
Scientiae Mathematicae Japonicae Online e-2015,13-21                                                                               13

Rings with ideal centres
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Abstract. We discuss the condition that the centre of a ring is an ideal. We also show
that some classical commutativity results of Jacobson and Herstein have elementary
proofs under the added assumption that the centre is an ideal.

1 Introduction Since in a group G, the centre Z(G) is always a normal subgroup, one
might expect that the centre Z(R) of a ring would be a (two-sided) ideal in R. This is not
true in general, though it can be true in some cases: at one extreme, it is trivially true
if R is commutative, and at the other extreme it is also trivially true if R is “extremely
non-commutative” in the sense that Z(R) = {0}. Thus rings where it fails to hold are in
some sense “moderately non-commutative”. We say that a ring R has an ideal centre if its
centre is an ideal.

One of the main aims of this paper is to show that some classical ring commutativity
results of Jacobson and Herstein, which we now state, have elementary proofs if we restrict
to rings with ideal centres. Jacobson [12] proved that rings R satisfying an identity of the
form xn(x) = x are commutative. Rings satisfying such an identity are rather special, but
Herstein showed that commutativity is equivalent to the weaker condition xn(x)−x ∈ Z(R);
see [9]. Herstein then generalized this result further:

Theorem A (Herstein [10]). A ring R is commutative if and only if for each x ∈ R there
exists f(X) ∈ X2Z[X] such that f(x)− x ∈ Z(R).

In the above result, f(X) ∈ X2Z[X] means that f(X) is a formal polynomial with
integer coefficients (in the indeterminate X) which is formally divisible by X2. We view f
as a function on R in the natural way.

Subsequently, Herstein gave the following quite different generalization of Jacobson’s
theorem; here and later, [x, y] = xy − yx is the commutator of x and y.

Theorem B (Herstein [11]). A ring R is commutative if and only if for each x, y ∈ R there
exists an integer n(x, y) > 1 such [x, y]n(x,y) = [x, y].

Known proofs of Theorems A and B require Jacobson’s structure theory of rings, but
we give elementary proofs of the following variants of these results.

Theorem 1. A ring R with ideal centre is commutative if and only if for each x ∈ R there
exists f(X) ∈ X2Z[X] such that f(x)− x ∈ Z(R).

Theorem 2. The following conditions are equivalent for rings R with ideal centres.

(a) R is commutative.

(b) For each x, y ∈ R there exists an integer n(x, y) > 1 such [x, y]n(x,y) = [x, y].

2000 Mathematics Subject Classification. 16R50.
Key words and phrases. ring, commutativity condition.



14

(c) For each x, y ∈ R there exists f(X) ∈ X2Z[X] such that f([x, y]) = [x, y].

Obviously Theorem 1 follows immediately from Theorem A, and the equivalence of (a)
and (b) in Theorem 2 follows immediately from Theorem B, so the important feature of
these results is that our proofs avoid structure theory. We do not however know of any
proof that condition (c) in Theorem 2 implies commutativity for general rings.

We can view the above theorems as stating in particular that a polynomial g(X) ∈
XZ[X] whose X-coefficient equals ±1 “forces” commutativity of R if g(R) = 0 (meaning
that g(x) = 0 for all x ∈ R), or more generally g(R) ⊆ Z(R) (meaning that g(x) ∈ Z(R)
for all x ∈ R), or g([R,R]) = 0 (meaning that g([x, y]) = 0 for all x, y ∈ R). The following
result classifies the polynomials that force rings with ideal centre to be commutative in any
of these three senses.

Theorem 3. Let g(X) :=
∑n

i=1 aiX
i ∈ Z[X]. Then

(a) All rings R with ideal centre satisfying g(R) = 0 are commutative if and only if either:

(i) a1 = ±1, or

(ii) a1 = ±2, a2 is odd, and a2 + a3 + · · ·+ an is odd.

(b) All rings R with ideal centre satisfying g(R) ⊆ Z(R) are commutative if and only
a1 = ±1.

(c) All rings R with ideal centre satisfying g([R,R]) = 0 are commutative if and only
a1 = ±1.

