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Fixed points of multifunctions on COTS

with end points ∗

Devender Kumar Kamboj, Vinod Kumar, Satbir Singh

Abstract. We prove that if F and G are multifunctions from X to Y , with connected
values, where X is connected, Y a space admitting a continuous bijection to a connected
space Z with endpoints, and Z is T0 whenever |Z| = 2 such that both F, G are either
upper semicontinuous with compact values, or, are lower semicontinuous with one of F
and G onto, then F (w)∩G(w) 6= ∅ for some w ∈ X. We proved that if a multifunction
F on a connected space X with endpoints such that X is T0 whenever |X| = 2, has a
connected multigraph, then there exists some w ∈ X such that w ∈ F (w).

1 Introduction COTS (=connected ordered topological space), defined by Khalim-
sky, Kopperman and Meyer [6], is an integral part of any study of cut points. Topological
spaces are assumed to be connected for any consideration of cut points. By Theorem 2.7
of [6], there are two total orders (or linear orders) on every COTS and each of these orders
is the reverse of the other. A COTS can have at most two endpoints [6, Proposition 2.5].
A set with a total order has a topology called interval topology. A topological space is a
LOTS (=linearly ordered topological space) if its topology equals some interval topology.
Multifunctions are considered on LOTS by Park in [8]. The main result (Theorem 1) of Park
[8] about fixed point requires the space to be a connected LOTS having two end points. It
can be seen that every LOTS is Hausdorff (without assuming it to be connected). As noted
in Proposition 2.9 of [6], the topology of a T1 COTS is finer than the interval topology given
by any of its two orders, so a COTS need not be a LOTS. The concept of COTS does not
require any separation axiom. In view of the applications of cut points (see e.g. [6]) and
the fact that the many connected topological spaces used for cut points like the Khalimsky
line, are not T1, the assumption of separation axioms is avoided as far as possible. There
is the concept of strong cut points for connected topological spaces. Without assuming cut
points to be strong cut points, a topological space with endpoints is defined in [2]. Since by
Theorem 3.4 of [2], H(i) connected topological spaces have at least two non-cut points, it
follows from Remark 4.5 of [2] that such topological spaces with at most two non-cut points
turn out to be COTS with endpoints. It is shown in [3] that a connected topological space
with endpoints is a COTS with endpoints. It is proved in [4] that a connected topological
space is a COTS with endpoints iff it admits a continuous bijection onto a topological space
with endpoints. In [4] and [5] there are obtained several classes of connected topological
spaces where the members are COTS with endpoints. In this paper, we study multifunction
on COTS with endpoints.

Notation, definitions and preliminaries are given in Section 2. The main results of the
paper appear in Section 3. In Section 3, we prove that if F and G are multifunctions from
X to Y , with connected values, where X is connected, Y a space admitting a continuous
bijection to a connected space Z with endpoints and Z is T0 whenever |Z| = 2 has only two
points such that both F, G are either upper semicontinuous with compact values, or, are
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lower semicontinuous with one of F and G onto, then F (w) ∩ G(w) 6= ∅ for some w ∈ X.
It is proved that if, for a connected space X with endpoints such that X is T0 whenever
|X| = 2, F is a multifunction from X to X with connected multigraph, then there exists
some w ∈ X such that w ∈ F (w). This gives a sort of fixed point theorem. Some results
are obtained in the presence of a connected space with endpoints and/or multifunctions.

