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ABSTRACT. In this study, we consider the order-preserving properties of Rasch model (Rasch,
1960) and linear logistic model(Fischer, 1994) in marginal maximum likelihood estimation (MMLE).
More specially, we focus on the "manifest probability," as discussed by Cressie and Holland
(1983) and derive the order-preserving statistics for the item parameters. We also derive order-
preserving statistics for the ability parameters in maximum likelihood estimation under the condi-
tion that the estimates of the item parameters are already given. Both sets of statistics are derived
using the characteristics of arrangement increasing functions (Hollanderet al., 1977, Marshallet
al., 2011). It is notable that the order-preserving statistics of the Rasch model in MMLE coin-
cide with those of other estimation techniques, such as joint maximum likelihood estimation and
conditional maximum likelihood estimation. However, while the marginal maximum likelihood
estimates and the conditional maximum likelihood estimates are consistent, the joint maximum
likelihood estimates are not. Here, we discuss the reasons for such coincidences, as well as the
types of bias that occur in inconsistent estimates.

1 Introduction In this study, we consider the ordering properties of Rasch model (Rasch, 1960)
and linear logistic model(Fischer, 1994) in marginal maximum likelihood estimation.

First, we introduce the Rasch model. Suppose a test comprisesk items administered ton ex-
aminees. LetXij = {0, 1} be the response of thei-th examinee to thej-th item. When thei-th
examinee responds with a1 to thej-th item, the corresponding probability is

(1) Pij(θi, βj) = P (Xij = 1;θ,β) =
exp(θi + βj)

1 + exp(θi + βj)
,

whereθi is the ability parameter for thei-th examinee andβj is the item parameter for thej-th item.
In addition,θ = (θ1, . . . , θn) is ann-dimensional vector of ability parameters andβ = (β1, . . . , βk)
is ak-dimensional vector of item parameters. One of major estimation methods for the Rasch model
is maximum likelihood estimation. In the Rasch model, the form of the likelihood function is

L(θ,β|X) =
n∏

i=1

k∏
j=1

{
Pij(θi, βj)

xijQij(θi, βj)
1−xij

}
=

n∏
i=1

k∏
j=1

exp {(θi + βj)}xij

1 + exp(θi + βj)

=
n∏

i=1

k∏
j=1

exp {xij(θi + βj)}
1 + exp(θi + βj)

,(2)

whereX represents a matrix of all responses for the test,xij is the observed response of thei-th
examinee to thej-th item, andQij(θi, βj) = 1− Pij(θi, βj).
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Three maximum likelihood estimation techniques have been proposed, all of which use (2): joint
maximum likelihood estimation (JMLE), marginal maximum likelihood estimation (MMLE; Bock
and Lieberman, 1970, Thissen, 1982), and conditional maximum likelihood estimation (CMLE;
Andersen, 1972). The JMLE technique estimatesθ andβ simultaneously by maximizing (2).
In contrast, the CMLE and the MMLE techniques removeθ from (2) and estimateβ separately.
Holland (1990) discussed the relationship among these estimation techniques. He compared the
log-likelihood functions of the three techniques and concluded that JMLE and CMLE can both be
viewed as approximations to MMLE. In other words, we can regard MMLE as being more general
than JMLE and CMLE. On the other hand, Grayson (1988) and Huynh (1994) presented their ba-
sic results as the monotone likelihood ratio for the order-preserving property of the dichotomous
response model. In addition, Bertoli-Barsotti (2003) derived the order-preserving property for the
Rasch model using JMLE and CMLE, but not MMLE. Thus, in this study, we focus on the order-
preserving property of the Rasch model based on MMLE.