Each part of the above result follow easily from the corresponding results without the
ideal centre assumption; for these, see the main theorem in [13] for (a), [5, Proposition 4]
for (b), and [6, Theorem 2] for (c). Thus the main value of these parts of Theorem 3 is again
that the proof is elementary, although (c) also lead to the investigation of [6, Theorem 2].

We prove Theorems 1–3 in Section 3, but first in Section 2 we give some examples of
noncommutative rings in which the centre is an ideal, and also answer the following pair of
questions:

What is the order of the smallest finite ring/non-unital ring whose centre is not
an ideal?

2 Examples The concept of a ring with an ideal centre is mainly of interest for non-unital
rings, since clearly a unital ring has an ideal centre if and only if it is commutative.

If we define a good example of a ring R with an ideal centre to be one where Z(R) is both
nonzero and proper, then all good examples are non-unital. The following pair of propo-
sitions give some families of good examples. In these propositions and later, M(n, l, r, R0)
is the ring of n × n matrices A = (ai,j) over a base ring R0 such that ai,j = 0 if i > n − l
or j ≤ r, and U(n,m,R0) is the ring of n × n matrices A = (ai,j) over R0 such that
ai,j = 0 if j < i + m. We use the more common notation M(n,R0) and U(n,R0) in place
of M(n, 0, 0, R0) and U(n, 0, R0), respectively.

Proposition 4. Suppose R0 is a commutative unital ring with 1 6= 0, and that n, l, r ∈ N
satisfy n ≥ 3 and l + r < n. Then R := M(n, l, r, R0) is non-commutative, and Z(R) =
M(n, n− r, n− l, R0) is a nontrivial proper ideal in R.
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Proof. Let S := M(n, n − r, n − l, R0). Because n > n − r > l and n > n − l > r, it
is clear that S is a proper and nontrivial subring of R. Let Σ ∈ M(n,R0) be the matrix
corresponding to the shift map (x1, . . . , xn) 7→ (x2, . . . , xn, 0) in Rn

0 , so that Σ = (σi,j),
where

σi,j =

{
1 , if 2 ≤ j = i+ 1 ≤ n ,
0 , otherwise .

Note that R = ΣlM(n,R0)Σr. Since the matrix Σn corresponds to the zero map and
S = Σn−rM(n,R0)Σn−l, it follows that AB = BA = 0 whenever A ∈ R and B ∈ S. Thus
S is an ideal and S ⊆ Z(R).

Taking A = (ai,j) ∈ R \ S, it remains to show that A /∈ Z(R). For 1 ≤ i, j ≤ n, define
Mi,j ∈ M(n,R0) to be the matrix whose (i, j)th entry is 1 and all other entries are 0.
Suppose first that ap,q 6= 0 for some 1 ≤ p, q ≤ n such that p > r. Now B = M1,p ∈ R and
ΣB = 0, so AB = 0. On the other hand, the (1, q)th entry of BA is ap,q so BA 6= 0. Thus
A /∈ Z(R).

The other way that A can fail to be in S is if ap,q 6= 0 for some 1 ≤ p, q ≤ n such that
q ≤ n − l. Now B = Mq,n ∈ R and BΣ = 0, so BA = 0. On the other hand, the (p, n)th
entry of AB is ap,q, so AB 6= 0. Thus again A /∈ Z(R), and we are done.

The equation Z(R) = M(n, n− r, n− l, R0) proved above, and the fact that Z(R) is an
ideal, is true under weaker assumptions on n, l, r: it suffices that n ≥ 2 and 0 < l + r < n.
However, note that if either l = 0 or r = 0, then Z(R) = {0}.

Our second proposition says various families of strictly upper triangular matrices also
provide good examples.

Proposition 5. Suppose R0 is a commutative unital ring with 1 6= 0, and that n,m ∈ N
satisfy n ≥ 3 and m < n/2. Then R := U(n,m,R0) is non-commutative, and Z(R) =
M(n, n−m,n−m,R0) is a nontrivial proper ideal in R.

Proof. It is readily verified that R ⊂M(n,m,m,R0) and that S := M(n, n−m,n−m,R0)
is a proper subset of R. Most of the result now follows from Proposition 4, but we need to
verify that if A ∈ R \ S then A /∈ Z(R). The matrices B used to prove the corresponding
result in Proposition 4 also lie in this ring R, so the same proof works.

