More on decompositions of a fuzzy set in fuzzy topological spaces

HARUO MAKI AND SAYAKA HAMADA *

Received April 7, 2014

ABSTRACT. Using new properties (Theorem B in Section 2) of the concept of fuzzy points in the sense of Pu Pao-Ming and Liu Ying-Ming (Definition 2.1), we first prove that every fuzzy set $\lambda \neq 0$ is decomposed by two fuzzy sets $\lambda_{\mathcal{O}(X,\sigma^f)}$ and $\lambda^*_{\mathcal{PC}(X,\sigma^f)}$ (Theorem A;cf. Theorem 2.5(ii)), where (X,σ^f) is a specified Chang's fuzzy space (Definition 1.2, Remarks 1.3,1.4). Namely, $\lambda = \lambda_{\mathcal{O}(X,\sigma^f)} \lor \lambda^*_{\mathcal{PC}(X,\sigma^f)}$ and $\lambda_{\mathcal{O}(X,\sigma^f)} \land \lambda^*_{\mathcal{PC}(X,\sigma^f)} = 0$ hold, and the fuzzy set $\lambda_{\mathcal{O}(X,\sigma^f)}$ is fuzzy open in (X,σ^f) (Theorem 2.5(iii)). Finally, these results are applied to the case where $X = \mathbb{Z}^n (n > 0)$ and $\sigma^f = (\kappa^n)^f$ (Theorem 3.3 and Theorem 3.5), where the topological space (X,σ) is the digital *n*-space (\mathbb{Z}^n, κ^n) (cf. Section 3).

1 Introduction and preliminaries In 1965, Zadeh [26] introduced the fundamental concept of fuzzy sets, which formed the backbone of fuzzy mathematics. After his works, Chang [4] used them to introduce the concept of a fuzzy topology. Throughout the present paper, the symbol I will denote the unit interval [0, 1] and Y a nonempty set. A *fuzzy set* on Y ([26]) is a function with domain Y and values in I, i.e., an element of I^Y .

We recall some concepts and properties as follows. Let (Y, τ_Y) be a Chang's fuzzy topological space [4].

Definition 1.1 (C.L. Chang [4, Definition 2.2]) A Chang's fuzzy topological space is a pair (Y, τ_Y) , where Y is a non-emptyset and τ_Y is a Chang's fuzzy topology on it, where $\tau_Y \subset I^Y$, i.e., a family τ_Y of fuzzy sets satisfying the following three axioms:

(1) $0, 1 \in \tau_Y;$

(2) if $\lambda \in \tau_Y$ and $\mu \in \tau_Y$, then $\lambda \wedge \mu \in \tau_Y$;

(3) let J be an index set. If $\lambda_j \in \tau_Y$ for each $j \in J$, then $\bigvee \{\lambda_j | j \in J\} \in \tau_Y$.

The elements of τ_Y are called *fuzzy open sets* of (X, τ_Y) . A fuzzy set μ is called a *fuzzy closed set* of (Y, τ_Y) if the complement $\mu^c \in \tau_Y$.

For a Chang's fuzzy topological space (Y, τ_Y) , a fuzzy set μ on Y is said to be *fuzzy preopen* [23] if $\mu \leq \operatorname{Int}(\operatorname{Cl}(\mu))$ holds in (Y, τ_Y) . The fuzzy complement of a fuzzy preopen set is said to be *fuzzy preclosed*. Namely, a fuzzy set λ is fuzzy preclosed in (Y, τ_Y) if and only if $\operatorname{Cl}(\operatorname{Int}(\lambda)) \leq \lambda$ holds in (Y, τ_Y) . A fuzzy set λ is said to be *fuzzy semi-open* [1] in (Y, τ_Y) if there exists a fuzzy open set ν on Y such that $\nu \leq \lambda \leq \operatorname{Cl}(\nu)$ holds in (Y, τ_Y) . It is well known that a fuzzy set λ is *fuzzy semi-open* if and only if $\lambda \leq \operatorname{Cl}(\operatorname{Int}(\lambda))$. For a subset Aof X, χ_A denotes the characteristic function of A, i.e., $\chi_A(y) := 1$ if $y \in A$ and $\chi_A(y) := 0$ if $y \notin A$. The concept of the ordinary preopen sets (resp. ordinary semi-open sets) was introduced by [21] (resp. [17], [10]).

Definition 1.2 (e.g., [19, Example II, p.244], [8, p.161]) Let (X, σ^f) be a fuzzy topological space induced by a topological space (X, σ) , where X is a nonempty set and $\sigma^f := \{\chi_U | U \in \sigma\}; (X, \sigma^f)$ is an example of a Chang's fuzzy topological space [4] (cf. Definition 1.1 above).

^{*2010} Math. Subject classification-:54A40.

Key words and phrases —Topology; Chang's fuzzy topological spaces; Fuzzy points; Fuzzy preclosed sets; Fuzzy open sets; Decompositions of fuzzy sets; The digital *n*-spaces.

There is a bijection, say f, between σ and σ^f which is defined by $f(U) = \chi_U$ for every $U \in \sigma$, because an ordinary subset U is open in (X, σ) (i.e., $U \in \sigma$) if and only if the characteristic function χ_U is fuzzy open in (X, σ^f) (i.e., $\chi_U \in \sigma^f$). However, the below Remark 1.3 and Remark 1.4 show that the fuzzy topology σ^f has some interesting and distinct properties comparing the given ordinary topology σ .

Let $SO(X, \sigma)$ (resp. $FSO(X, \sigma^f)$) denote the family of all ordinary semi-open sets (resp. fuzzy semi-open sets) in (X, σ) (resp. (X, σ^f)); then $\sigma \subset SO(X, \sigma)$ and $\sigma^f \subset FSO(X, \sigma^f)$ hold. An extension of $f : \sigma \to \sigma^f$ to $SO(X, \sigma)$, say $f_s : SO(X, \sigma) \to FSO(X, \sigma^f)$, is well defined by $f_s(A) := \chi_A$ for every $A \in SO(X, \sigma)$. The following Remark 1.3 shows that $f_s : SO(X, \sigma) \to FSO(X, \sigma^f)$ is not onto.

Remark 1.3 For the following topological space (X, σ) , the correspondence $f_s : SO(X, \sigma) \rightarrow FSO(X, \sigma^f)$ is not onto, where $f_s(V) := \chi_V$ for every set $V \in SO(X, \sigma)$. Let $X := \{a, b, c\}$ and $\sigma := \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$. Then, we have $SO(X, \sigma) = \sigma \cup \{\{a, c\}, \{b, c\}\}$; and $\{\chi_U | U \in SO(X, \sigma)\} = f_s(SO(X, \sigma))$. Let λ_c be a fuzzy set on X defined by $\lambda_c(a) = 0, \lambda_c(b) = 1, \lambda_c(c) = t$, where t is a real number with 0 < t < 1. Then, we see that λ_c is fuzzy semi-open in (X, σ^f) , i.e., $\lambda_c \in FSO(X, \sigma^f)$). Indeed, there exists a fuzzy open set $\chi_{\{b\}}$ such that $\chi_{\{b\}} \leq \lambda_c \leq \operatorname{Cl}(\chi_{\{b\}})$ hold in (X, σ^f) , because $\operatorname{Cl}(\chi_{\{b\}}) = \chi_{Cl(\{b\})} = \chi_{\{b,c\}}$ hold. Since $\lambda_c(c) = t$ and 0 < t < 1, we see that $\lambda_c \neq \chi_A$ for any set $A \subset X$; and so $\lambda_c \notin f_s(SO(X, \sigma))$. Namely, $f_s : SO(X, \sigma) \to FSO(X, \sigma^f)$ is not onto.

We find an alternative example in [19, (3.5),(III-11)] which is shown on the digital plane $(X, \sigma) = (\mathbb{Z}^2, \kappa^2)$. And, by Remark 3.6 in Section 3, it's general version for the digital *n*-space (\mathbb{Z}^n, κ^n) is given.

The below Remark 1.4 shows that a property for a topological space (X, σ) does not be hereditary to (X, σ^f) . In order to explain it, we recall some definitions and properties (* 1)-(* 3) as follows.

In 1970, the concept of $T_{1/2}$ -spaces (cf. (*3) below) was studied initiately by Levine [18] by introducing the concept of generalized closed sets for a topological space. The work on generalized closed sets and their related works are developing by many authors until now. A subset A of (X, σ) is said to be generalized closed [18, Definition 2.1] in (X, σ) , if $Cl(A) \subset O$ holds in (X, σ) whenever $A \subset O$ and O is open in (X, σ) . The complement of a generalized closed set of (X, σ) is called generalized open [18, Definition 4.1] in (X, σ) . It is well known that:

(*1) ([18, Theorem 2.4]) the union of two "generalized closed sets" is "generalized closed"; and

(*2) ([18, Example 2.5]) the intersection of two "generalized closed sets" is generally not "generalized closed". Moreover, it is well known that every closed set is generalized closed.

(*3) A topological space (X, σ) is said to be $T_{1/2}$ [18, Definition 5.1] if every "generalized closed set" of (X, σ) is closed in (X, σ) . By Dunham [6], it was proved that a topological space (X, σ) is $T_{1/2}$ if and only if, for each point $x \in X, \{x\}$ is open or closed ([6, Theorem 2.5]).

In 1970, E. Khalimsky [11] studied initiately the concept of the digital line (\mathbb{Z}, κ) and it is also called the *Khalimsky line* (e.g., Section 3 below; cf. [13] and references there, [12], [14, p.905, line -5],[15, p.175]; e.g., [7]). The digital line (\mathbb{Z}, κ) is an interesting and importante example of the $T_{1/2}$ -topological space ([5, Example 4.6]) and, moreover, (\mathbb{Z}, κ) is a $T_{3/4}$ -space ([5, Definition 4, Theorem 4.1]).

