [19, Lemma 2.5(i)]) and the equalities (b) and (c) hold in (iii) above. O

Theorem 2.4 Let A € IX be a fuzzy set such that X\ # 0. For a fuzzy topological space
(X,07) induced by a topological space (X, o), Aox,0f) = 0 if and only if X = X;,C(X o) =
Ape(x,0r) hold.

Proof. (Necessity) It follows from assumption and Lemma 2.3(i) that zx,) & of for ev-
ery point x €supp(A). Thus, by Theorem B(i) above, it is shown that, for every point
x €supp(A), Ty (y) is fuzzy preclosed in (X, 07). Thus, we have A = \/{z(,)| = Esupp(\)} =

VA{z )| 2a@) € FPO(X,0f) and zy(,) & 0/} = Apc(x,0f)- Therefore, using Lemma 2.3(iv),
we conclude that A = Abe 5y = Apc(x,qr) hold. (Sufficiency) Assume that
A = Ape(x,05)=Ape(x,or) 0ld. We recall that Ape y r)= VA{za@)|or@) € FPC(X,07)

and z)(,) € 0/}= {z\)] # € PC*(N)} (cf. Lemma 2.3 (iii)). Suppose PC*(X) = 0.
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Then, ALe(x ) =0 ( cf. Definition 2.2(iii)); and so we have A = 0; this contradicts the
assumption on A (i.e., supp(\) # 0 ). Thus, we consider the case where PC*(\) # 0 for
A. We claime that supp()\) C PC*(\). Indeed, let w be any point such that w & PC*(\).
Then, for each point x € PC*()), we have zx(,)(w) = 0, because of w # z. Here, we put
By, = {xrm)(w) € Ilx € PC*(AN)}; then B;, = {0}; and so we have ()\;;C(Xﬁf))(w) =sup
B = 0. By using the assumption of the present Sufficiency, it is shown that A(w) =0 and
so w ¢supp(A). Therefore, we show supp(A) C PC*(X). Therefore, we have z)(,) ¢ o/

for every point x €supp(A), because of z € PC*()\). By Lemma 2.3( ), it is obtalned that
)‘O(X,af) = 0. 0

We shall prove Theorem A as follows; Theorem A is included in Theorem 2.5 below (i.e.,
Theorem 2.5 (ii)). First we recall the following notation:
Notation II: for a topological space (X, o) and a subset E of X,
let X, :={x € X| {2} € o}; and E, := EN X,. It is obvious that E, is open in (X, o) for
any subset £ C X.
Notation IIT : for a fuzzy set A on X and a topological space (X, o),
(i) A7r{1}) := {y € X| AMy) = 1}; then A™1({1}) is a subset of X, because A € IX;
) O = A 0K G 7Y = 101w € 37D, (o} i open
X,0)}).

Theorem 2.5 Let A\ € I be a fuzzy set such that X # 0. Let (X,0) be a topological
space and (X,0') a fuzzy topological space induced by (X,o). Then, we have the following
properties of A:

(1) A= Aox,0f V Ape(x,of) -

(ii) A = Ao(x,0r) V /\PC(X o) and )\@ X [,f) A )\PC(XJ,) 0.

(iii) Ao(x,0) = XE, where E := Y1y = O H{1) e Ao(x,0f) 18 fuzzy open
n (X,of).

Pmof. We first recall the following (x!) with Notation I and we claim the following properties
(+?) and (+°):

(1) supp(\) D PC(\) D PC*(\) and supp(A) D O(A) hold in (X, o) (cf. Notation I);

(x2) supp(A\) = O(\) U PC() holds in (X, 0);

(x3) supp(\) = O()\) U PC*(X) and O(A) N PC*(A\) = 0 hold in (X, o).