2 Notation, definitions and preliminaries Some of the standard notation and
definitions have been included here for completeness sake. Let X be a space. X is called
T1/2([6]) if every singleton set is either open or closed. Let ∆ = {(x, x) : x ∈ X} and
∆(O) = {(x, x) : x ∈ X, {x} is open in X}. Let A ⊂ X. For K ⊂ X, if need be, A+K is
used for the set A ∪K, and A−K for the set A −K. If X is disconnected, a separation of
X is denoted by A|B, and each one of A and B is a called a separating set of X. If A is a
separating set of X and K ⊂ X is connected, if need be, we write A(K) for A if K ⊂ A,
and A(−K) for A if K ⊂ X − A. If K = {x} for some x ∈ X, then A+x, A−x, A(x) and
A(−x) are respectively used for A+K , A−K , A(K) and A(−K). For x ∈ X, if the depen-
dence of a separation A|B of X−x on x is to be specified, then A|B is denoted by Ax|Bx.
Let x ∈ X. x is called a cut point of X if X−x is disconnected. x is called strong cut
point of X, if X−x has a separation with connected separating sets. ctX is used to denote
the set of all cut points of X. A space X is called COTS (=connected ordered topological
space) ([6]) if it is connected and has the property: if Y is a three-point subset of X, then
there is a point x in Y such that Y meets two connected components of X−x. Let X be
a space. Let a, b ∈ X. A point x ∈ X − {a, b}, is said to be a separating point between
a and b or x separates a and b if there exists a separation A|B of X−x with a ∈ A and
b ∈ B. S(a, b) is used to denote the set of all separating points between a and b. Clearly
S(a, b) ⊂ ctX. If we adjoin the points a and b to S(a, b), then the new set is denoted
by S[a, b]. A space X is called a space with endpoints if there exist a and b ∈ X such that
X = S[a, b]. For x ∈ S(a, b), we shall write X−x = A(a)∪B(b) for a separation A|B of X−x.

For spaces X and Y , a multifunction ([7]) from X to Y is a function F from X to P (Y )
(= the set of all subsets of Y ) with F (x) 6= ∅ for every x ∈ X, (written as F : X-◦Y ).
Let F : X-◦Y be a multifunction. F has compact (connected) values if F (x) is com-
pact (connected) for every x ∈ X. For V ⊂ Y, F⊂(V ) (resp. F∩(V )) denotes the set
{x ∈ X : F (x) ⊂ V } (resp. {x ∈ X : F (x) ∩ V 6= ∅}). For A ⊂ X, F (A) denotes the
subset ∪{F (x) : x ∈ A} of Y . For a subset A of X, multigraph of F over A is the subset
{(x, y) ∈ X × Y : x ∈ A, y ∈ F (x)} =

⋃{{x} × F (x) : x ∈ A}, it is denoted by mgrA, or
F -mgrA(F -mgrA(Y )) if the dependence on F (F and Y ) is to be specified; multigraph of
F over X is called the multigraph of F . F is said to be lower (resp upper) semicontinuous
([7]) if for each open (resp. closed) set V of Y , the set F∩(V ) is open (resp. closed) in X. F
is called a connectivity multifunction ([8]) if its multigraph over each connected subset of X
is a connected set. F is called closed ([8]) if multigraph of F is closed in X × Y ; F is called
compact ([8]) if clY (F (X)) is a compact subset of Y . For sets X and Y , let p1 : X×Y → X,
and p2 : X × Y → Y be the projection maps. Let T ⊂ X × Y . For a multifunction F from
X to Z (resp. G from Y to Z), F 1 (resp. G2) denotes the multifunction F ◦ p1 from T to
Z (resp. G ◦ p2 from T to Z).

For a set X, a multifunction F from X to X is called a multifunction on X. A multi-
function F on X is said to have a fixed point if there exists some w ∈ X such that w ∈ F (w).
The multifunction on X taking x ∈ X to {x} is denoted by iX .

Remark 2.1 Let F be multifunction from X to Y . (i) For A ⊂ Y, F∩({A}) =
⋃{F∩({y}) :

y ∈ A}. (ii) For A ⊂ X, p2(F -mgrA) = F (A).
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Let h : Y → Z. Define hp : P (Y ) → P (Z) as hp(A) = h(A) for A ∈ P (Y ). Let F be a
multifunction from X to Y . hp ◦ F is a multifunction from X to Z.
Let X, Y and Z be spaces. Let F be a multifunction from X to Y and G a multifunction
from X to Z. For x ∈ X, if we define (F×G)(x) = F (x)×G(x)(∈ P (Y )×P (Z) ⊂ P (Y ×Z)),
then F ×G is a multifunction from X to Y × Z.