Remark 1.4 The digital line (\mathbb{Z}, κ) is a $T_{1/2}$ -topological space ([5, Example 4.6]); however the induced fuzzy topological space (\mathbb{Z}, κ^f) from (\mathbb{Z}, κ) is not fuzzy $T_{1/2}$ ([8, Example 4.8]). Here, a fuzzy topological space (Y, τ_Y) is said to be fuzzy $T_{1/2}$ [2] if every fuzzy generalied closed set is fuzzy closed. The above property shows that the property on such separation axiom for a topological space (X, σ) does not be hereditary to the corresponding fuzzy separation axiom for (X, σ^f) even if there is a bijectin $f : \sigma \to \sigma^f$. One of the purposes in the present paper is to prove the following Theorem A using some properties on (X, σ^f) in Section 2 below. Roughly speaking, when a fuzzy set on X, say λ , is given, then we can consider a decomposition such that $\lambda = \lambda_1 \vee \lambda_2(\lambda_1 \wedge \lambda_2 = 0)$ and λ_1 and λ_2 are two fuzzy sets characterized from an induced and specified fuzzy topological space (X, σ^f) , where σ is a topology of X. And so, let $\lambda \in I^X$ be a given fuzzy set on X; when we choice many topologies on X, say σ, σ', \ldots , we can get many decompositions of the fuzzy set λ , which are characterized from the induced and specified fuzzy topologies on X, say σ^f , $(\sigma')^f$,...., respectively. Some analogous decomposition properties of a fuzzy set are investigated by [19, Theorem 3.1, Corollary 3.7] and [9, Corollary 2.9, Theorem 3.6].

Theorem A (Theorem 2.5 (ii) in Section 2 below) Let $\lambda \in I^X$ be a fuzzy set such that $\lambda \neq 0$. Let (X, σ^f) be a fuzzy topological space induced by (X, σ) . Then, we have the following decomposition of λ :

$$\lambda = \lambda_{\mathcal{O}(X,\sigma^f)} \lor \lambda_{\mathcal{PC}(X,\sigma^f)}^* \text{ and } \lambda_{\mathcal{O}(X,\sigma^f)} \land \lambda_{\mathcal{PC}(X,\sigma^f)}^* = 0.$$

In Section 3 we have the explicit form of $\lambda_{\mathcal{O}(\mathbb{Z}^n,(\kappa^n)^f)}$ and $\lambda^*_{\mathcal{PC}(\mathbb{Z}^n,(\kappa^n)^f)}$ for the case where $(X,\sigma) = (\mathbb{Z}^n,\kappa^n)$ and $(X,\sigma^f) = (\mathbb{Z}^n,(\kappa^n)^f)$ (cf. Corollary 3.1, Theorem 3.5 below).

2 Proof of Theorem A In the present section we prove Theorem A. We need the concept of fuzzy points in the sense of Pu Pao-Ming and Liu Ying-Ming (Definition 2.1 below), the following notations (Notation I below) and a result (Theorem B below).

In the present paper, for the concept of fuzzy points, we adopt Pu's definition of a fuzzy point in the sense of ([22]).

Definition 2.1 (Pu Pao-Ming and Liu Ying-Ming [22, Definition 2.1], e.g., [19, Definition 1.3]) A fuzzy set on a set Y is said to be *fuzzy point* if it takes the value 0 for all point $y \in Y$ except one point, say $x \in Y$. If it value at x is a $(0 < a \le 1)$, we denote this fuzzy point by x_a . We note that $supp(x_a) = \{a\}$ holds and $0 < a \le 1$. Namely, for a point $x \in Y$ and a real number $a \in I$ such that $0 < a \le 1$,

• a fuzzy point $x_a \in I^Y$ is a fuzzy set defined as, for any point $y \in Y, x_a(y) := a$ if $y = x; x_a(y) := 0$ if $y \neq x$.

Notation I. For a Chang's fuzzy topological space (Y, τ_Y) ,

(i) $FPO(Y, \tau_Y) := \{\lambda \in I^Y | \lambda \text{ is fuzzy preopen in } (Y, \tau_Y)\},\$

 $FPC(Y, \tau_Y) := \{\lambda \in I^Y | \lambda \text{ is fuzzy preclosed in } (Y, \tau_Y)\}.$

Namely, by definition, $FPO(Y, \tau_Y) = \{\lambda \in I^Y \mid \lambda \leq Int(Cl(\lambda)) \text{ holds in } (Y, \tau_Y)\}$ and $FPC(Y, \tau_Y) = \{\lambda \in I^Y \mid Cl(Int(\lambda)) \leq \lambda \text{ holds in } (Y, \tau_Y)\}.$

(ii) For a fuzzy set $\lambda \in I^Y$ such that $\lambda \neq 0$ (i.e., $\operatorname{supp}(\lambda) := \{x \in Y | \lambda(x) \neq 0\} \neq \emptyset$),

 $O(\lambda) := \{ y \in \operatorname{supp}(\lambda) | y_{\lambda(y)} \in \tau_Y \},$

 $PC(\lambda) := \{ y \in \operatorname{supp}(\lambda) | \ y_{\lambda(y)} \in FPC(Y, \tau_Y) \},\$

 $PC^*(\lambda) := \{ y \in \operatorname{supp}(\lambda) | y_{\lambda(y)} \in FPC(Y, \tau_Y) \text{ and } y_{\lambda(y)} \notin \tau_Y \}.$

In the category of fuzzy topological spaces (X, σ^f) induced by topological spaces (X, σ) , we know the following theorem [19], say Theorem B in the present paper:

Theorem B (i) ([19, (3.6)(i)]) Every fuzzy point x_a is fuzzy open or fuzzy preclosed in (X, σ^f) . Namely, for every fuzzy point x_a , we have $x_a \in \sigma^f \cup FPC(X, \sigma^f)$.

(ii) ([19, (3.6)(ii)]) A fuzzy point x_a is fuzzy open in (X, σ^f) if and only if a = 1 and $\{x\}$ is open in (X, σ) .

(iii) ([19, (3.2)]) For a fuzzy set λ on X, $Cl(\lambda) = \chi_{Cl(supp(\lambda))}$ holds in (X, σ^f) ; and $Int(\lambda) = \chi_{Int(\lambda^{-1}(\{1\}))}$ holds in (X, σ^f) .

Theorem B (i) above is a fuzzy version of the following property: ([3, Lemma 2.4]) for a topological space (X, σ) , every singleton $\{x\}$ is open or preclosed in (X, σ) .

For a fuzzy set λ on Y and a fuzzy topological space (Y, τ_Y) , we define three fuzzy sets $\lambda_{\mathcal{O}(Y,\tau_Y)}, \lambda_{\mathcal{PC}(Y,\tau_Y)}$ and $\lambda^*_{\mathcal{PC}(Y,\tau_Y)}$ as follows.

Definition 2.2 Let $\lambda \in I^Y$ be a fuzzy set such that $\lambda \neq 0$ and (Y, τ_Y) a Chang's fuzzy topological space. The following fuzzy sets are well defined: for λ above,

(i) $\lambda_{\mathcal{O}(Y,\tau_Y)} := \bigvee \{ x_{\lambda(x)} \in I^Y | x_{\lambda(x)} \in \tau_Y \}$ if $O(\lambda) \neq \emptyset$; $\lambda_{\mathcal{O}(Y,\tau_Y)} := 0$ if $O(\lambda) = \emptyset$; (ii) $\lambda_{\mathcal{PC}(Y,\tau_Y)} := \bigvee \{ x_{\lambda(x)} \in I^Y | x_{\lambda(x)} \in FPC(Y,\tau_Y) \}$ if $PC(\lambda) \neq \emptyset$; $\lambda_{\mathcal{PC}(Y,\tau_Y)} := 0$ if

 $PC(\lambda) = \emptyset,$

(iii) $\lambda_{\mathcal{PC}(Y,\tau_Y)}^* := \bigvee \{ x_{\lambda(x)} \in I^Y | x_{\lambda(x)} \in FPC(Y,\tau_Y) \text{ and } x_{\lambda(x)} \notin \tau_Y \} \text{ if } PC^*(\lambda) \neq \emptyset;$ $\lambda_{\mathcal{PC}(Y,\tau_Y)}^* := 0 \text{ if } PC^*(\lambda) = \emptyset.$

Lemma 2.3 Let λ be a fuzzy set in Y such that $\lambda \neq 0$, i.e., $supp(\lambda) \neq \emptyset$ and (Y, τ_Y) a Chang's fuzzy topological space. Then, we have the following properties:

(i) $\lambda_{\mathcal{O}(Y,\tau_Y)} = 0$ holds if and only if $x_{\lambda(x)} \notin \tau_Y$ for each point $x \in supp(\lambda)$ (i.e., $O(\lambda) = \emptyset$).

(ii) $\lambda^*_{\mathcal{PC}(Y,\tau_Y)} = 0$ if and only if $x_{\lambda(x)} \notin FPC(Y,\tau_Y)$ or $x_{\lambda(x)} \in \tau_Y$ for each point $x \in supp(\lambda)$ (i.e., $PC^*(\lambda) = \emptyset$).

(iii) (a) If $O(\lambda) \neq \emptyset$, then $\lambda_{\mathcal{O}(Y,\tau_Y)} = \bigvee \{ x_{\lambda(x)} | x \in O(\lambda) \}$.

(b) If $PC(\lambda) \neq \emptyset$, then $\lambda_{\mathcal{PC}(Y,\tau_Y)} = \bigvee \{x_{\lambda(x)} \mid x \in PC(\lambda)\}.$

(c) If $PC^*(\lambda) \neq \emptyset$, then $\lambda^*_{\mathcal{PC}(Y,\tau_Y)} = \bigvee \{x_{\lambda(x)} | x \in PC^*(\lambda)\}.$

(iv) $\lambda_{\mathcal{PC}(Y,\tau_Y)}^* \leq \lambda_{\mathcal{PC}(Y,\tau_Y)} \leq \lambda$ hold.