Proof of (¥?). By Theorem B, it is shown that, for a point # € supp()), the fuzzy point
Tx(y) is fuzzy open or fuzzy preclosed in (X, af), ie., Tx(z) € of or Tr(z) € FPC(A). Thus,
for a point & €supp (A),z € O(X) or & € PC(N); and so we have supp(A) C O(A) U PC(A).
Since O()\) Csupp(\) and PC()\) Csupp()), we have the required equality (x2). (o)

Proof of (). By definition, it is easily shown that PC*(\) C PC()). And, we have
PC*(\) = {y esupp(N)| yaqy) € FPC(X,07)} N {y esupp(N)| yay) € o/} =PC(M)N[supp
(M) \ O(N)]; and so PC*(X\) = PC(X) N [supp (A) \ O(A)]. Thus, we have PC*(A\) UO(\) =
[PC(A\)N(supp(A) \ O(N)] U O(N) =supp(A) (cf. (¥?)) and PC*(A\)NO(\) € PC(A\)N[X\
ON)]NOM) =0. o
In the finnal stage, we prove (i), (ii) and (iii) as follows.

(i). For the proof of (i) we consider the following three cases. And it is well known that
A = V{zx@)| z €supp(A)} holds (cf. [22, Definition 2.2], e.g., [16, lemma 2.2],[19, Lemma
2.5(1)]).

Case 1. O(\) # 0, PC()\) # 0: for this case, using (x?) above and Lemma 2.3 (iii), we
have A = V{zy()| # €supp(A) }= (V{zA@)| 2 € O}V (V{za@) | # € PC(A)}=Ao(x,01)V
Ape(X,of)-

Case 2. O(\) # 0, PC(\) = (: for this case, we have A\pc(x ) = 0 (cf. Definition 2.2(ii))
and supp(\) = O(X) (cf. (+?) above). Thus, we have A = \/{z\(z)| © €supp(A) }=\/{z\)| = €
O()\)}Z)\O(X’Jf) \% )\'pc(x’o-f), because )\pc(X,gf) =0.
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Case 3. O(\) = (: for this case, by (x¥?) above and Lemma 2.3(i), it is shown that
Ao(x,0r) = 0 and supp(\) = PC()); and so PC(X) # 0, because of A # 0. Thus, we have
A= V{zr@)| z €supp(M) }=0V (V{za@)| © € PCA)}= Aox,0f) V Ape(x,of)-

Therefore, we show that the equality (i) holds for all cases.

(ii). Since supp(\) = O(A) U PC*(\) (cf. (%)), we are able to conclude that
(11—1) )\ = AO(X,O'f) V A;‘)C(X,a'f); and (11—2) AO(X,O'f) A )\;C(X,O'f) = 0

Proof of (ii-1). We consider the following three cases for the proof.

Case 1. O(X\) # 0, PC*(\) # (): for this case, using () above and Lemma 2.3 (iii),
we have A = {ran] @ €supp(N)I= (Viza| © € OVN V (Vizawm| © € PCH ()=
Ao(x,af) V )\;;C(X,af)'

Case 2. O(X) # 0,PC*(A) = 0: for this case, we have Apcx ;) = 0 (cf. Defini-
tion 2.2(iii)) and supp(A) = O(X) (cf. (+*) above). Thus, we have X = \/{z ()|  €supp(A)}=
Viza@) 2 € ON)}=Ao(x,00) V Abe(x,0f) because Ao gy = 0.

Case 3. O(X) = 0: for this case, we have Ap(x o7y = 0 (cf. Definition 2.2(i)). By (%),
it is shown that supp(\) = PC*()); and so PC*()) # 0, because of A # 0. Thus, we have
A= V{z\@)| © €supp(N) }=0V (V{za@) [z € PC*(N)}= Ao(x,0) V APo(x,0h): ()

Proof of (ii-2). For a point y € X, we claim that (Ao(x,01) A Ape(x o)) () = 05 Le.,
Min{Ao(x,01)(¥), /\;C(Xyaf)(y)} = 0. For the point y, we consider the following two cases.