In contrast with the above propositions, M(n,R0) and U(n,R0) are unital, so they have
an ideal centre only if they are commutative, i.e. only if n = 1.

We now turn our attention to rings without ideal centres. Our first result is the following
non-existence result.

Theorem 6. Suppose R is a non-unital ring of order pn, where p is prime and n ∈ N,
n ≤ 3. Then R has an ideal centre.

Let us introduce some notation that will be useful in this proof and later: if x is an
element of a ring R, then 〈x;Z〉 and 〈〈x;Z〉〉 are the additive subgroup and the subring,
respectively, generated in both cases by x and all z ∈ Z(R); the ring R will be understood
whenever we use such notation. Note that if x /∈ Z(R), then Z(R) ( 〈x;Z〉 ⊆ 〈〈x;Z〉〉, and
that 〈〈x;Z〉〉 is commutative.

Proof of Theorem 6. Suppose for the sake of contradiction that R is a non-unital ring of
order pn, n ≤ 3, and that Z(R) is not an ideal. In particular Z(R) is neither {0} nor R
so, as an additive subgroup of R, it must have order pk for some 0 < k < n. In particular
n > 1. We can also quickly rule out n = 2, since then necessarily k = 1, and if x ∈ R\Z(R),
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then 〈x;Z〉 is commutative and strictly contains Z(R), so it must have order p2. Thus R is
commutative, contradicting the assumption that Z(R) is not an ideal.

Finally, suppose n = 3. We can rule out k = 2 in the same way as we ruled out k = 1
for n = 2, so we must have k = 1. Let z be a generator of Z(R) as an additive group.
Suppose first that z2 = 0. Since Z(R) is not an ideal, there exists some u ∈ R \ Z(R) such
that zu /∈ Z(R). Then 〈u;Z〉 has order at least p2 and, since R cannot be commutative,
〈〈u;Z〉〉 = 〈u;Z〉 must have order p2. Thus zu = iz + ju, where i, j ∈ Zp and j 6= 0. But
then

0 = z2u = z(zu) = z(iz + ju) = ijz + j2u

which gives a contradiction because j2 6= 0 and u /∈ Z(R).
Suppose instead that z2 6= 0, and so z2 = sz for some s ∈ Zp, s 6= 0. By distributivity,

we see that zt+1 = stz for all t ∈ N, and so in particular ez = z, where e = zp−1. Thus e
is an identity on Z(R) and in particular e2 = e. Since Z(R) is not an ideal, there exists
u ∈ R \ Z(R) such that eu /∈ Z(R). As before, 〈u;Z〉 has order at least p2, and 〈〈u;Z〉〉
cannot have order p3 lest R be commutative, so 〈〈u;Z〉〉 = 〈u;Z〉 has order p2. Thus
eu = ie+ ju for some i, j ∈ Zp, j 6= 0. Now

ie+ ju = eu = e2u = e(ie+ ju) = (i+ ij)e+ j2u

so i = i+ ij and j = j2. Since j 6= 0, we have j = 1, and hence i = 0. Thus eu = u = ue.
Now x 7→ ex is an additive homomorphism on R. Suppose it has trivial kernel. Then

this map is a permutation on R, and so some iterate of it is the identity map. Of course
the nth iterate of this map is just x 7→ enx, and so x 7→ ex, since e2 = e. It follows that e
is an identity for R, contradicting the assumption that R is non-unital. Thus there exists
v ∈ R \ {0} such that ev = 0. We deduce that

uv = (ue)v = u(ev) = 0 = (ev)u = v(eu) = vu ,

so the subring S generated by Z(R), u, and v is commutative. But ex = x for x = e, u,
so ex = x for all x ∈ 〈〈u;Z〉〉. Since ev 6= v, we see that v /∈ 〈〈u;Z〉〉. But 〈〈u;Z〉〉 has
order p2, so S must have order p3 and equal R. Thus R is commutative, contradicting our
assumptions.