Proof. (i) (Necessity) Suppose that there exists a point $z \in \text{supp}(\lambda)$ such that $z_{\lambda(z)} \in \tau_Y$. Then, $O(\lambda) \neq \emptyset$. For the point z we set $\mathcal{A}_z := \{x_{\lambda(x)}(z) \in I | x_{\lambda(x)} \in \tau_Y\}$; and so $\mathcal{A}_z \neq \emptyset$. Then, by Definition 2.2 (i), $(\lambda_{\mathcal{O}(Y,\tau_Y)})(z) = \sup \mathcal{A}_z$ and so $\lambda_{\mathcal{O}(Y,\tau_Y)}(z) = \sup \{\lambda(z), 0\} =$ $\lambda(z)$. Indeed, $x_{\lambda(x)}(z) = \lambda(z)$ or 0. Thus we have $\lambda_{\mathcal{O}(Y,\tau_Y)} \neq 0$; this contradicts the assumption. (Sufficiency) The proof is obtained by Definition 2.2 (i). (ii) The sufficiency is obtained by Definition 2.2 (iii). (Necessity) Suppose that there exists a point $z \in \text{supp}(\lambda)$ such that $z_{\lambda(z)} \in FPC(Y, \tau_Y)$ and $z_{\lambda(z)} \notin \tau_Y$. Then, $PC^*(\lambda) \neq \emptyset$. For the point z, we set $\mathcal{B}_z^* := \{x_{\lambda(x)}(z) \in I | x_{\lambda(x)} \in FPC(Y, \tau_Y) \text{ and } x_{\lambda(x)} \notin \tau_Y\}$ and note $\mathcal{B}_z^* \neq \emptyset$. Then $\lambda_{\mathcal{PC}(Y,\tau_Y)}^*(z) = \sup \mathcal{B}_z^*$. Since $x_{\lambda(x)}(z) = \lambda(z)$ or 0 and $z \in \operatorname{supp}(\lambda)$ we have $\lambda^*_{\mathcal{PC}(Y,\tau_Y)}(z) = \sup\{\lambda(z), 0\} = \lambda(z) \text{ and hence } \lambda^*_{\mathcal{PC}(Y,\tau_Y)}(z) > 0 \text{ for the point } z.$ Namely, we have $\lambda^*_{\mathcal{PC}(Y,\tau_Y)} \neq 0$; this contradicts the assumption. (iii) By using definitions (cf. Notation I, Definition 2.2), it is shown that $\{x_{\lambda(x)} | x_{\lambda(x)} \in \tau_Y\} = \{x_{\lambda(x)} | x \in O(\lambda)\},\$ $\{x_{\lambda(x)} \mid x_{\lambda(x)} \in FPC(Y, \tau_Y)\} = \{x_{\lambda(x)} \mid x \in PC(\lambda)\} \text{ and } \{x_{\lambda(x)} \mid x_{\lambda(x)} \in FPC(Y, \tau_Y), x_{\lambda(x)} \notin I_{\lambda(x)}\}$ $\tau_Y = \{x_{\lambda(x)} | x \in PC^*(\lambda)\}$ hold. Thus we have the required equalities. (iv) It is obvious that $\operatorname{supp}(\lambda) \supset PC(\lambda) \supset PC^*(\lambda)$ (cf. Notation above). Therefore, we have that $\lambda \geq 1$ $\lambda_{\mathcal{PC}(Y,\tau_Y)} \ge \lambda^*_{\mathcal{PC}(Y,\tau_Y)}$, because $\lambda = \bigvee \{x_{\lambda(x)} | x \in \operatorname{supp}(\lambda)\}$ holds ([22, Definition 2.2]; e.g., [16, Lemma 2.1], [19, Lemma 2.5(i)]) and the equalities (b) and (c) hold in (iii) above. \Box

Theorem 2.4 Let $\lambda \in I^X$ be a fuzzy set such that $\lambda \neq 0$. For a fuzzy topological space (X, σ^f) induced by a topological space (X, σ) , $\lambda_{\mathcal{O}(X, \sigma^f)} = 0$ if and only if $\lambda = \lambda^*_{\mathcal{PC}(X, \sigma^f)} = 0$ $\lambda_{\mathcal{PC}(X,\sigma^f)}$ hold.

Proof. (Necessity) It follows from assumption and Lemma 2.3(i) that $x_{\lambda(x)} \notin \sigma^f$ for every point $x \in \text{supp}(\lambda)$. Thus, by Theorem B(i) above, it is shown that, for every point $x \in \operatorname{supp}(\lambda), x_{\lambda(x)}$ is fuzzy preclosed in (X, σ^f) . Thus, we have $\lambda = \bigvee \{x_{\lambda(x)} | x \in \operatorname{supp}(\lambda)\} = \langle x \rangle = \langle x \rangle$ $\bigvee \{x_{\lambda(x)} \mid x_{\lambda(x)} \in FPC(X, \sigma^f) \text{ and } x_{\lambda(x)} \notin \sigma^f\} = \lambda^*_{\mathcal{PC}(X, \sigma^f)}.$ Therefore, using Lemma 2.3(iv), we conclude that $\lambda = \lambda^*_{\mathcal{PC}(X,\sigma^f)} = \lambda_{\mathcal{PC}(X,\sigma^f)}$ hold. (Sufficiency) Assume that $\lambda = \lambda_{\mathcal{PC}(X,\sigma^f)} = \lambda_{\mathcal{PC}(X,\sigma^f)}^* \text{ hold. We recall that } \lambda_{\mathcal{PC}(X,\sigma^f)}^* = \bigvee \{x_{\lambda(x)} | x_{\lambda(x)} \in FPC(X,\sigma^f) \}$ and $x_{\lambda(x)} \notin \sigma^f = \bigvee \{x_{\lambda(x)} \mid x \in PC^*(\lambda)\}$ (cf. Lemma 2.3 (iii)). Suppose $PC^*(\lambda) = \emptyset$.

Then, $\lambda^*_{\mathcal{PC}(X,\sigma^f)} = 0$ (cf. Definition 2.2(iii)); and so we have $\lambda = 0$; this contradicts the assumption on λ (i.e., $\operatorname{supp}(\lambda) \neq \emptyset$). Thus, we consider the case where $PC^*(\lambda) \neq \emptyset$ for λ . We claime that $\operatorname{supp}(\lambda) \subset PC^*(\lambda)$. Indeed, let w be any point such that $w \notin PC^*(\lambda)$. Then, for each point $x \in PC^*(\lambda)$, we have $x_{\lambda(x)}(w) = 0$, because of $w \neq x$. Here, we put $\mathcal{B}_w^* := \{x_{\lambda(x)}(w) \in I | x \in PC^*(\lambda)\}; \text{ then } \mathcal{B}_w^* = \{0\}; \text{ and so we have } (\lambda_{\mathcal{PC}(X,\sigma^f)}^*)(w) = \sup \mathcal{B}_w^* = 0.$ By using the assumption of the present Sufficiency, it is shown that $\lambda(w) = 0$ and so $w \notin \operatorname{supp}(\lambda)$. Therefore, we show $\operatorname{supp}(\lambda) \subset PC^*(\lambda)$. Therefore, we have $x_{\lambda(x)} \notin \sigma^f$ for every point $x \in \operatorname{supp}(\lambda)$, because of $x \in PC^*(\lambda)$. By Lemma 2.3(i), it is obtained that $\lambda_{\mathcal{O}(X,\sigma^f)} = 0.$

We shall prove Theorem A as follows; Theorem A is included in Theorem 2.5 below (i.e., Theorem 2.5 (ii)). First we recall the following notation:

Notation II: for a topological space (X, σ) and a subset E of X,

let $X_{\sigma} := \{x \in X \mid \{x\} \in \sigma\}$; and $E_{\sigma} := E \cap X_{\sigma}$. It is obvious that E_{σ} is open in (X, σ) for any subset $E \subset X$.

Notation III : for a fuzzy set λ on X and a topological space (X, σ) ,

(i) $\lambda^{-1}(\{1\}) := \{y \in X \mid \lambda(y) = 1\}$; then $\lambda^{-1}(\{1\})$ is a subset of X, because $\lambda \in I^X$; (ii) $(\lambda^{-1}(\{1\}))_{\sigma} := \lambda^{-1}(\{1\}) \cap X_{\sigma}$ (i.e., $(\lambda^{-1}(\{1\}))_{\sigma} = \{y \mid y \in \lambda^{-1}(\{1\}), \{y\} \text{ is open in }$ (X, σ)).

Theorem 2.5 Let $\lambda \in I^X$ be a fuzzy set such that $\lambda \neq 0$. Let (X, σ) be a topological

space and (X, σ^f) a fuzzy topological space induced by (X, σ) . Then, we have the following properties of λ :

(i) $\lambda = \lambda_{\mathcal{O}(X,\sigma^f)} \vee \lambda_{\mathcal{PC}(X,\sigma^f)}$.

(ii) $\lambda = \lambda_{\mathcal{O}(X,\sigma^f)} \vee \lambda_{\mathcal{PC}(X,\sigma^f)}^*$ and $\lambda_{\mathcal{O}(X,\sigma^f)} \wedge \lambda_{\mathcal{PC}(X,\sigma^f)}^* = 0$. (iii) $\lambda_{\mathcal{O}(X,\sigma^f)} = \chi_E$, where $E := X_{\sigma} \cap \lambda^{-1}(\{1\}) = (\lambda^{-1}(\{1\}))_{\sigma}$; $\lambda_{\mathcal{O}(X,\sigma^f)}$ is fuzzy open in (X, σ^f) .

Proof. We first recall the following $(*^1)$ with Notation I and we claim the following properties $(*^2)$ and $(*^3)$:

 $(*^1)$ supp $(\lambda) \supset PC(\lambda) \supset PC^*(\lambda)$ and supp $(\lambda) \supset O(\lambda)$ hold in (X, σ) (cf. Notation I);

 $(*^2)$ supp $(\lambda) = O(\lambda) \cup PC(\lambda)$ holds in (X, σ) ;

 $(*^3)$ supp $(\lambda) = O(\lambda) \cup PC^*(\lambda)$ and $O(\lambda) \cap PC^*(\lambda) = \emptyset$ hold in (X, σ) .