Case 1. y € O()\): for this point y, we have y & PC*()\) (cf. (**) before the proof of
(i) above). Then, we have that y # x for each € PC*()), i.e., xxy) (y) = 0 for each
x € PC*(\). Thus, if PC*(\) # 0 , then Ape(xon¥) = (V{zx@)| = € PC*(N)})(y)
=sup{zx)(y)| * € PC*(\)} =sup{0} = 0 (cf. Lemma 2.3(iii)(c)). And, if PC*(\) =

0, then Ape(x,0ry () = 0 (cf. Definition 2.2(iii)). Thus, for this Case 1, we show that

Min{Ao(x o) (1) Xoe(x o ()} = 0.
Case 2. y € O(\): for the point y, we have that x # y for each point x € O(M);

and 50 Ty(z)(y) = 0 for each point 2 € O(X). Thus, if O(X) # 0, then Ap(x ,1)(y) =

(VH{za@m| 2 € O (y) =sup{zr@)(y)] © € O(A)} =sup{0} = 0 (cf. Lemma 2.3(iii)(a)).

And, if O(A\) = 0, then A\p(x os)(y) = 0 (cf. Definition 2.2(i)). Thus, for this Case 2, we

show that Min{/\o(x,af)(y), )\;‘DC(X,U,')(y)} =0.

Therefore we prove A\p(x 57 A )\;‘,C(Xﬁf) =0.

(iii). By Theorem B(ii) in the top of the present section, it is well known that a fuzzy
point x, is fuzzy open in (X, o/) if and only if @ = 1 and {z} is open in (X, o). For a point
x esupp(A), A(xz) > 0 and so a fuzzy point 2, is well defined. Thus, we have that xy(,)
is fuzzy open in (X,07) (ie., z\(;) € of) if and only if A(z) = 1 and {z} is open in (X, 0)
(ie., » € E:= A"}({1}) N X,, cf. Notation II, Notation III). Therefore, if E # ), then we
have that Ao(x,0r) = V{Za@)| r@) € 07} =V{za@w) 2 € AT {1} N X, } = V{z1| 2 € E}
=V{x{e}| * € E} = xr = x&, where F' = J{{z}| x € £}, and hence \p(x ) = XE-

If E =0, then O(\) := {y € supp(A)| yrey) € 0/} ={y € supp(A)| A(y) = 1 and {y} €
o} = {y € supp(\)|ly € E = 0} = 0 and so A\p(x,,s) = 0 = xg. Therefore, we prove
Ao(x,07) = XE- For the proof of Ap(x 1) € of, it is evident from the openness of E :=
A H{1) N X, = (A1), and the definition of o/. O

3 Decompositions of fuzzy sets on (Z", (k")f) Let (Z™, k™) be the digital n-space
and (Z", (k™)%) a Chang’s fuzzy topological space induced from (Z", k™) (cf. Definition 1.2).
In the present section, we have the following decomposition theorem (Corollary 3.1) of a
fuzzy set A on Z™ by two fuzzy sets xp and /\;DC(Z",(K") n with fuzzy topological properties
in (Z", (k™)/) and the precise form of Ape(zn (xnyry (Theorem 3.5).
We recall that:

o the digital n-space (Z", k™) (e.g., [15, Definition 4],[7]) is the topological product of n-
copies of the digital line (Z, k) (cf. this is called the Khalimsky line in the contents between
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Remark 1.4 and (*3) in Section 1), where n is an integer with n > 2. The digital line (Z, k) is
the set of the integers, Z, equipped with the topology « having {{2m—1,2m,2m+1}| m € Z}
as a subbace (e.g., [15, p.175]). Some joint papers by the one of the present authors include
a short survey or frequently used properties on (Z", k™) where n > 1 (cf. [20, Section 3],
[25], [7]). It is well known that a singleton {2m} is closed and not open and {2m + 1} is
open and not closed in (Z, k), where m € Z; moreover Cl({2s + 1}) = {2s,2s + 1,2s + 2}
holds and Int({2s}) = 0 holds in (Z, k), where s € Z. We use the following notation (cf. [7,
Section 6], [24, Section 2], [25, Definition 2.1], [20, Definition 3.11]): for n > 1,