Let F and G be multifunctions from X to Y . (hp ◦ F )× (hp ◦G) : X → P (Z × Z).
The following lemma is a modified version of some results (i.e., Theorems 7.3.12, 7.3.14 and
7.4.4) of [7] in our notation.

Lemma 2.2 Let X, Y and Z be spaces. For a function h : Y → Z and multifunctions F, G
from X into Y , let H = (hp ◦ F )× (hp ◦G). Let h be continuous.
(a) If F, G are lower semicontinuous, then F ×G and H are lower semicontinuous.
(b) If F and G are upper semicontinuous with compact values, then F ×G and H are upper
semicontinuous with compact values.
(c) Let F and G be with connected values. Then H has connected values.

Let X and Y be spaces and T a subset of X × Y . For x ∈ X, let Tm(x) = {y ∈ Y : (x, y) ∈
T}. Tm(x) may not be non-empty for every x ∈ X. For Tm to be a multifunction, Tm(x)
should be non-empty for every x ∈ X. For this we may consider only those x ∈ X such that
(x, y) ∈ T for some y ∈ Y . Let XT = p1(T ) = {x ∈ X : (x, y) ∈ T for some y ∈ Y }. Then
Tm is a multifunction from XT to Y and T ⊂ XT × Y . In order that concepts concerning
a multifunction make sense for Tm, we need to consider XT in place of X. For y ∈ Y , let
Ty = {x ∈ X : (x, y) ∈ T}. Let YT = p2(T ) = {y ∈ Y : (x, y) ∈ T for some x ∈ X}. Note
that T ⊂ XT × YT .

Lemma 2.3 Let X, Y be two spaces, and let T be a subset of X × Y .
(a) If T is closed in XT × Y , then for every compact subset A of XT , Tm(A) is a closed
subset of Y .
(b) If T is closed in XT × Y , then Tm∩(B) is closed in XT for every compact subset B of
Y .

Now we note that every multifunction is of the form Tm. Let F be a multifunction from
X to Y . Let TF = F -mgrX = {(x, y) : x ∈ X, y ∈ F (x)}. Let x ∈ X. Since F (x) 6= ∅,
(TF )m is a multifunction from X to Y .

Remark 2.4 (a) F = (TF )m.
(b) p2(TF ) = F (X).

Proof. (a) Let x ∈ X. For y ∈ Y, y ∈ (TF )m(x) iff (x, y) ∈ TF , i.e iff y ∈ F (x).
(b) Since TF = F -mgrX, by Remark 2.1(ii), p2(TF ) = F (X).

We note the following before the next observation.
Let F be a multifunction from X to Y . For F (X) ⊂ Z ⊂ Y , F is a multifunction from X
to Z, and F -mgrX(Y ) = F -mgrX(Z).

Lemma 2.5 For spaces X and Y , with X connected, let F be a multifunction from X to
Y with connected values. Then the multigraph of F is connected if one of the following
conditions hold:
(i) F is a connectivity multifunction.
(ii) F is lower semicontinuous.
(iii) F is upper semicontinuous with compact values.
(iv) F∩({y}) is open in X for y ∈ Y .
(v) F is a closed compact multifunction.
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Proof. (i) Since F is a connectivity multifunction and X is connected, F has connected
multigraph.
(ii) and (iii). By Theorem 3.2 of [1], multigraph of F is connected.
(iv) By Remark 2.1(i), (iv)⇒(ii).
(v) Let Z = clY (F (X)), F be a compact multifunction form X to Z. Since TF = F -
mgrX, TF is closed. Now by Lemma 2.3(b) and Remark 2.4(a), F is upper semicontinuous.
By (a) of Lemma 2.3, F has compact values. Now by (iii), multigraph of F is connected.

3 Connected spaces with endpoints and Multifunctions Let X be a set with
a total order < on it. For x ∈ X, let L(x) = {y ∈ X : y < x}, U(x) = {y ∈ X : x < y} [6].
Let L = {(s, t) ∈ X ×X : t < s} and U = {(s, t) ∈ X ×X : s < t}. Then it can be seen
that L =

⋃{{s} × L(s) : s ∈ X} =
⋃{U(s) × {s} : s ∈ X} and U =

⋃{{s} × U(s) : s ∈
X} =

⋃{L(s)× {s} : s ∈ X}.