Proof of $(*^2)$. By Theorem B, it is shown that, for a point $x \in \text{supp}(\lambda)$, the fuzzy point $x_{\lambda(x)}$ is fuzzy open or fuzzy preclosed in (X, σ^f) , i.e., $x_{\lambda(x)} \in \sigma^f$ or $x_{\lambda(x)} \in FPC(\lambda)$. Thus, for a point $x \in \text{supp } (\lambda), x \in O(\lambda)$ or $x \in PC(\lambda)$; and so we have $\text{supp}(\lambda) \subset O(\lambda) \cup PC(\lambda)$. Since $O(\lambda) \subset \operatorname{supp}(\lambda)$ and $PC(\lambda) \subset \operatorname{supp}(\lambda)$, we have the required equality (*²). (\diamond)

Proof of (*³). By definition, it is easily shown that $PC^*(\lambda) \subset PC(\lambda)$. And, we have $PC^*(\lambda) = \{ y \in \operatorname{supp}(\lambda) | y_{\lambda(y)} \in FPC(X, \sigma^f) \} \cap \{ y \in \operatorname{supp}(\lambda) | y_{\lambda(y)} \notin \sigma^f \} = PC(\lambda) \cap [\operatorname{supp}(\lambda) \cap [\operatorname{supp}(\lambda$ $(\lambda) \setminus O(\lambda)$; and so $PC^*(\lambda) = PC(\lambda) \cap [\text{supp } (\lambda) \setminus O(\lambda)]$. Thus, we have $PC^*(\lambda) \cup O(\lambda) = O(\lambda)$ $[PC(\lambda) \cap (\operatorname{supp}(\lambda) \setminus O(\lambda)] \cup O(\lambda) = \operatorname{supp}(\lambda) (cf. (*^2)) and PC^*(\lambda) \cap O(\lambda) \subset PC(\lambda) \cap [X \setminus O(\lambda)] \cup O(\lambda) = \operatorname{supp}(\lambda) (cf. (*^2)) and PC^*(\lambda) \cap O(\lambda) \subset PC(\lambda) \cap [X \setminus O(\lambda)] \cup O(\lambda) = \operatorname{supp}(\lambda) (cf. (*^2)) and PC^*(\lambda) \cap O(\lambda) \subset PC(\lambda) \cap [X \setminus O(\lambda)] \cup O(\lambda) = \operatorname{supp}(\lambda) (cf. (*^2)) and PC^*(\lambda) \cap O(\lambda) \subset PC(\lambda) \cap [X \setminus O(\lambda)] \cup O(\lambda) = \operatorname{supp}(\lambda) (cf. (*^2)) and PC^*(\lambda) \cap O(\lambda) \subset PC(\lambda) \cap [X \setminus O(\lambda)] \cup O(\lambda) = \operatorname{supp}(\lambda) (cf. (*^2)) and PC^*(\lambda) \cap O(\lambda) \subset PC(\lambda) \cap [X \setminus O(\lambda)] \cup O(\lambda) = \operatorname{supp}(\lambda) (cf. (*^2)) \cap O(\lambda) \cap O($ $O(\lambda)] \cap O(\lambda) = \emptyset. \diamond$

In the finnal stage, we prove (i), (ii) and (iii) as follows.

(i). For the proof of (i) we consider the following three cases. And it is well known that $\lambda = \bigvee \{x_{\lambda(x)} \mid x \in \operatorname{supp}(\lambda)\}$ holds (cf. [22, Definition 2.2], e.g., [16, lemma 2.2], [19, Lemma 2.5(i)]).

Case 1. $O(\lambda) \neq \emptyset$, $PC(\lambda) \neq \emptyset$: for this case, using (*²) above and Lemma 2.3 (iii), we have $\lambda = \bigvee \{x_{\lambda(x)} \mid x \in \operatorname{supp}(\lambda)\} = (\bigvee \{x_{\lambda(x)} \mid x \in O(\lambda)\}) \vee (\bigvee \{x_{\lambda(x)} \mid x \in PC(\lambda)\} = \lambda_{\mathcal{O}(X,\sigma^f)} \vee$ $\lambda_{\mathcal{PC}(X,\sigma^f)}.$

Case 2. $O(\lambda) \neq \emptyset, PC(\lambda) = \emptyset$: for this case, we have $\lambda_{\mathcal{PC}(X,\sigma^f)} = 0$ (cf. Definition 2.2(ii)) and $\operatorname{supp}(\lambda) = O(\lambda)$ (cf. (*²) above). Thus, we have $\lambda = \bigvee \{x_{\lambda(x)} \mid x \in \operatorname{supp}(\lambda)\} = \bigvee \{x_{\lambda(x)} \mid x \in \mathbb{C}\}$ $O(\lambda) = \lambda_{\mathcal{O}(X,\sigma^f)} \vee \lambda_{\mathcal{PC}(X,\sigma^f)}$, because $\lambda_{\mathcal{PC}(X,\sigma^f)} = 0$.

Case 3. $O(\lambda) = \emptyset$: for this case, by $(*^2)$ above and Lemma 2.3(i), it is shown that $\lambda_{\mathcal{O}(X,\sigma^f)} = 0$ and $\operatorname{supp}(\lambda) = PC(\lambda)$; and so $PC(\lambda) \neq \emptyset$, because of $\lambda \neq 0$. Thus, we have $\lambda = \bigvee \{x_{\lambda(x)} | x \in \operatorname{supp}(\lambda)\} = 0 \lor (\bigvee \{x_{\lambda(x)} | x \in PC(\lambda)\} = \lambda_{\mathcal{O}(X,\sigma^f)} \lor \lambda_{\mathcal{PC}(X,\sigma^f)}$. Therefore, we show that the equality (i) holds for all cases.

(ii). Since $\operatorname{supp}(\lambda) = O(\lambda) \cup PC^*(\lambda)$ (cf. $(*^3)$), we are able to conclude that (ii-1) $\lambda = \lambda_{\mathcal{O}(X,\sigma^f)} \vee \lambda^*_{\mathcal{PC}(X,\sigma^f)}$; and (ii-2) $\lambda_{\mathcal{O}(X,\sigma^f)} \wedge \lambda^*_{\mathcal{PC}(X,\sigma^f)} = 0$.

Proof of (ii-1). We consider the following three cases for the proof.

Case 1. $O(\lambda) \neq \emptyset$, $PC^*(\lambda) \neq \emptyset$: for this case, using $(*^3)$ above and Lemma 2.3 (iii), we have $\lambda = \{x_{\lambda(x)} \mid x \in \text{supp}(\lambda)\} = (\bigvee \{x_{\lambda(x)} \mid x \in O(\lambda)\}) \lor (\bigvee \{x_{\lambda(x)} \mid x \in PC^*(\lambda)\} = \lambda_{\mathcal{O}(X,\sigma^f)} \lor \lambda^*_{\mathcal{PC}(X,\sigma^f)}$.

Case 2. $O(\lambda) \neq \emptyset, PC^*(\lambda) = \emptyset$: for this case, we have $\lambda^*_{\mathcal{PC}(X,\sigma^f)} = 0$ (cf. Definition 2.2(iii)) and $\operatorname{supp}(\lambda) = O(\lambda)$ (cf. (*³) above). Thus, we have $\lambda = \bigvee \{x_{\lambda(x)} | x \in \operatorname{supp}(\lambda)\} = \bigvee \{x_{\lambda(x)} | x \in O(\lambda)\} = \lambda_{\mathcal{O}(X,\sigma^f)} \vee \lambda^*_{\mathcal{PC}(X,\sigma^f)}$, because $\lambda^*_{\mathcal{PC}(X,\sigma^f)} = 0$.

Case 3. $O(\lambda) = \emptyset$: for this case, we have $\lambda_{\mathcal{O}(X,\sigma^f)} = 0$ (cf. Definition 2.2(i)). By (*³), it is shown that $\operatorname{supp}(\lambda) = PC^*(\lambda)$; and so $PC^*(\lambda) \neq \emptyset$, because of $\lambda \neq 0$. Thus, we have $\lambda = \bigvee\{x_{\lambda(x)} | x \in \operatorname{supp}(\lambda)\} = 0 \lor (\bigvee\{x_{\lambda(x)} | x \in PC^*(\lambda)\} = \lambda_{\mathcal{O}(X,\sigma^f)} \lor \lambda^*_{\mathcal{PO}(X,\sigma^f)}$. (\diamond)

Proof of (ii-2). For a point $y \in X$, we claim that $(\lambda_{\mathcal{O}(X,\sigma^f)} \wedge \lambda^*_{\mathcal{PC}(X,\sigma^f)})(y) = 0$; i.e., $Min\{\lambda_{\mathcal{O}(X,\sigma^f)}(y), \lambda^*_{\mathcal{PC}(X,\sigma^f)}(y)\} = 0$. For the point y, we consider the following two cases.

Case 1. $y \in O(\lambda)$: for this point y, we have $y \notin PC^*(\lambda)$ (cf. (*³) before the proof of (i) above). Then, we have that $y \neq x$ for each $x \in PC^*(\lambda)$, i.e., $x_{\lambda(x)}(y) = 0$ for each $x \in PC^*(\lambda)$. Thus, if $PC^*(\lambda) \neq \emptyset$, then $\lambda^*_{\mathcal{PC}(X,\sigma^f)}(y) = (\bigvee\{x_{\lambda(x)} | x \in PC^*(\lambda)\})(y)$ $= \sup\{x_{\lambda(x)}(y) | x \in PC^*(\lambda)\} = \sup\{0\} = 0$ (cf. Lemma 2.3(iii)(c)). And, if $PC^*(\lambda) = \emptyset$, then $\lambda^*_{\mathcal{PC}(X,\sigma^f)}(y) = 0$ (cf. Definition 2.2(iii)). Thus, for this Case 1, we show that $\min\{\lambda_{\mathcal{O}(X,\sigma^f)}(y), \lambda^*_{\mathcal{PC}(X,\sigma^f)}(y)\} = 0.$

Case 2. $y \notin O(\lambda)$: for the point y, we have that $x \neq y$ for each point $x \in O(\lambda)$; and so $x_{\lambda(x)}(y) = 0$ for each point $x \in O(\lambda)$. Thus, if $O(\lambda) \neq \emptyset$, then $\lambda_{\mathcal{O}(X,\sigma^f)}(y) = (\bigvee\{x_{\lambda(x)} \mid x \in O(\lambda)\})(y) = \sup\{x_{\lambda(x)}(y) \mid x \in O(\lambda)\} = \sup\{0\} = 0$ (cf. Lemma 2.3(iii)(a)). And, if $O(\lambda) = \emptyset$, then $\lambda_{\mathcal{O}(X,\sigma^f)}(y) = 0$ (cf. Definition 2.2(i)). Thus, for this Case 2, we show that $\min\{\lambda_{\mathcal{O}(X,\sigma^f)}(y), \lambda^*_{\mathcal{PC}(X,\sigma^f)}(y)\} = 0$.