o (Z™)n:={(y1, Y2, -, Yn) € Z™| y; is odd for each integer 7 with 1 < i < n}; for any element
x of (Z™),n, {x} is an open singleton of (Z™, ™) (cf. Notation II in Section 2 for X := Z"
and o := k");

o (Z™)gFn = {(y1,Y2y -, Yn) € Z"| y; is even for each integer ¢ with 1 < ¢ < n}; for any
element x of (Z")zn, {x} is a closed singleton of (Z™, k™);
¢ (Z")mia(r) = {W1,Y2, s Yn) € Z"| v = #{i € {1,2,...,n}| y; is even}}, where 1 <r <n
and #A denotes the cardinality of a set A. Especially, for the case where r = n, we note
(Zn)mix(n) = (Zn)f“~

e For a nonempty subset E of (Z", k™), the following subsets Fyn, Exn and Eriz(r) are
well defined as follows: Exn := EN(Z")xn, Ern := EN(Z")Fr, Epigery = EN (L") misr)
(I < r < n). Namely, we have that En := {z € E| {z} is open in (Z",x")} C E and
Ern :={x € E| {z} is closed in (Z™,k™)} C E; and E» is an open subset of (Z", k™).

First we apply Theorem 2.5 to the digital n-space (Z™, x™); then we have the following
corollary of Theorem 2.5.

Corollary 3.1 Let A € I%" be a fuzzy set on Z™ such that X\ # 0. Then, we have the
following properties.

(i) Aozn (vm)f) = XE, where B := A7L{1})en -

(ii) Any fuzzy set X has a decomposition: \ = XEV)\;;C(Z",(I{")f) and XE/\)‘;FDC(Z",(;@")f) =
0, where E := (A1 ({1}))4n-

Proof. (i) (resp. (ii)) By Theorem 2.5(iii) (resp. Theorem 2.5(ii)) for (X, o) = (Z™, k™), (i)
(resp. (ii)) is obtained. O

In the below, we shall show an exlicite expression of the fuzzy set X;,C(Z” (5m)7) above
(cf. Theorem 3.5).

Theorem 3.2 For a fuzzy topological space (Z", (k™)¥) induced by the digital n-space (Z", k™),
wheren > 1, and a fuzzy point x4 in Z", where x € Z™ and 0 < a < 1, we have the following
properties.

(i) (i-1) Let x € (Z™)n (i€, x = (2my1+1,2mo+1,...,2m, + 1), where m; € Z(1 <1i <
n)). Then,

Cl(xq) = XEo, where ES := []: {2m;, 2m; 4+ 1,2m; + 2}.

(i-2) Let © € (Z™)gn (ie, ¢ = (Y1,Y2, ..., Yn) for some even integers y;(1 < i < n)).
Then,

Cl(xa) = X{z}

(i-3) Suppose that n > 2. Let x := (y1,Y2,-,Yn) € (Z")pmizey(1 < 7 < n—1) and
E™(y;) = {y:i}, if yi is even in Z(1 < i < n); E™(y;) = {yi — L,yi,y: + 1}, if y; is odd in
Z(1 <i<mn). Then,

Cl(zq) = X, where BT :=T[i E™(y;).

(
(ii-2) Jun and a # 1, then Int(z,) = 0 holds.
(ii-3) If x € (Z™) £n, then Int(z,) = 0 holds.
(ii-4) Ymiz(ry with 1 <7 <n—1, then Int(x,) = 0 holds.
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Proof. (i) (i-1) It is well known that {z} is an open singleton in (Z",x"™) and Cl({z}) =
[T, Cl({2m; + 1}) = [[i=,{2mi,2m; + 1,2m; + 2} = E? in (Z",k™). Thus, we have
Cl(za) = Xci({z}) = Xpe in (Z",(k™)]) for a point x € (Z™),», because supp(z,) = {z} (cf.
Theorem B (iii)).