We denote the cardinality of a set X by |X|.
Lemma 3.1 Let X be a COTS such that X is T0 whenever |X| = 2. Then U ∪∆(O) and
L ∪∆(O) are open in X ×X.

Proof. Case (i): |X| = 2, i.e., X has only two points. Since X is a connected non-indiscrete
space, it follows that X = {s, t}, with a Sierpinski topology, say {∅, {t}, X} and s < t. Then
U ∪∆(O) = X × {t}, which is open in X ×X. That L ∪∆(O) is open is proved similarly.

Case (ii): |X| > 2, i.e., X has at least three points. Let (s, t) ∈ U ∪∆(O). Then X is
T1/2 by Proposition 2.9 of [6]. Now if {s} and {t} are open in X, then {(s, t)} = {s} × {t}
is open in X ×X. If {s} is open and {t} is closed, using Theorem 2.7 and Lemma 2.8 of [6],
{s} × (U(s))+s is open in X ×X and (s, t) ∈ {s} × (U(s))+s ⊂ U ∪∆(O). If {s} is closed
and {t} is open, using Theorem 2.7 and Lemma 2.8 of [6], (L(t))+t × {t} is open in X ×X
and (s, t) ∈ (L(t))+t × {t} ∈ U ∪∆(O). In the case when {s} and {t} are closed, there is
some point y of X such that s < y < t by Lemma 2.8(b) and (c) of [6]. Since {y} is either
open or closed in X, by Theorem 2.7 and Lemma 2.8 of [6], either (U(y))+y and (L(y))+y

or U(y) and L(y) are open in X. So either (L(y))+y × (U(y))+y or L(y)× U(y) is open in
X × X and (s, t) ∈ L(y) × U(y) ⊂ (L(y))+y × (U(y))+y ⊂ U ∪ ∆(O). Thus U ∪ ∆(O) is
open in X ×X. Since, in a COTS there are two total orders and each of these orders is the
reverse of the other, L ∪∆(O) is open in X ×X.

Theorem 3.2 For two multifunctions F, G from a space X to a connected space Y with
endpoints such that Y is T0 whenever |Y | = 2, one of which is onto, if either (F × G)(X)
is connected or F ×G has a connected multigraph, then there exists some w ∈ X such that
F (w) ∩G(w) 6= ∅.
Proof. In view of Remark 2.4(b), we prove the result by contradiction under the assumption
that (F × G)(X) is connected. Suppose not; then F (w) ∩ G(w) = ∅ for every w ∈ X. By
the given condition Y is a space with endpoints, so Y = S[a, b]. Let H = F × G. Since,
by Theorem 3.2 of [3], Y is a COTS with end points a and b (with a < b),H(X) ⊂ L ∪ U
in Y × Y . So (L ∪ ∆(O)) ∩ H(X) = L ∩ H(X) and (U ∪ ∆(O)) ∩ H(X) = U ∩ H(X).
Using Lemma 3.1, L ∪∆(O) and U ∪∆(O) are open in Y × Y . By given condition, either
F (X) = Y or G(X) = Y . First assume that F (X) = Y . Then we pick xa, xb ∈ X such
that a ∈ F (xa) and b ∈ F (xb). Let ya ∈ G(xa) and yb ∈ G(xb). Since F (xa) ∩ G(xa) = ∅,
so a < ya. Similarly yb < b. This implies that (a, ya) ∈ U ∩H(X) and (b, yb) ∈ L ∩H(X).
Thus we get a separation of H(X) as L∩H(X) and U ∩H(X) are disjoint non-empty open
subsets of H(X). This gives a contradiction as H(X) is connected by Remark 2.4(b). Thus
F (X) 6= Y . Similarly we have G(X) 6= Y . This leads to again a contradiction to the given
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condition. The proof is complete.