Therefore we prove $\lambda_{\mathcal{O}(X,\sigma^f)} \wedge \lambda^*_{\mathcal{PC}(X,\sigma^f)} = 0.$

(iii). By Theorem B(ii) in the top of the present section, it is well known that a fuzzy point x_a is fuzzy open in (X, σ^f) if and only if a = 1 and $\{x\}$ is open in (X, σ) . For a point $x \in \operatorname{supp}(\lambda), \lambda(x) > 0$ and so a fuzzy point $x_{\lambda(x)}$ is well defined. Thus, we have that $x_{\lambda(x)}$ is fuzzy open in (X, σ^f) (i.e., $x_{\lambda(x)} \in \sigma^f$) if and only if $\lambda(x) = 1$ and $\{x\}$ is open in (X, σ) (i.e., $x \in E := \lambda^{-1}(\{1\}) \cap X_{\sigma}$, cf. Notation II, Notation III). Therefore, if $E \neq \emptyset$, then we have that $\lambda_{\mathcal{O}(X,\sigma^f)} = \bigvee\{x_{\lambda(x)} \mid x \in \sigma^f\} = \bigvee\{x_{\lambda(x)} \mid x \in \lambda^{-1}(\{1\}) \cap X_{\sigma}\} = \bigvee\{x_1 \mid x \in E\}$ = $\bigvee\{\chi_{\{x\}} \mid x \in E\} = \chi_F = \chi_E$, where $F = \bigcup\{\{x\} \mid x \in E\}$, and hence $\lambda_{\mathcal{O}(X,\sigma^f)} = \chi_E$. If $E = \emptyset$, then $O(\lambda) := \{y \in \operatorname{supp}(\lambda) \mid y_{\lambda(y)} \in \sigma^f\} = \{y \in \operatorname{supp}(\lambda) \mid \lambda(y) = 1$ and $\{y\} \in \sigma\} = \{y \in \operatorname{supp}(\lambda) \mid y \in E = \emptyset\} = \emptyset$ and so $\lambda_{\mathcal{O}(X,\sigma^f)} = 0 = \chi_{\emptyset}$. Therefore, we prove

 $\lambda_{\mathcal{O}(X,\sigma^f)} = \chi_E$. For the proof of $\lambda_{\mathcal{O}(X,\sigma^f)} \in \sigma^f$, it is evident from the openness of $E := \lambda^{-1}(\{1\}) \cap X_{\sigma} = (\lambda^{-1}(1))_{\sigma}$ and the definition of σ^f .

3 Decompositions of fuzzy sets on $(\mathbb{Z}^n, (\kappa^n)^f)$ Let (\mathbb{Z}^n, κ^n) be the digital *n*-space and $(\mathbb{Z}^n, (\kappa^n)^f)$ a Chang's fuzzy topological space induced from (\mathbb{Z}^n, κ^n) (cf. Definition 1.2). In the present section, we have the following decomposition theorem (Corollary 3.1) of a fuzzy set λ on \mathbb{Z}^n by two fuzzy sets χ_E and $\lambda^*_{\mathcal{PC}(\mathbb{Z}^n, (\kappa^n)^f)}$ with fuzzy topological properties in $(\mathbb{Z}^n, (\kappa^n)^f)$ and the precise form of $\lambda^*_{\mathcal{PC}(\mathbb{Z}^n, (\kappa^n)^f)}$ (Theorem 3.5). We recall that:

• the digital n-space (\mathbb{Z}^n, κ^n) (e.g., [15, Definition 4],[7]) is the topological product of ncopies of the digital line (\mathbb{Z}, κ) (cf. this is called the *Khalimsky line* in the contents between Remark 1.4 and (*3) in Section 1), where n is an integer with $n \ge 2$. The digital line (\mathbb{Z}, κ) is the set of the integers, \mathbb{Z} , equipped with the topology κ having $\{\{2m-1, 2m, 2m+1\} | m \in \mathbb{Z}\}$ as a subbace (e.g., [15, p.175]). Some joint papers by the one of the present authors include a short survey or frequently used properties on (\mathbb{Z}^n, κ^n) where $n \ge 1$ (cf. [20, Section 3], [25], [7]). It is well known that a singleton $\{2m\}$ is closed and not open and $\{2m+1\}$ is open and not closed in (\mathbb{Z}, κ) , where $m \in \mathbb{Z}$; moreover $\operatorname{Cl}(\{2s+1\}) = \{2s, 2s+1, 2s+2\}$ holds and $\operatorname{Int}(\{2s\}) = \emptyset$ holds in (\mathbb{Z}, κ) , where $s \in \mathbb{Z}$. We use the following notation (cf. [7, Section 6], [24, Section 2], [25, Definition 2.1], [20, Definition 3.11]): for $n \ge 1$,

• $(\mathbb{Z}^n)_{\kappa^n} := \{(y_1, y_2, ..., y_n) \in \mathbb{Z}^n | y_i \text{ is odd for each integer } i \text{ with } 1 \leq i \leq n\}; \text{ for any element } x \text{ of } (\mathbb{Z}^n)_{\kappa^n}, \{x\} \text{ is an open singleton of } (\mathbb{Z}^n, \kappa^n) \text{ (cf. Notation II in Section 2 for } X := \mathbb{Z}^n \text{ and } \sigma := \kappa^n);$

• $(\mathbb{Z}^n)_{\mathcal{F}^n} := \{(y_1, y_2, ..., y_n) \in \mathbb{Z}^n | y_i \text{ is even for each integer } i \text{ with } 1 \leq i \leq n\}; \text{ for any element } x \text{ of } (\mathbb{Z}^n)_{\mathcal{F}^n}, \{x\} \text{ is a closed singleton of } (\mathbb{Z}^n, \kappa^n);$

• $(\mathbb{Z}^n)_{mix(r)} := \{(y_1, y_2, ..., y_n) \in \mathbb{Z}^n | r = \#\{i \in \{1, 2, ..., n\} | y_i \text{ is even}\}\}, \text{ where } 1 \leq r \leq n$ and #A denotes the cardinality of a set A. Especially, for the case where r = n, we note $(\mathbb{Z}^n)_{mix(n)} = (\mathbb{Z}^n)_{\mathcal{F}^n}$.

• For a nonempty subset E of (\mathbb{Z}^n, κ^n) , the following subsets $E_{\kappa^n}, E_{\mathcal{F}^n}$ and $E_{mix(r)}$ are well defined as follows: $E_{\kappa^n} := E \cap (\mathbb{Z}^n)_{\kappa^n}, \ E_{\mathcal{F}^n} := E \cap (\mathbb{Z}^n)_{\mathcal{F}^n}, \ E_{mix(r)} := E \cap (\mathbb{Z}^n)_{mix(r)}$ $(1 \leq r \leq n)$. Namely, we have that $E_{\kappa^n} := \{x \in E \mid \{x\} \text{ is open in } (\mathbb{Z}^n, \kappa^n)\} \subset E$ and $E_{\mathcal{F}^n} := \{x \in E \mid \{x\} \text{ is closed in } (\mathbb{Z}^n, \kappa^n)\} \subset E$; and E_{κ^n} is an open subset of (\mathbb{Z}^n, κ^n) .

First we apply Theorem 2.5 to the digital *n*-space (\mathbb{Z}^n, κ^n) ; then we have the following corollary of Theorem 2.5.

Corollary 3.1 Let $\lambda \in I^{\mathbb{Z}^n}$ be a fuzzy set on \mathbb{Z}^n such that $\lambda \neq 0$. Then, we have the following properties.

(i) $\lambda_{\mathcal{O}(\mathbb{Z}^n,(\kappa^n)^f)} = \chi_E$, where $E := (\lambda^{-1}(\{1\}))_{\kappa^n}$.

(ii) Any fuzzy set λ has a decomposition: $\lambda = \chi_E \vee \lambda^*_{\mathcal{PC}(\mathbb{Z}^n, (\kappa^n)^f)}$ and $\chi_E \wedge \lambda^*_{\mathcal{PC}(\mathbb{Z}^n, (\kappa^n)^f)} = 0$, where $E := (\lambda^{-1}(\{1\}))_{\kappa^n}$.

Proof. (i) (resp. (ii)) By Theorem 2.5(iii) (resp. Theorem 2.5(ii)) for $(X, \sigma) = (\mathbb{Z}^n, \kappa^n)$, (i) (resp. (ii)) is obtained.

In the below, we shall show an exlicite expression of the fuzzy set $\lambda^*_{\mathcal{PC}(\mathbb{Z}^n,(\kappa^n)^f)}$ above (cf. Theorem 3.5).

Theorem 3.2 For a fuzzy topological space $(\mathbb{Z}^n, (\kappa^n)^f)$ induced by the digital *n*-space (\mathbb{Z}^n, κ^n) , where $n \ge 1$, and a fuzzy point x_a in \mathbb{Z}^n , where $x \in \mathbb{Z}^n$ and $0 < a \le 1$, we have the following properties.

(i) (i-1) Let $x \in (\mathbb{Z}^n)_{\kappa^n}$ (i.e., $x = (2m_1 + 1, 2m_2 + 1, ..., 2m_n + 1)$, where $m_i \in \mathbb{Z}(1 \le i \le n)$). Then,

 $\operatorname{Cl}(x_a) = \chi_{E_x^o}, \text{ where } E_x^o := \prod_{i=1}^n \{2m_i, 2m_i + 1, 2m_i + 2\}.$

(i-2) Let $x \in (\mathbb{Z}^n)_{\mathcal{F}^n}$ (i.e., $x = (y_1, y_2, ..., y_n)$ for some even integers $y_i (1 \le i \le n)$). Then,

 $\operatorname{Cl}(x_a) = \chi_{\{x\}}.$

(i-3) Suppose that $n \ge 2$. Let $x := (y_1, y_2, ..., y_n) \in (\mathbb{Z}^n)_{mix(r)} (1 \le r \le n-1)$ and $E^m(y_i) = \{y_i\}$, if y_i is even in $\mathbb{Z}(1 \le i \le n)$; $E^m(y_i) = \{y_i - 1, y_i, y_i + 1\}$, if y_i is odd in $\mathbb{Z}(1 \le i \le n)$. Then,

 $\overline{\operatorname{Cl}}(x_a) = \chi_{E_x^m}$, where $E_x^m := \prod_{i=1}^n E^m(y_i)$.

(ii) (ii-1) If $x \in (\mathbb{Z}^n)_{\kappa^n}$ and a = 1, then $\operatorname{Int}(x_a) = \chi_{\{x\}} = x_a$ holds.

- (ii-2) If $x \in (\mathbb{Z}^n)_{\kappa^n}$ and $a \neq 1$, then $\operatorname{Int}(x_a) = 0$ holds.
- (ii-3) If $x \in (\mathbb{Z}^n)_{\mathcal{F}^n}$, then $\operatorname{Int}(x_a) = 0$ holds.
- (ii-4) If $x \in (\mathbb{Z}^n)_{mix(r)}$ with $1 \le r \le n-1$, then $Int(x_a) = 0$ holds.

Proof. (i) (i-1) It is well known that $\{x\}$ is an open singleton in (\mathbb{Z}^n, κ^n) and $\operatorname{Cl}(\{x\}) = \prod_{i=1}^n \operatorname{Cl}(\{2m_i+1\}) = \prod_{i=1}^n \{2m_i, 2m_i+1, 2m_i+2\} = E_x^o$ in (\mathbb{Z}^n, κ^n) . Thus, we have $\operatorname{Cl}(x_a) = \chi_{\operatorname{Cl}(\{x\})} = \chi_{E_x^o}$ in $(\mathbb{Z}^n, (\kappa^n)^f)$ for a point $x \in (\mathbb{Z}^n)_{\kappa^n}$, because $\operatorname{supp}(x_a) = \{x\}$ (cf. Theorem B (iii)).