(i-2) We have Cl(z4) = Xci({z}) = X{z} in (Z", (k")) (cf. Theorem B (iii)) for a point
x € (Z")gn (ie., {z} is a closed singleton of (Z™, k™)).

(i-3) Let = = (y1, 92, -+, ¥n) € (Z")mia(r)(1 <7 <n—1) (ie., r = #{i] y; is even }). Since
Cl({z}) =TT, Clwi) = [1i=y E™ (i) = EJ* in (Z™, k™), it is shown that Cl(z,) = xgr in
(Z", (k™)F) (cf. Theorem B(iii)).

(ii) (ii-1) Since a = 1, we have z, = x{y) and (z,) "' ({1}) = {z}. And, since {x} is an
open singleton of (Z", k™), it is shown that Int(24) = Xmt(e1)-1({1}) = Xmt({«}) (cf. Theorem
B (iii)).

(ii-2) For this fuzzy point z,, where a # 1, we have (x,)"1({1}) = 0 and so Int(z,) =
Xint(0) = 0 in (Z", (k™)7) (cf. Theorem B (iii)).

(ii-3) For this fuzzy point x,, we have (¥) Int(za) = Xint((za)-1({1})) = Xint({z}) if @ = 1;
Int(24) = Xint((za)-1({1})) = X0 = 0 if a # 1 (cf. Theorem B (iii)).

Thus, we show (ii-3) for the case where a = 1 only. Since Int({z}) = () in (Z", k™) for this
point x. we have Int(21) = X ({z}) = X0 = 0 (cf. Theorem B (iii)).

(ii-4) For this point z, say = (y1, ¥2, .., Yn), there exists even integers, say y;)(1 < e <),
where {i(1),i(2),...,i(r)} C {1,2,...,n}, because 1 <r <n—1and r = #{i|l < i < n,y,
is even}; and Int({y;.)}) = 0 for each e with 1 < e < 7 in (Z,x). Then, we have
Int({z}) = [j_, Int(y;) = @ in (Z",x™). Thus, if a = 1, then supp(z,) = (r1)71({1}) = {=}
and so Int(xa) = Xint(supp(z1)) — XInt({z}) = X0 = 0 in (Z", (/{")f); if a 75 1, then
supp(r,) = (24,) t({1}) = 0 and so Int(x,) = Xint(supp(za)) = X = 0 in (z", (k™)¥) (cf.
Theorem B (iii)). Therefore, for this fuzzy point x,, we show Int(z,) = 0. O

Theorem 3.3 A fuzzy point x, is fuzzy open, otherwise x4 is fuzzy preclosed in (Z7, (k™)1).

Proof. In general, by Theorem B(i) in Section 2, every fuzzy point is fuzzy open or fuzzy
preclosed in (X,o7), where (X,0) is a topological space. Then we prove only that non-
existence of fuzzy point x, which is fuzzy open and fuzzy preclosed in (Z", (x™)/). Suppose
that there exists a fuzzy point x, such that x, € FPC(Z", (k")?) and z, € (x")f. Since z,
is fuzzy open in (Z", (k")f), we have @ = 1 and {x} is open in (Z", ™) (cf. Theorem B(ii) in
Section 2). Thus, we can put z := (2my + 1,2m2 + 1,...,2m,, + 1) € (Z")4n. For this point
z and fuzzy singleton z,, where a = 1, by Theorem 3.2, Cl(Int(z,))=Cl(z,) = xgo, Where
EQ =TI {2m;,2m; +1,2m; 4+ 2} in (Z", (k")F). Put 2% := (2m1 +2,2ma + 2, ..., 2m, +
2). Then, we have z # 2+ and so Cl(Int(x1))(z%) = xgo(zt) = 1 £ x1(z™) = 0; this
contradicts z, € FPC(Z", (k™)f) (cf. Notation I in Section 2). O

Since Z" = (Z")xn U (Z")7n U (U{(Z") izl < 7 < n —1}) (disjoint union), we see
obviously that Z" \ (Z")xn = (Z")r» U (U{(Z")mizy|l <7 < n —1}) holds in the digital
n-space (Z", k™), where n > 2. And, we see Z \ Z, = Zx hold in the digital line (Z, ).