It is easily proved that a finite ring can be decomposed as a direct sum of rings of prime
power order. Indeed if n =

∏
p|n p

kp is the prime factorization of n, and mp = n/pkp for

each p | n, then R is the direct sum of the ideals Rp := mpR; see [8].
Clearly the centre of a direct sum is a direct sum of the centres, and a ring has an ideal

centre if and only if each direct summand has an ideal centre, so to find a ring of minimal
order where the centre is not an ideal it suffices to consider prime powers. It is now a
straightforward matter to find the minimal order of (non-unital) rings in which the centre
is not an ideal. In fact, we get the following result in which N(2) is the ring of order 2 in
which all products are 0.

Theorem 7.

(a) Suppose R is a unital ring of order pn, where p is prime and n ≤ 3. If R does not
have an ideal centre, then n = 3 and R is isomorphic to U(2,Zp).

(b) If R is a non-unital ring of order pn, where p is prime and n ≤ 3, then R has an ideal
centre. However, R16 := U(2,Z2)⊕N(2) is a non-unital ring of order 24 that fails to
have an ideal centre.



17

Consequently, the order of the smallest unital ring failing to have an ideal centre is 8, and
the order of the smallest non-unital ring failing to have an ideal centre is 16.

Proof. By the comments above, the minimal orders must be prime powers. If a ring R is
unital, then 1 ∈ Z(R), and so Z(R) is an ideal if and only if R is commutative. Thus the
unital ring without an ideal centre of minimal order is just the noncommutative unital ring
of minimal order. This minimal order is known to be 8, and any such ring of order 8 must
be isomorphic to the upper triangular matrix ring U(2,Z2); see [7].

Since all prime powers of order less than 16 are of the form pn for some n ≤ 3, all
such non-unital rings have ideal centres according to Theorem 6. A direct sum has an ideal
centre if and only if all of its direct summands have ideal centres, so R16 fails to have an
ideal centre by (a). The presence of the N(2) summand prevents R16 from being unital.

Remark 8. Unlike our unital ring of order 8, the non-unital example in the above proof
is decomposable as a direct sum of smaller rings. We prove in [4] that all indecomposable
non-unital rings of order pk for k ≤ 4 have an ideal centre (p being any prime), and that
the smallest indecomposable non-unital ring without an ideal centre has order 32.

Remark 9. The previous remark suggests that perhaps finite indecomposable non-unital
rings rarely fail to have an ideal centre. On the other hand, we will see in the next section
that the assumption that a ring has an ideal centre is of great use for proving commutativ-
ity results. This suggests that the ideal centre assumption may be useful for formulating
conjectures regarding conditions that may imply commutativity: if we can prove a commu-
tativity result for rings with ideal centres, then it seems reasonable to search for a proof of
the corresponding result without the ideal centre assumption. This technique has already
lead to one success: we have been able to drop the ideal centre assumption in Theorem 2(c)
leading to [6, Theorem 2]. Going beyond this, we would like to know if the three conditions
in Theorem 2 are equivalent in the class of all rings.

We conclude this section by strengthening the previously mentioned fact that a non-
commutative ring with an ideal centre cannot have a unity, but first we record a simple
proposition.

Proposition 10. A ring R has an ideal centre if and only if cz = 0 whenever c is a
commutator and z ∈ Z(R).

Proof. If x, y ∈ R, and z ∈ Z(R) then (xy)z = x(zy) and (yx)z = (yz)x = (zy)x. Thus
[x, y]z = 0 for all such x, y, z if and only if zy ∈ Z(R) for all such y, z.

Theorem 11. Suppose a noncommutative ring R has an ideal centre. Then R/Z(R) does
not have a unity.

Proof. Suppose for the sake of contradiction that R/Z(R) has a unity e + Z(R), where
e ∈ R. It follows that for all x ∈ R, x = exe+ zx, for some zx ∈ Z(R). Also e2 = e+w for
some w ∈ Z(R). Thus

ex− xe = e(exe+ zx)− (exe+ zx)e

= e2xe− exe2 = wxe− exw = [x, e]w = 0 ,

where the last equation follows from Proposition 10. Since x is arbitrary, it follows that
e ∈ Z(R), so the unity of R/Z(R) is also the zero element. This contradicts the assumption
that Z(R) is not all of R.
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3 Elementary commutativity results Many results in the literature give elementary
proofs of special cases of the results of Jacobson and Herstein mentioned in the introduction;
in all cases, we use elementary to refer to proofs that do not appeal to Jacobson’s structure
theory of rings. The typical special case involves assuming that n(x) or n(x, y) takes on a
particular constant value n. Let us review a few such results.