(i-2) We have $\operatorname{Cl}(x_a) = \chi_{\operatorname{Cl}(\{x\})} = \chi_{\{x\}}$ in $(\mathbb{Z}^n, (\kappa^n)^f)$ (cf. Theorem B (iii)) for a point $x \in (\mathbb{Z}^n)_{\mathcal{F}^n}$ (i.e., $\{x\}$ is a closed singleton of (\mathbb{Z}^n, κ^n)).

(i-3) Let $x = (y_1, y_2, ..., y_n) \in (\mathbb{Z}^n)_{mix(r)} (1 \le r \le n-1)$ (i.e., $r = \#\{i \mid y_i \text{ is even }\}$). Since $\operatorname{Cl}(\{x\}) = \prod_{i=1}^n \operatorname{Cl}(y_i) = \prod_{i=1}^n E^m(y_i) = E_x^m$ in (\mathbb{Z}^n, κ^n) , it is shown that $\operatorname{Cl}(x_a) = \chi_{E_x^m}$ in $(\mathbb{Z}^n, (\kappa^n)^f)$ (cf. Theorem B(iii)).

(ii) (ii-1) Since a = 1, we have $x_a = \chi_{\{x\}}$ and $(x_a)^{-1}(\{1\}) = \{x\}$. And, since $\{x\}$ is an open singleton of (\mathbb{Z}^n, κ^n) , it is shown that $\operatorname{Int}(x_a) = \chi_{\operatorname{Int}(x_1)^{-1}(\{1\})} = \chi_{\operatorname{Int}(\{x\})}$ (cf. Theorem B (iii)).

(ii-2) For this fuzzy point x_a , where $a \neq 1$, we have $(x_a)^{-1}(\{1\}) = \emptyset$ and so $\operatorname{Int}(x_a) = \chi_{\operatorname{Int}(\emptyset)} = 0$ in $(\mathbb{Z}^n, (\kappa^n)^f)$ (cf. Theorem B (iii)).

(ii-3) For this fuzzy point x_a , we have (*) $\operatorname{Int}(x_a) = \chi_{\operatorname{Int}(x_a)^{-1}(\{1\}))} = \chi_{\operatorname{Int}(\{x\})}$ if a = 1; $\operatorname{Int}(x_a) = \chi_{\operatorname{Int}((x_a)^{-1}(\{1\}))} = \chi_{\emptyset} = 0$ if $a \neq 1$ (cf. Theorem B (iii)).

Thus, we show (ii-3) for the case where a = 1 only. Since $\operatorname{Int}(\{x\}) = \emptyset$ in (\mathbb{Z}^n, κ^n) for this point x. we have $\operatorname{Int}(x_1) = \chi_{\operatorname{Int}(\{x\})} = \chi_{\emptyset} = 0$ (cf. Theorem B (iii)).

(ii-4) For this point x, say $x = (y_1, y_2, ..., y_n)$, there exists even integers, say $y_{i(e)}(1 \le e \le r)$, where $\{i(1), i(2), ..., i(r)\} \subset \{1, 2, ..., n\}$, because $1 \le r \le n - 1$ and $r = \#\{i|1 \le i \le n, y_i$ is even}; and $\operatorname{Int}(\{y_{i(e)}\}) = \emptyset$ for each e with $1 \le e \le r$ in (\mathbb{Z}, κ) . Then, we have $\operatorname{Int}(\{x\}) = \prod_{j=1}^n \operatorname{Int}(y_j) = \emptyset$ in (\mathbb{Z}^n, κ^n) . Thus, if a = 1, then $\operatorname{supp}(x_a) = (x_1)^{-1}(\{1\}) = \{x\}$ and so $\operatorname{Int}(x_a) = \chi_{\operatorname{Int}(\operatorname{supp}(x_1))} = \chi_{\operatorname{Int}(\{x\})} = \chi_{\emptyset} = 0$ in $(\mathbb{Z}^n, (\kappa^n)^f)$; if $a \ne 1$, then $\operatorname{supp}(x_a) = (x_a)^{-1}(\{1\}) = \emptyset$ and so $\operatorname{Int}(x_a) = \chi_{\operatorname{Int}(\operatorname{supp}(x_a))} = \chi_{\emptyset} = 0$ in $(\mathbb{Z}^n, (\kappa^n)^f)$ (cf. Theorem B (iii)). Therefore, for this fuzzy point x_a , we show $\operatorname{Int}(x_a) = 0$.

Theorem 3.3 A fuzzy point x_a is fuzzy open, otherwise x_a is fuzzy preclosed in $(\mathbb{Z}^n, (\kappa^n)^f)$.

Proof. In general, by Theorem B(i) in Section 2, every fuzzy point is fuzzy open or fuzzy preclosed in (X, σ^f) , where (X, σ) is a topological space. Then we prove only that non-existence of fuzzy point x_a which is fuzzy open and fuzzy preclosed in $(\mathbb{Z}^n, (\kappa^n)^f)$. Suppose that there exists a fuzzy point x_a such that $x_a \in FPC(\mathbb{Z}^n, (\kappa^n)^f)$ and $x_a \in (\kappa^n)^f$. Since x_a is fuzzy open in $(\mathbb{Z}^n, (\kappa^n)^f)$, we have a = 1 and $\{x\}$ is open in (\mathbb{Z}^n, κ^n) (cf. Theorem B(ii) in Section 2). Thus, we can put $x := (2m_1 + 1, 2m_2 + 1, ..., 2m_n + 1) \in (\mathbb{Z}^n)_{\kappa^n}$. For this point x and fuzzy singleton x_a , where a = 1, by Theorem 3.2, $\operatorname{Cl}(\operatorname{Int}(x_a)) = \operatorname{Cl}(x_a) = \chi_{E_x^O}$, where $E_x^O := \prod_{i=1}^n \{2m_i, 2m_i + 1, 2m_i + 2\}$ in $(\mathbb{Z}^n, (\kappa^n)^f)$. Put $x^+ := (2m_1 + 2, 2m_2 + 2, ..., 2m_n + 2)$. Then, we have $x \neq x^+$ and so $\operatorname{Cl}(\operatorname{Int}(x_1))(x^+) = \chi_{E_x^O}(x^+) = 1 \not\leq x_1(x^+) = 0$; this contradicts $x_a \in FPC(\mathbb{Z}^n, (\kappa^n)^f)$ (cf. Notation I in Section 2). \Box

Since $\mathbb{Z}^n = (\mathbb{Z}^n)_{\kappa^n} \cup (\mathbb{Z}^n)_{\mathcal{F}^n} \cup (\bigcup\{(\mathbb{Z}^n)_{mix(r)}|1 \leq r \leq n-1\})$ (disjoint union), we see obviously that $\mathbb{Z}^n \setminus (\mathbb{Z}^n)_{\kappa^n} = (\mathbb{Z}^n)_{\mathcal{F}^n} \cup (\bigcup\{(\mathbb{Z}^n)_{mix(r)}|1 \leq r \leq n-1\})$ holds in the digital *n*-space (\mathbb{Z}^n, κ^n) , where $n \geq 2$. And, we see $\mathbb{Z} \setminus \mathbb{Z}_{\kappa} = \mathbb{Z}_{\mathcal{F}}$ hold in the digital line (\mathbb{Z}, κ) .

Corollary 3.4 Let x_a be a fuzzy point on \mathbb{Z}^n , where $0 < a \leq 1$. The following properties are equivalent:

- (1) $x_a \in FPC(\mathbb{Z}^n, (\kappa^n)^f);$
- (2) $x \in E \text{ or } 0 < a < 1$, where $E := \mathbb{Z}^n \setminus (\mathbb{Z}^n)_{\kappa^n}$;
- (2)' $x \notin (\mathbb{Z}^n)_{\kappa^n}$ or $a \neq 1$;
- (3) $x_a \notin (\kappa^n)^f$ (i.e., x_a is not fuzzy open in $(\mathbb{Z}^n, (\kappa^n)^f)$).

Proof. (1) \Rightarrow (2) Suppose that $x \in (\mathbb{Z}^n)_{\kappa^n}$ and a = 1. Then, by Theorem B(ii) in Section 2, x_a is fuzzy open; and hence by Theorem 3.3, x_a is not fuzzy preclosed in $(\mathbb{Z}^n, (\kappa^n)^f)$; this

contradicts the assumption (1). Therefore, we showed that $x \in E$ or 0 < a < 1. $(2) \Leftrightarrow (2)'$ It is obvious.

(2) \Rightarrow (3) By Theorem B(ii) in Section 2 for $(X,\sigma) = (\mathbb{Z}^n,\kappa^n), x_a$ is not fuzzy open in $(\mathbb{Z}^n, (\kappa^n)^f).$ $(3) \Rightarrow (1)$ It is proved by Theorem 3.3.

Finally we show some explicit forms of $\lambda_{\mathcal{PC}(\mathbb{Z}^n (\kappa^n)f)}$.

Theorem 3.5 Let λ be a fuzzy set on \mathbb{Z}^n with $\lambda \neq 0$. Then, we have the following properties:

(i) $\lambda^*_{\mathcal{PC}(\mathbb{Z}^n,(\kappa^n)^f)} = \lambda_{\mathcal{PC}(\mathbb{Z}^n,(\kappa^n)^f)}$ holds.

(ii) If $\operatorname{supp}(\lambda) \cap (\mathbb{Z}^n \setminus (\mathbb{Z}^n)_{\kappa^n}) \neq \emptyset$, then

(ii-1) $\lambda_{\mathcal{PC}(\mathbb{Z}^n,(\kappa^n)^f)} \neq 0;$

(ii-2) $\lambda_{\mathcal{PC}(\mathbb{Z}^n,(\kappa^n)^f)} = \bigvee \{ x_{\lambda(x)} \in I^{\mathbb{Z}^n} | x \in \operatorname{supp}(\lambda) \setminus (\lambda^{-1}(\{1\}))_{\kappa^n} \}; and$

(ii-3) $\lambda_{\mathcal{PC}(\mathbb{Z}^n,(\kappa^n)^f)} = \mathcal{A}(\lambda)_0 \lor (\bigvee \{\mathcal{A}(\lambda)_r | 1 \le r \le n\}), where$ $\mathcal{A}(\lambda)_0 := \bigvee \{x_{\lambda(x)} | x \in (\operatorname{supp}(\lambda) \setminus \lambda^{-1}(\{1\}))_{\kappa^n}\} and \mathcal{A}(\lambda)_r := \bigvee \{x_{\lambda(x)} | x \in (\operatorname{supp}(\lambda))_{mix(r)}\}$ for each integer r with $1 \leq r \leq n$.