In MMLE, we remove the ability parameter from the likelihood function (2) by integration.
Cressie and Holland (1983) discussed the "manifest probability" for the Rasch model. The manifest
probability can be obtained by integrating the ability parameter,θ, for each examinee. Thus, it
corresponds to the marginal likelihood for each examinee. The form is

(3) p(x) =

∫ ∏
j

[
Pj(θ, βj)

xj{1− Pj(θ, βj)}1−xj
]
dF (θ),

wherexj is observed response forj-th item,x = (x1, x2, · · · , xk), F (θ) is the distribution function

for θ andPj(θ, βj) =
exp(θ + βj)

1 + exp(θ + βj)
. They also derived the log-likelihood function for the Rasch

model (1). Here, the form is

(4) lnL(β|X) = c+ nα+
k∑
j

sjβj +
k∑
t

rtγ(t),

where

c = log
n!∏

x m(x)!
,

m(x) is the number of examinees whose item response vector isx,

sj is the number of examinees who answered 1 to thej-th item,

rt is the number of examinees who answeredt items as 1 on the test,

α = ln p(0), where0 is ak-dimensional vector all of whose elements are 0,

γ(t) = log
∫∞
0

utdG(u), with translationu = exp(θ),

andG(u) is a distribution function constructed fromdG(u) with

dG(u) =
exp θdF (θ)

p(0)
∏k

j {1 + exp(θ + βj)}
.

One of extension of the Rasch model is linear logistic test model (LLTM, Fischer,1994). The
LLTM is defined by adding below conditions

(5) βj =

p∑
l=1

wjlδl
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to (1). Here,δl, l = 1, . . . , p are basic parameter of the LLTM andwjl are given weights for the
basic parametersδl.

For the MMLE of the LLTM, we substitute (5) and maximum likelihood estimate ofα,

α̂ = ln(r0/n)

into (4). Such modification of likelihood function was also evaluated in Tjur(1982) and Ander-
sen(1997). Then, (4) is modified as

(6) lnL(δ|X) = c+ nα̂+

p∑
l

vlδl +

k∑
t

rtγ(t) = lnL(δ|v),

wherevl =
∑n

i

∑k
j xijwjl andv = (v1, v2, . . . , vp).

In this study, we use the log-likelihood function (4) and (6) to derive the order-preserving prop-
erties of the MMLE technique, as well as in related maximum likelihood estimation techniques.
We use the characteristics of an arrangement increasing function (Hollanderet al., 1977, Marshall
et al., 2011) for deviations among the order-preserving properties. In our results, we assume that
the maximum likelihood estimates described above exist and are unique. These assumptions are
related to the form of the response matrixX and the rank of weight matrixW = [wjl].(for details,
see Fischer (1981,1994)).

The remainder of the paper is organized as follows. The preliminaries and main theorems are
presented in section 2. Finally, section 3 discusses our results and concludes the paper.

2 Preliminaries and the main results As mentioned previously, we use some characteristics
of arrangement increasing (AI) functions (Hollanderet al., 1977) to derive the order-preserving
properties of the Rasch model and the LLTM. To begin with, we introduce some definitions, as per
Marshallet al.(2011) and Boland and Proschan(1988).

Definition 1. Leta andb ben-dimensional vectors. We define equality
a
= as

(aΠ, bΠ)
a
= (a, b),

whereΠ is an arbitraryn× n permutation matrix.
Clearly, we find(a, b)

a
= (a↑, bΠ1)

a
= (a↓, bΠ2), whereΠ1 is a matrix such thataΠ1 = a↑

andΠ2 is a matrix such thataΠ2 = a↓. Here, we use the ordered vectorsa↑ anda↓, which are the
vectors with components ofa arranged in ascending order and descending order, respectively.

Then, we define a partial order
a
≤ for vector arguments. This definition corresponds to special

case denoted by Boland and Proschan(1988).
Definition 2. Leta andb ben-dimensional vectors. First, we permutea andb so that

(7) (a, b)
a
= (a↑, b

′).

Here,b′ = bΠ1 andΠ1 is the permutation matrix such thataΠ1 = a↑. Then, we generate a
vectorb∗l,m from b′ in (7) by interchanging thel-th and them-th component (l < m) of b such that

bl > bm. Finally, we define the partial order
a
≤ as

(a↑, b
′)

a
≤ (a↑, b

∗
l,m).

Therefore, it holds that(a↑, b↓)
a
= (a↓, b↑)

a
≤ (a, b)

a
≤ (a↑, b↑)

a
= (a↓, b↓).
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Example 1. Leta = (7, 5, 3, 1) andb = (6, 4, 8, 2). Then,

(a, b)
a
= ((1, 3, 5, 7), (2, 8, 4, 6))

a
≤ ((1, 3, 5, 7), (2, 4, 8, 6))

a
≤ ((1, 3, 5, 7), (2, 4, 6, 8))

a
= ((7, 5, 3, 1), (8, 6, 4, 2)).