Corollary 3.4 Let x, be a fuzzy point on Z", where 0 < a < 1. The following properties
are equivalent:

(1) za € FPO(Z", (x")]);

(2)z € Eor0<a<l, where E:=7Z"\ (Z")xn;

@) & (@) o ? 1,

(3) 2o & (k™) (ice., 24 is not fuzzy open in (Z", (k™)7)).
Proof. (1)=(2) Suppose that z € (Z™).» and a = 1. Then, by Theorem B(ii) in Section 2,
x4 is fuzzy open; and hence by Theorem 3.3, z, is not fuzzy preclosed in (Z", (k™)f); this
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contradicts the assumption (1). Therefore, we showed that x € Eor0 <a <1. (2)<(2)’
It is obvious.

(2)=(3) By Theorem B(ii) in Section 2 for (X,o) = (Z™, k™), x, is not fuzzy open in
(z", (k™). (3)=(1) It is proved by Theorem 3.3. O

Finally we show some explicite forms of Apc(zn (n)r)-

Theorem 3.5 Let A be a fuzzy set on Z™ with A # 0. Then, we have the following properties:
(1) )\;;C(Z",(K")f) :)\PC(Zn7(Rn)f) holds.
(i) If supp(A) N (2 \ (Z"),n) # 0, then
(ii-1) Apc(zn,(snyry # 0;
(i1-2) Ape(zn (wnyr) =V{2a@) € 17| & €supp(N) \ (A7 ({1}))wn }; and
(ii-3) Apezn,(kmyry =AN)o V (VIAN)-| 1 <7 <n}), where
Ao = V{za@)| 2 € (supp(\ATH({1}))wn } and AN)r = V{zr@)| 2 € (SUPP(A))mia(r) }

for each integer r with 1 <r < n.

Proof. (i) We consider the following two cases for the proof.

Case 1. PC*(\) # (: by Definition 2.2(iii) and Corollary 3.4(1)<(3), it is obtained that
Moen ey =V{ZA@)| 2a@) € FPOEZ", (5")]) and 2y@) & (5")}= V{za@)| 2r@) €
FPC(Z™, (k™))}. And so, we have Ape(@n (wn)f) =APC(Zn,(xn)7), because PC*(\) C PC(N)
and PC(X) # 0 hold.

Case 2. PC*(A) = 0: for this case, Apezn (unyry = 0 (cf. Notation I in Section 2,
Definition 2.2(iii)). We claim that PC(A) = § holds under the assumption of Case 2
(i.e.,PC*(X) = 0). Suppose that PC(X) # 0 (cf. Notation I in Section 2, Definition 2.2(ii)).
Then, there exists a point of Z", say z € PC()), and so zy;) € PC(Z", (k™)¥) and, by
Theorem 3.3, 2)(z) & (k™)f. The above result shows that Zx(z) € PC*(Z", (k™)f) holds, i.e.,
z € PC*(\) (cf. Notation I in Section 2); this contradicts the assumption of Case 2 (i.e.,
PC*(\) = 0). Thus, we claimed that if PC*(A) = @ then PC(X) = 0. And, under the
assumption of Case 2, we show that /\;‘,C(Zm(ﬁn)f)::O: Ape(zn,(kn)s) hold.

Therefore, by Case 1 and Case 2, it is proved that /\;;C(Z,L’(Kn)f) =Apc(zn,(xn)f) holds.