Proof. (i) We consider the following two cases for the proof.

Case 1. $PC^*(\lambda) \neq \emptyset$: by Definition 2.2(iii) and Corollary 3.4(1) \Leftrightarrow (3), it is obtained that $\lambda_{\mathcal{PC}(\mathbb{Z}^n,(\kappa^n)^f)}^* := \bigvee \{ x_{\lambda(x)} \mid x_{\lambda(x)} \in FPC(\mathbb{Z}^n,(\kappa^n)^f) \text{ and } x_{\lambda(x)} \notin (\kappa^n)^f \} = \bigvee \{ x_{\lambda(x)} \mid x_{\lambda(x)} \in FPC(\mathbb{Z}^n,(\kappa^n)^f) \} = \bigvee \{ x_{\lambda(x)} \mid x_{\lambda(x)} \in FPC(\mathbb{Z}^n,(\kappa^n)^f) \} = \bigvee \{ x_{\lambda(x)} \mid x_{\lambda(x)} \in FPC(\mathbb{Z}^n,(\kappa^n)^f) \} = \bigvee \{ x_{\lambda(x)} \mid x_{\lambda(x)} \in FPC(\mathbb{Z}^n,(\kappa^n)^f) \} = \bigvee \{ x_{\lambda(x)} \mid x_{\lambda(x)} \in FPC(\mathbb{Z}^n,(\kappa^n)^f) \} = \bigcup \{ x_{\lambda(x)} \mid x_{\lambda(x)} \in FPC(\mathbb{Z}^n,(\kappa^n)^f) \} = \bigcup \{ x_{\lambda(x)} \mid x_{\lambda(x)} \in FPC(\mathbb{Z}^n,(\kappa^n)^f) \} = \bigcup \{ x_{\lambda(x)} \mid x_{\lambda(x)} \in FPC(\mathbb{Z}^n,(\kappa^n)^f) \} = \bigcup \{ x_{\lambda(x)} \mid x_{\lambda(x)} \in FPC(\mathbb{Z}^n,(\kappa^n)^f) \} = \bigcup \{ x_{\lambda(x)} \mid x_{\lambda(x)} \in FPC(\mathbb{Z}^n,(\kappa^n)^f) \} = \bigcup \{ x_{\lambda(x)} \mid x_{\lambda(x)} \in FPC(\mathbb{Z}^n,(\kappa^n)^f) \} = \bigcup \{ x_{\lambda(x)} \mid x_{\lambda(x)} \in FPC(\mathbb{Z}^n,(\kappa^n)^f) \} = \bigcup \{ x_{\lambda(x)} \mid x_{\lambda(x)} \in FPC(\mathbb{Z}^n,(\kappa^n)^f) \} = \bigcup \{ x_{\lambda(x)} \mid x_{\lambda(x)} \in FPC(\mathbb{Z}^n,(\kappa^n)^f) \} = \bigcup \{ x_{\lambda(x)} \mid x_{\lambda(x)} \in FPC(\mathbb{Z}^n,(\kappa^n)^f) \} = \bigcup \{ x_{\lambda(x)} \mid x_{\lambda(x)} \in FPC(\mathbb{Z}^n,(\kappa^n)^f) \} = \bigcup \{ x_{\lambda(x)} \mid x_{\lambda(x)} \in FPC(\mathbb{Z}^n,(\kappa^n)^f) \} = \bigcup \{ x_{\lambda(x)} \mid x_{\lambda(x)} \in FPC(\mathbb{Z}^n,(\kappa^n)^f) \} = \bigcup \{ x_{\lambda(x)} \mid x_{\lambda(x)} \in FPC(\mathbb{Z}^n,(\kappa^n)^f) \} = \bigcup \{ x_{\lambda(x)} \mid x_{\lambda(x)} \in FPC(\mathbb{Z}^n,(\kappa^n)^f) \} = \bigcup \{ x_{\lambda(x)} \mid x_{\lambda(x)} \in FPC(\mathbb{Z}^n,(\kappa^n)^f) \} = \bigcup \{ x_{\lambda(x)} \mid x_{\lambda(x)} \in FPC(\mathbb{Z}^n,(\kappa^n)^f) \} = \bigcup \{ x_{\lambda(x)} \mid x_{\lambda(x)} \in FPC(\mathbb{Z}^n,(\kappa^n)^f) \} = \bigcup \{ x_{\lambda(x)} \mid x_{\lambda(x)} \in FPC(\mathbb{Z}^n,(\kappa^n)^f) \} = \bigcup \{ x_{\lambda(x)} \mid x_{\lambda(x)} \in FPC(\mathbb{Z}^n,(\kappa^n)^f) \} = \bigcup \{ x_{\lambda(x)} \mid x_{\lambda(x)} \in FPC(\mathbb{Z}^n,(\kappa^n)^f) \} = \bigcup \{ x_{\lambda(x)} \mid x_{\lambda(x)} \in FPC(\mathbb{Z}^n,(\kappa^n)^f) \} = \bigcup \{ x_{\lambda(x)} \mid x_{\lambda(x)} \in FPC(\mathbb{Z}^n,(\kappa^n)^f) \} = \bigcup \{ x_{\lambda(x)} \mid x_{\lambda(x)} \in FPC(\mathbb{Z}^n,(\kappa^n)^f) \} = \bigcup \{ x_{\lambda(x)} \mid x_{\lambda(x)} \in FPC(\mathbb{Z}^n,(\kappa^n)^f) \} = \bigcup \{ x_{\lambda(x)} \mid x_{\lambda(x)} \in FPC(\mathbb{Z}^n,(\kappa^n)^f) \} = \bigcup \{ x_{\lambda(x)} \mid x_{\lambda(x)} \in FPC(\mathbb{Z}^n,(\kappa^n)^f) \} = \bigcup \{ x_{\lambda(x)} \mid x_{\lambda(x)} \in FPC(\mathbb{Z}^n,(\kappa^n)^f) \} = \bigcup \{ x_{\lambda(x)} \mid x_{\lambda(x)} \in FPC(\mathbb{Z}^n,(\kappa^n)^f) \} = \bigcup \{ x_{\lambda(x)} \mid x_{\lambda(x)} \in FPC(\mathbb{Z}^n,(\kappa^n)^f) \} = \bigcup \{ x_{\lambda(x)} \mid x_{\lambda(x)} \in FPC(\mathbb{Z}^n,(\kappa^n)^f) \} = \bigcup \{ x_{\lambda(x)} \mid x_{\lambda(x)} \in FPC(\mathbb{Z}^n,(\kappa^n)^f) \} = \bigcup \{ x_{\lambda(x)} \mid x_{\lambda(x)} \in FPC(\mathbb{Z}^n,(\kappa^n)^f) \} = \bigcup \{ x_{\lambda(x)} \mid x_{\lambda(x)} \in FPC(\mathbb{Z}^$ $FPC(\mathbb{Z}^n, (\kappa^n)^f)$. And so, we have $\lambda^*_{\mathcal{PC}(\mathbb{Z}^n, (\kappa^n)^f)} = \lambda_{\mathcal{PC}(\mathbb{Z}^n, (\kappa^n)^f)}$, because $PC^*(\lambda) \subset PC(\lambda)$ and $PC(\lambda) \neq \emptyset$ hold.

Case 2. $PC^*(\lambda) = \emptyset$: for this case, $\lambda^*_{\mathcal{PC}(\mathbb{Z}^n, (\kappa^n)^f)} := 0$ (cf. Notation I in Section 2, Definition 2.2(iii)). We claim that $PC(\lambda) = \emptyset$ holds under the assumption of Case 2 (i.e., $PC^*(\lambda) = \emptyset$). Suppose that $PC(\lambda) \neq \emptyset$ (cf. Notation I in Section 2, Definition 2.2(ii)). Then, there exists a point of \mathbb{Z}^n , say $z \in PC(\lambda)$, and so $z_{\lambda(z)} \in PC(\mathbb{Z}^n, (\kappa^n)^f)$ and, by Theorem 3.3, $z_{\lambda(z)} \notin (\kappa^n)^f$. The above result shows that $z_{\lambda(z)} \in PC^*(\mathbb{Z}^n, (\kappa^n)^f)$ holds, i.e., $z \in PC^*(\lambda)$ (cf. Notation I in Section 2); this contradicts the assumption of Case 2 (i.e., $PC^*(\lambda) = \emptyset$. Thus, we claimed that if $PC^*(\lambda) = \emptyset$ then $PC(\lambda) = \emptyset$. And, under the assumption of Case 2, we show that $\lambda^*_{\mathcal{PC}(\mathbb{Z}^n,(\kappa^n)^f)} := 0 = \lambda_{\mathcal{PC}(\mathbb{Z}^n,(\kappa^n)^f)}$ hold.

Therefore, by Case 1 and Case 2, it is proved that $\lambda^*_{\mathcal{PC}(\mathbb{Z}^n,(\kappa^n)^f)} = \lambda_{\mathcal{PC}(\mathbb{Z}^n,(\kappa^n)^f)}$ holds.

(ii) (ii-1) It follows from the assumption of (ii) that there exists a point $z \in \operatorname{supp}(\lambda)$ (i.e., $\lambda(z) > 0$) and $z \notin (\mathbb{Z}^n)_{\kappa^n}$. By Corollary 3.4(2)' \Leftrightarrow (1), it is obtained that $z_{\lambda(z)} \in$ $FPC(\mathbb{Z}^n, (\kappa^n)^f)$ and so $z \in PC(\lambda) \neq \emptyset$ (cf. Notation I). We have that $\lambda_{\mathcal{PC}(\mathbb{Z}^n, (\kappa^n)^f)}$ $= \bigvee \{ x_{\lambda(x)} | x_{\lambda(x)} \in FPC(\mathbb{Z}^n, (\kappa^n)^f) \} \text{ (cf. Definition 2.2(ii)) and } \lambda_{\mathcal{PC}(\mathbb{Z}^n, (\kappa^n)^f)}(z) \neq 0 \text{ for}$ the point z, i.e., $\lambda_{\mathcal{PC}(\mathbb{Z}^n,(\kappa^n)^f)} \neq 0$.