Definition 3. An AI function is a function,g, with two n-dimensional vector arguments that

preserves the ordering
a
≤. Thus, if g is AI, it holds thatg(a, b) ≤ g(a↑, b

∗
l,m) for n-dimensional

vectorsa,b,a↑,b∗l,m, such that(a, b)
a
≤ (a↑, b

∗
l,m).

Here, we find

(8) g(a↑, b↓) = g(a↓, b↑) ≤ g(a, b) ≤ g(a↑, b↑) = g(a↓, b↓)

for AI function g, which describes the same case as the partial order
a
≤.

Next, we prepare a lemma (without proof) that describes the necessary and sufficient condition
for AI functions containing summation forms.

Lemma 1. (Marshallet al., 2011, p.233) Ifg has the formg(a, b) =
∑n

i=1 ϕ(ai, bi), theng is
AI if and only if ϕ is L-superadditive.

In Lemma 1, L-superadditive is the function that satisfies

(9)
∂

∂a∂b
ϕ(a, b) ≥ 0.

On the other hand, when we consider the log likelihood function in (4), we find thatc, n and∑k
t rtγ(t) do not include item parameterβj . Also, we find that

α = ln p(0) = ln

∫ ∏
j

1

1 + exp(θi + βj)
dF (θ)

is invariant for rearrangement withinβ. Thus, for considering the order-preserving properties, we
focus on a part oflnL:

(10) l(s,β) =
k∑
j

sjβj ,

wheres is a vector consisting ofsj(j = 1, . . . , k) in (4). This means that we only need to focus on
l(s,β) in (10) to deriveβ̂. Here,β̂ is a vector of maximum likelihood estimates, which maximize
the log-likelihood in (4).

Now, we propose the main theorem.
Theorem 1. Let s∗ be a rearranged vector such thats∗ = s↑ and β̃ be the marginal maximum
likelihood estimates vector that maximizesl(s∗,β). Then,β̃ = β̂↑.

Proof. First, we find thatl(s,β) in (10) is permutation invariant in the sense thatl(s,β) =
l(sΠ,βΠ) for any permutation matrix,Π. By this permutation invariance and the uniqueness of the
marginal maximum likelihood estimates, we obtain

l(s, β̂) = l(s∗, β̂Π∗
s) = l(s∗, β̃),

whereΠ∗
s is a permutation matrix such thatsΠ∗

s = s∗. Thus, we find that both̃β andβ̂ are marginal
maximum likelihood estimates, and thatβ̃ is a rearranged form of̂β.
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On the other hand, assjβj is L-superadditive for variablessj andβj , from (9), it follows that
l(s,β) is AI by the Lemma 1. Then, by the property of AI functions described in (8), it holds that

l(s∗, β̃↓) ≤ l(s∗, β̃) ≤ l(s∗, β̃↑),

for givens∗ andβ̃. As β̃ is the estimate that maximizesl(s∗,β), it follows thatβ̃ = β̃↑. Conse-
quently, it holds that̃β = β̂↑ .2

Estimating the ability parameterθ often occurs under the condition that estimates ofβ are
already given. This estimation technique corresponds to maximizing the likelihood function with
given item parameterŝβin terms ofθ. The form of the likelihood function is

L(θ|β̂, X) =
n∏

i=1

k∏
j=1

exp
{
xij(θi + β̂j)

}
1 + exp(θi + β̂j)

=
exp

{
(
∑n

i=1 θiti
∑k

j=1 β̂jsj

}
∏n

i=1

∏k
j=1

{
1 + exp(θi + β̂j)

}
= L(θ|β̂, t),(11)

whereti =
∑k

j Xij andt = (t1, t2, . . . , tn). In other words, this maximum likelihood estimateθ̂i
maximizesL(θ|β̂, t) in (11). We derive the order-preserving statistics forβ̂.

Theorem 2. Let t∗ be a rearranged vector such thatt∗ = t↑ and let θ̃ be a vector of the
maximum likelihood estimates that maximizesL(θ|β̂, t∗) in (11). Then,θ̃ = θ̂↑.