Theorem 1 of [8] gives a sort of fixed point theorem for a multifunction on a connected
LOTS with two end points. Every connected LOTS with end points is a connected space
with endpoints, but the converse need not be true. The following theorem and corollary
are about a connected space with endpoints; so they strengthen Theorems 1 and 2 of [8]
respectively.

Theorem 3.3 Let X be a connected space with endpoints such that X is T0 whenever |X| =
2. Let F be a multifunction on X with connected multigraph. Then there exists some w ∈ X
such that w ∈ F (w).

Proof. The theorem follows by taking X = Y and G(x) = {x} for x ∈ X in Theorem 3.2.

Corollary 3.4 Let X be a connected space with endpoints such that X is T0 whenever
|X| = 2. Let F be a multifunction on X with connected values. Then there exists some
w ∈ X such that w ∈ F (w), if one of the following conditions hold:

(i) F is a connectivity multifunction.
(ii) F is lower semicontinuous.
(iii) F is upper semicontinuous with compact values.
(iv) F∩(y) is open in X for y ∈ X.
(v) F is a closed compact multifunction.

Proof. The result follows by Lemma 2.5 and Theorem 3.3.

The following two theorems respectively strengthen Theorems 2.1 and 2.2 of [9] because
here [0, 1] is replaced by a connected space with endpoints (with no separation axioms as-
sumed).

Theorem 3.5 Let X be a connected space and Y be a space admitting a continuous bijection
to a connected space Z with endpoints such that Z is T0 whenever |Z| = 2. Let F, G be two
multifunctions from X to Y , with connected values and one of which is onto. Assume that
both F and G are either upper semicontinuous with compact values, or lower semicontinuous.
Then there exists some w ∈ X such that F (w) ∩G(w) 6= ∅.
Proof. By the given condition we have a connected space Z with endpoints, say a and b
and a one-one, onto and continuous function h : Y → Z. Let H = (hp ◦ F )× (hp ◦G). By
Lemmas 2.2 and 2.5, multigraph of H is connected. Now by Theorem 3.2, there exists some
w ∈ X such that h(F (w))∩h(G(w)) 6= ∅. This implies that F (w)∩G(w) 6= ∅ as h is one-one.

Below we have some results in which we assume a subset of a product space of two spaces to
be connected. It may be added that Theorem 2.5 of [9] is handy to know the connectedness
of a given set in a product space.

Theorem 3.6 Let X, Y be two spaces, with Y admitting a continuous bijection to a con-
nected space Z with endpoints such that Z is T0 whenever |Z| = 2, and let T be a connected
subset of X × Y . Let Φ be a multifunction from X to Y , with connected values. Assume
that Φ is either upper semicontinuous with compact values, or lower semicontinuous.

(i) If YT = Y or Φ(XT ) = Y , then T ∩ (Φ-mgrX) 6= ∅.
(ii) If XT = X and Φ is onto, then T ∩ (Φ-mgrX) 6= ∅.

Proof. (i) F = (iY )2(= iY ◦ p2) and G = Φ1(= Φ ◦ p1) are multifunctions from T to Y . So
using the given condition, F and G are either upper semicontinuous with compact values, or
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lower semicontinuous. Also F and G have connected values and so by the given condition,
one of F and G is onto. Now by applying Theorem 3.5 to F and G, the result follows.

(ii) It follows from the assumption of (ii) that the hypothesis Φ(XT ) = Y of (i) is satisfied.

The following particular case of theorem 3.6 is about fixed point of a multifunction.

Corollary 3.7 Let X be a space admitting a continuous bijection to a connected space Z
with endpoints such that Z is T0 whenever |Z| = 2. Let Φ be a multifunction from X to X,
with connected values. Assume that Φ is either upper semicontinuous with compact values,
or lower semicontinuous. If ∆ is a connected set of X ×X, then there exists some x0 ∈ X
such that x0 ∈ Φ(x0).

Proof. Since X∆ = X, the result follows by taking Y = X and T = ∆ in Theorem 3.6.
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