(ii-2) For a fuzzy point $x_{\lambda(x)}$, we have that $\lambda(x) > 0$, i.e., $x \in \text{supp}(\lambda)$. Then, by using definitions and Corollary 3.4 (1) \Leftrightarrow (2)', it is shown that: $x_{\lambda(x)} \in FPC(\mathbb{Z}^n, (\kappa^n)^f)$ if and only if $x \in \operatorname{supp}(\lambda) \setminus (\lambda^{-1}(1))_{\kappa^n}$. By (ii-1) and Definition 2.2(ii), it is shown that: $PC(\lambda) \neq \emptyset$ and so $\lambda_{\mathcal{PC}(\mathbb{Z}^n,(\kappa^n)^f)} = \bigvee \{ x_{\lambda(x)} | x \in \operatorname{supp}(\lambda) \setminus (\lambda^{-1}(\{1\}))_{\kappa^n} \}.$

(ii-3) We use the well known decomposition of \mathbb{Z} : $\mathbb{Z}^n = (\mathbb{Z}^n)_{\kappa^n} \cup (\bigcup \{ (\mathbb{Z}^n)_{mix(r)} | 1 \le r \le n \}$ n)(disjoint union) and $(\mathbb{Z}^n)_{mix(n)} = (\mathbb{Z}^n)_{\mathcal{F}^n}$. It follows from assumption that $\operatorname{supp}(\lambda) \neq \emptyset$. We consider the decomposition of supp (λ) in $(\mathbb{Z}^n, (\kappa^n)^f)$:

 $\operatorname{supp}(\lambda) = (\operatorname{supp}(\lambda))_{\kappa^n} \cup (\bigcup \{ (\operatorname{supp}(\lambda))_{mix(r)} | 1 \leq r \leq n \});$ then, we have the following equality in $(\mathbb{Z}^n, (\kappa^n)^f)$ (cf. the right hand side equality in the end of the proof of (ii-2)):

 $(\bullet) \operatorname{supp}(\lambda) \setminus (\lambda^{-1}(\{1\}))_{\kappa^n} = (\operatorname{supp}(\lambda) \setminus \lambda^{-1}(1))_{\kappa^n} \cup (\bigcup \{(\operatorname{supp}(\lambda))_{mix(r)}) | 1 \le r \le n \}.$ Then, using (ii-2), the equality (\bullet) above and a property of fuzzy union of fuzzy points (e.g. [19, Lemma 2.5(ii)]), we have that:

 $\lambda_{\mathcal{PC}(\mathbb{Z}^n,(\kappa^n)^f)} = \bigvee \{ x_{\lambda(x)} | \ x \in \operatorname{supp}(\lambda) \setminus (\lambda^{-1}(\{1\}))_{\kappa^n} \}$ $= [\bigvee\{x_{\lambda(x)} \mid x \in (\operatorname{supp}(\lambda) \setminus \lambda^{-1}(\{1\}))_{\kappa^n}] \vee [\bigvee\{x_{\lambda(x)} \mid x \in (\operatorname{supp}(\lambda))_{mix(r)} \mid 1 \le r \le n\}]$ $=\mathcal{A}(\lambda)_0 \vee (\bigvee \{\mathcal{A}(\lambda)_r) | 1 \le r \le n\});$ and hence (ii-3) is proved.

The following remark is pre-announced in Remark 1.3.

Remark 3.6 (cf. Remark 1.3, [19, (III-12) in Section 3]) The following example also shows that the correspondence $f_s : SO(\mathbb{Z}^n, \kappa^n) \to FSO(\mathbb{Z}^n, (\kappa^n)^f)$ is not onto, even if $f : \kappa^n \to (\kappa^n)^f$ is bijective, where $f_s(U) := \chi_U$ and $f(V) := \chi_V$ for every $U \in SO(\mathbb{Z}^n, \kappa^n)$ and every $V \in \kappa^n$. We choice the following subset A as follows:

 $A := \{y^{(1)}, y^{(2)}\} \subset \mathbb{Z}^n, \text{ where } y^{(1)} := (2m_1, 2m_2, ..., 2m_n) \text{ and } y^{(2)} = (2m_1 + 1, 2m_2 + 1, ..., 2m_n + 1) \text{ for some integers } m_i(1 \le i \le n); \text{ and so } y^{(1)} \in (\mathbb{Z}^n)_{\mathcal{F}^n} \text{ and } y^{(2)} \in (\mathbb{Z}^n)_{\kappa^n}.$ Using the subset A, we define the fuzzy set $\lambda_A \in I^{\mathbb{Z}^n}$ as follows:

 $\lambda_A(y^{(2)}) := 1, \lambda_A(y^{(1)}) := 1/2 \text{ and } \lambda_A(y) := 0 \text{ for every point } y \in \mathbb{Z}^n \text{ with } y \notin A.$ Then, we have that $\lambda_A \in FSO(\mathbb{Z}^n, (\kappa^n)^f)$; indeed, $\operatorname{Cl}(\operatorname{Int}(\lambda_A)) = \chi_{Cl(\{y^{(2)}\})} \ge \lambda_A$ hold (cf. Theorem B(iii)). However, $\lambda_A \notin f_s(SO(\mathbb{Z}^n, \kappa^n))$; indeed, it follows from the definition of f_s that $f_s(SO(\mathbb{Z}^n, \kappa^n)) = \{\chi_U | U \in SO(\mathbb{Z}^n, \kappa^n)\}$ and $\lambda_A \neq \chi_U$ for each $U \in SO(\mathbb{Z}^n, \kappa^n)$.

Remark to [19, Definition 1.2 (i)]: the authors of the present paper have this opportunity of taking notice the following typographical correction in [19, Definition 1.2 (i)].

(•) line +3 from the top of the text of [19, Definition 1.2]:

" if $\lambda \leq \operatorname{Int}(\operatorname{Cl}(\tau_Y))$ " should be replaced by " if $\lambda \leq \operatorname{Int}(\operatorname{Cl}(\lambda))$ ".

Acknowlegements The authors thank the referee for making several suggestions which improved the quality of this paper.

References

- K.K. Azad, On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl., 82 (1981), 14-32.
- G. Balasubramanian and P. Sundaram, On some generalization of fuzzy continuous functions, Fuzzy Sets and Systems, 86 (1997), 93-100.
- [3] J. Cao, S. Greenwood and I. Reilly, Generalized closed sets: a unified approach, Appl. General Topology,2 (2001), 179 - 189.
- [4] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968), 182-190.
- [5] J. Dontchev and M. Ganster, On δ -generalized closed sets and $T_{3/4}$ -spaces, Mem. Fac. Sci. Kochi Univ. (Math.), 17(1996), 15-31.
- [6] W. Dunham, $T_{1/2}$ -spaces, Kyungpook Math. J., 17(1977), 161-169.
- [7] M. Fujimoto, S. Takigawa, J. Dontchev, H. Maki and T. Noiri, The topological structures and groups of digital n-spaces, Kochi J. Math.), 1(2006), 31-55.
- [8] T. Fukutake, H. Harada, M. Kojima, H. Maki and F. Tamari, Degrees and fuzzy generalized closed sets, J. Fuzzy Math., 9(2001),159-172.
- S. Hamada and T. Hayashi, Fuzzy topological structures of low dimensional digital spaces, J. Fuzzy Math., 20(2012), 15-23.
- [10] T.R. Hamlett, A correction to the paper "Semi-open sets and semi-continuity in topological spaces" by Norman Levine, Proc. Amer. Math. Soc., 49(1975), 458-460.
- [11] E.D. Khalimsky, Applications of connected ordered topological spaces in topology, Conference of Math. Departments of Povolsia, 1970.
- [12] E.D. Khalimsky, Topological structures in computer sciences, J. Appl. Math. Simulation, 1(1)(1987), 25-40.
- [13] E.D. Khalimsky, R. Kopperman and P.K. Meyer, Computer graphics and connected topologies on finite ordered sets, *Topology Appl.*, 36(1990),1-17.
- [14] T.K. Kong, R. Kopperman and P.K. Meyer, A topological approaches to digital topology, *Amer. Math. Monthly*, 98(1991), 901-917.

- [15] V. Kovalevsky and R. Kopperman, Some topology-based image processing algorithms, Ann. New York Acad. Sci., Papers on General Topology and its Applications, 728(1994), 174-182.
- [16] B. Krsteska, Some fuzzy SP-topological properties, Mat. Vesnik,, 51(1999), 39-51.
- [17] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- [18] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19(1970), 89-96.
- [19] H. Maki, T. Fukutake, M. Kojima, F. Tamari, T. Kono, S. Nita, T. Hayashi, S. Hamada and H. Kuwano, Fuzzy topological properties of fuzzy points and its applications, *Sci. Math. Japon.*, 75(2)(2012), 235-253; Online e-2012,311-329.
- [20] H. Maki, S. Takigawa, M. Fujimoto, P. Sundaram and M. Sheik John, Remarks on ω-closed sets in Sundaram-Sheik John's sence of digital n-spaces (Sci. Math. Japon., received for publication).
- [21] A.S. Mashhour, Abd El-Monsef and S.N. El-Deeb, On precontinuous and weak precontinuous mapping, Proc. Phys. Math. Soc. Egypt., 53(1982), 47-53.
- [22] Pu Pao-Ming and Liu Ying-Ming, Fuzzy topology.I. Neighborhood structure of a fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl., 76(1980), 571-599.
- [23] M.K. Singal and Niti Prakash, Fuzzy preopen sets and fuzzy preseparation axioms, Fuzzy sets and Systems, 44(1991), 273-281.
- [24] S. Takigawa, M. Ganster, H. Maki, T. Noiri and M. Fujimoto, The digital n-space is quasisubmaximal, Questions Answers Gen. Topology, 26(1)(2008), 45-52.
- [25] S. Takigawa and H. Maki, Every nonempty open set of the digital *n*-space is expressible as the union of finitely many nonempty regular open sets, *Sci. Math. Japon.*, **67**(2)(2008), 365-376; Online e-2007, 601-612.
- [26] L.A. Zadeh, Fuzzy sets, Information and Control, 8(1965), 338-353.

Communicated by Hiroaki Ishii

Haruo MAKI: Wakagidai 2-10-13, Fukutsu-shi, Fukuoka-ken, 811-3221 Japan e-mail: makih@pop12.odn.ne.jp

Sayaka HAMADA: Department of Mathematics, Yatsushiro Campus Kumamoto National College of Technology 2627 Hirayama-Shinmachi, Yatsushiro, Kumamoto, 866-8501 Japan e-mail: hamada@kumamoto-nct.ac.jp