In the case of the identity xn = x, elementary commutativity proofs were given by
Morita [17] for all odd n ≤ 25 and all even n ≤ 50. MacHale [16] gave an elementary proof
of commutativity for all even numbers n that can be written as sums or differences of two
powers of 2, but are not themselves powers of 2. Also notable is the proof by Wamsley [19]
of Jacobson’s result which uses only a weak form of structure theory (specifically, the fact
that a finite commutative ring can be written as a direct sum of fields).

For the condition xn − x ∈ Z(R), elementary proofs of commutativity are well known
for n = 2 (see e.g. [1] and [14]), and such a proof for n = 3 can be found in [15, Theorem 2]
and [18, Theorem 1]. Elementary proofs for odd n < 10, and for infinitely many even values
of n, can be found in [3]. In the case of the condition [x, y]n = [x, y], an elementary proof
for n = 3 (and a fortiori for n = 2) is given in [3, Theorem 17].

Our results are rather different from the above elementary theorems since we do not
restrict n(x) or n(x, y)—indeed we consider more general polynomial conditions—but in-
stead we add the assumption that Z(R) is an ideal. The one result of a similar type in the
literature of which we are aware is Theorem 6 of [16] which implies in particular that if R
is a ring, Z(R) is an ideal, and there exists an even number n > 1 such xn − x ∈ Z(R) for
all x ∈ R, then R is commutative. This implication of course follows from a special case of
Theorem 1.

We begin with a well-known lemma, and include a proof for completeness.

Lemma 12. Let R be a ring in which xy = 0 implies yx = 0. If e is an idempotent in R,
then e ∈ Z(R).

Proof. For all r ∈ R, e(r − er) = er − eer = er − er = 0, so (r − er)e = 0, and so
re = ere. By considering (r − re)e, we similarly deduce that er = ere. Thus er = re, and
so e ∈ Z(R).

We now prove one of our main results.

Proof of Theorem 2. Trivially, (a) implies (b), and (b) implies (c), so we need only prove
that (c) implies (a). Suppose xy = 0 for some x, y ∈ R. Then [y, x] = yx and so there
exists f(X) ∈ X2Z[X] such that yx = f(yx). Each term of the polynomial expression
f(yx) is an integer multiple of (yx)n for some n > 1. But (yx)n can be written in the form
y(xy)x′ (where x′ = x or x′ = x(yx)n−2, depending on whether n = 2 or n > 2), and so
yx = y(xy)x′ = y(0)x′ = 0. By Lemma 12, idempotents are central.

Let us now fix an arbitrary pair of elements u, v ∈ R, and write w = [u, v]. Let G(X) ∈
X2Z[X] be such that w = G(w). Factorizing G(X) = Xg(X), we have wg(w) = w, and
so g(w) is an identity in the subring generated by w. In particular, g(w) is an idempotent,
and so central. Since w = wg(w) and Z(R) is an ideal, it follows that w ∈ Z(R). Thus all
commutators are central.

In an arbitrary ring, the identity y[x, y] = [yx, y] follows immediately from the definition
of commutators. Using this identity and the centrality of commutators, we see that for all
a, b ∈ R,

ab[a, b] = a[ba, b] = [ba, b]a = b[a, b]a = ba[a, b] ,

and so [a, b]2 = 0. Choosing h(X) ∈ X2Z[X] such that h([a, b]) = [a, b], the identity
[a, b]2 = 0 readily implies that h([a, b]) = 0, and so [a, b] = 0. Thus R is commutative.
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For convenience, we now make the following definition: a ring R is a H-ring if for every
x ∈ R there exists f(X) ∈ X2Z[X] for which f(x)−x ∈ Z(R). (“H” is in honor of Herstein
who proved that H-rings are commutative; see Theorem A.)

The key step in proving Theorem 1 is to prove the following special case.

Lemma 13. Suppose that R is a H-ring with an ideal centre. Then Z(R) contains all e ∈ R
such that e2 − e ∈ Z(R).