(ii) (ii-1) It follows from the assumption of (ii) that there exists a point z €supp())
(i.e., AM(z) > 0) and z & (Z")xn. By Corollary 3.4(2)’« (1), it is obtained that zy.,) €
FPC(Z™,(k")7) and so z € PC(A) # 0 (cf. Notation I). We have that Apc(zn ()
=\ {Zr@)| @) € FPC(Z™, (k"))} (cf. Definition 2.2(ii)) and Ape(zn (sn)r)(2) # 0 for
the point 2, i.e., Apc(zn (wnyf) # 0.

(ii-2) For a fuzzy point x(,), we have that A(z) > 0, i.e., z €supp()). Then, by using
definitions and Corollary 3.4 (1)«(2)’, it is shown that: z(,) € FPC(Z", (k")/) if and only
if  €supp(A)\ (A71(1))xn. By (ii-1) and Definition 2.2(ii), it is shown that: PC()) # () and
50 Ape(zn (wmy) =V{ZA@)| @ € supp(A) \ (A1 ({1})) n }-

(ii-3) We use the well known decomposition of Z: Z" = (Z"™)xn U(U{(Z" ) miz(r)| 1 <7 <
n})(disjoint union) and (Z"),.;zn) = (Z")Fn. It follows from assumption that supp(A) # 0.
We consider the decomposition of supp()\) in (Z", (k")%):
supp(A) = (supp(A))sn U (U{(5upP(A))miz(ry| 1 < 7 < n}); then, we have the following
equality in (Z", (k™)) (cf. the right hand side equality in the end of the proof of (ii-2)):

() supp(X) \ (AT ({1})er = (supp(0) \ A1 (1)) U (U (UPPOA i) 1 < 7 < i}
Then, using (ii-2), the equality (e) above and a property of fuzzy union of fuzzy points (e.g.
[19, Lemma 2.5(ii)]), we have that:

Apen, () 5) =V{ZA@)| @ € supp(A) \ (ATH({1}))wn }
=[V{za@| © € (supp(X) \ AT ({11)wr] V V{zr@)| = € ( supp(A\))mia(r| 1 < 7 < n}]
=AN)o V (V{AN),)| 1 <r <n}); and hence (ii-3) is proved. O



10 Haruo MAKI, Savaka HAMADA

The following remark is pre-announced in Remark 1.3.

Remark 3.6 (cf. Remark 1.3, [19, (III-12) in Section 3]) The following example also shows
that the correspondence f, : SO(Z", k™) — FSO(Z"™, (k™)) is not onto, even if f : k™ —
(k™) is bijective, where f,(U) := xpy and f(V) := xv for every U € SO(Z", xk™) and every
V € k™. We choice the follwing subset A as follows:

A= {yM y@ c 7" where yV) = (2my,2ma, ...,2m,) and ¥ = (2my + 1,2my +
1,...,2m, + 1) for some integers m;(1 < i < n); and so y) € (Z")zn and y? € (Z")in.
Using the subset A, we define the fuzzy set A4 € IZ" as follows:

Ma(y@) =1, 4(y™) :=1/2 and Aa(y) := 0 for every point y € Z™ with y ¢ A.

Then, we have that Ay € FSO(Z", (k™)7); indeed, CI(Int(Aa)) = Xci(qy»}) = Aa hold (cf.
Theorem B(iii)). However, Ay & fs(SO(Z™, k™)); indeed, it follows from the definition of f;
that fs(SO(Z"™, k™)) = {xv|U € SO(Z"™,k™)} and Ag # xyu for each U € SO(Z", k™).

Remark to [19, Definition 1.2 (i)]: the authors of the present paper have this opportunity
of taking notice the following typographical correction in [19, Definition 1.2 (i)].

(o) line +3 from the top of the text of [19, Definition 1.2]:
“if A <Int(Cl(1y)) ” should be replaced by “if A <Int(CIl(\)) ”.
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