Proof. Let y ∈ R be arbitrary, and define d := eye − ye and z := e2 − e. Suppose that
z ∈ Z(R). Since R has an ideal centre, ed = zye ∈ Z(R) and consequently (de)2 = d(ed)e ∈
Z(R). It then follows that (de)k ∈ Z(R) for all k ∈ N, k > 1, and so f(de) ∈ Z(R)
whenever f(X) ∈ X2Z[X]. Using the H-ring property, we see that de ∈ Z(R). Thus
eye− ye = de− (ey− y)z ∈ Z(R). By symmetry1, eye− ey ∈ Z(R), and so ey− ye ∈ Z(R).

Now (ey)(ey − ye) = (ey − ye)(ey), so

(14) ey2e = ye2y = yey + zy2 .

Next, we show that

(15) (ye)2 = (ey2e− zy2)e = ey2e .

The first equation in (15) follows immediately from (14). Because z, zy2 ∈ Z(R), we deduce
that zy2e = ezy2 = ey2z, and the second equation in (15) now follows immediately from
the equation z = e2 − e. We deduce from (15) and symmetry that (ey)2 = ey2e, and so

(16) (ye)2 = (ey)2 .

Now e(e+ x) = e+ z + ex and (e+ x)e = e+ z + xe, so

(e(e+ x))2 = e2 + z2 + (ex)2 + 2ez + 2zex+ e2x+ exe

and
((e+ x)e)2 = e2 + z2 + (xe)2 + 2ez + 2zxe+ xe2 + exe

But the expressions on the left of the last two displays are equal by (16) with y = e + x,
and zxe = zex since z ∈ Z(R) and Z(R) is an ideal, so we conclude that e2x = xe2. Since
e2 − e ∈ Z(R), we finally get ex = xe for all x ∈ R, as required.

Proof of Theorem 1. It suffices to prove that a H-ring with ideal centre R is necessarily
commutative. Fixing an arbitrary x ∈ R, let F (X) ∈ X2Z[X] be such that F (x)−x ∈ Z(R).
We factorize F (X) = Xf(X), and write e := f(x). By assumption, xe − x ∈ Z(R). Since
Z(R) is an ideal, we deduce inductively that xne − xn ∈ Z(R) for all n ∈ N, and so
g(x)e − g(x) ∈ Z(R) for all g(X) ∈ XZ[X]. In particular, e2 − e ∈ Z(R). Lemma 13 now
implies that e ∈ Z(R), and so x = xe − (xe − x) ∈ Z(R). Since x is arbitrary, we are
done.

Proof of Theorem 3. Sufficiency of the coefficient conditions in (a) and (b) follows trivially
from the proof of the corresponding result for general rings (i.e. the main result in [13] for
(a), and [5, Proposition 4] for (b)). The only non-elementary parts of the earlier proofs
are the use in both cases of results of Herstein mentioned in the introduction: in fact, an

1Note that the hypotheses are also satisfied by the opposite ring Rop (this is the ring with the same
addition as R and multiplication ∗ given in terms of R-multiplication by x ∗ y = yx), so appealing to
symmetry to reverse the order of the elements here and later is justified.
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appeal to Theorem A suffices in both cases. For rings with ideal centre, we therefore get
an elementary proof of these implications simply by appealing to Theorem 1 instead of
Theorem A. As for the converse implications in (a) and (b), these are established in [13]
and [5] by giving counterexamples for each of the various situations in which the coefficient
conditions fail. Since it is readily verified that all of these counterexamples are rings with
ideal centres, these same counterexamples establish the converse implications in the current
result.

Finally, we tackle (c). Sufficiency of the coefficient condition follows from Theorem 2.
As for necessity, suppose f is a polynomial such that its coefficient a1 is not ±1. Thus a1
has a prime factor p. Consider the ring Rp of 3× 3 matrices over Zp of the form0 a b

0 0 c
0 0 0


As is readily verified, Z(Rp) consists of all matrices of the above form with a = c = 0 and
Rp ·Z(Rp) = {0}, so Z(Rp) is an ideal. Moreover, the set of commutators Cp equals Z(Rp),
so it follows from the equation Rp · Cp = {0} that f(x) = 0 for all x ∈ Cp. However, Rp is
not commutative, so we are done.
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