Proof. This theorem is proved in the same way as Theorem 1. First, we evaluate the log-
likelihood function of (11). We write this function as

(12) lnL(θ|β̂, t) =
n∑

i=1

θiti + η − h(θ, β̂),

whereη =
∑k

j=1 β̂jsj is a constant under the condition thatβ̂ is given andh(θ, β̂) =
∑n

i=1

∑k
j=1 log

{
1 + exp(θi + β̂j)

}
.

It is clear thath(θ, β̂) is invariant for rearrangement withinθ. Thus, we focus on

(13) l(t,θ) =
n∑

i=1

θiti

when estimatingθ. Then, we find thatl(t,θ) is permutation invariant, and that̃θ is a rearranged
vector ofθ̂. Here,θ̂ is the conditional maximum likelihood estimates forlogL(θ|β̂, t) in (12). As
l(t,θ) is L-superadditive,l(t,θ) is AI. Then, it holds that

l(t∗, θ̃↓) ≤ l(t∗, θ̃) ≤ l(t∗, θ̃↑).

As θ̃ is the vector of maximum likelihood estimates that maximizesl(t,θ) in (13), andθ̃ is a
rearranged vector of̂β, it follows thatθ̃ = θ̂↑.2

Analogue to the MMLE of the Rasch model, the order-preserving properties holds for the
MMLE of the LLTM.

Theorem 3. Let v∗ be a rearranged vector such thatv∗ = v↑ and letδ̂ and δ̃ be a vector of
the maximum likelihood estimates that maximizesL(δ|v) andL(δ|v∗) in (6), respectively. Then,
δ̃ = δ̂↑.

Proof. As with the proof of Theorem 1 and 2, we focus on

(14) l(u, δ) =

p∑
l

vlδl
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in (6). From such permutation invariant ofl(u, δ) and the existence and uniqueness of the MMLE
of the LLTM, we find thatδ̃ is a rearranged form of̂δ. On the other hand, asl(u, δ) is AI, it holds
that

l(v∗, δ̃↓) ≤ l(v∗, δ̃) ≤ l(v∗, δ̃↑).

Consequently,̃δ coincides on̂δ↑.2
Next, we consider the case when maximum likelihood estimationδ̂ is already given for the the

LLTM. It is clear that the same result as the Theorem 7 holds for the LLTM. We denote this result
as below corollary.

Corollary 1 . Define thatL(θ|δ̂, t) is likelihood function of the LLTM provided that̂δ is already
given. Lett∗ be a rearranged vector such thatt∗ = t↑ and let θ̃ be a vector of the maximum
likelihood estimates that maximizesL(θ|δ̂, t∗) . Then,θ̃ = θ̂↑.

Lastly, we consider structurally incomplete design for the LLTM. According to Fishcer(1994),
we introduce following notations:

B = (bij) is ann × k design matrix. If response ofj-th item byi-th examinee is presented,
thenbij = 1 . Otherwise,bij = 0.

And xij = {0, a, 1}. If bij = 1, thenxij = {0, 1}. Otherwise (bij = 0) xij = a with
0 < a < 1.

Then, (6) is modified as

(15) lnL(δ|X) = c+ nα̂+

p∑
l

qlδl +

k∑
t

rtγ(t) = lnL(δ|q),

whereql =
∑n

i

∑k
j xijbijwjl and q = (q1, q2, · · · , qp). From (15) we get below result as a

corollary of Theorem 3.
Corollary 2 . Let q∗ be a rearranged vector such thatq∗ = q↑ and letδ̂ and δ̃ be a vector of

the maximum likelihood estimates that maximizesL(δ|q) andL(δ|q∗) in (15), respectively. Then,
δ̃ = δ̂↑.

3 Discussion In this study, we examined the order-preserving property of the Rasch model and
the LLTM in MMLE.

Especially, for Rasch model, our results from Theorems 1 and 2 coincide with those of Bertoli-
Barsotti (2003), who focused on JMLE and CMLE. It is well known that the marginal maximum
likelihood (MML) estimates and conditional maximum likelihood (CML) estimates are consistent,
but that the joint maximum likelihood (JML) estimates are not (Neymann and Scott, 1948, Ander-
sen, 1970). Nevertheless, the order-preserving statistics in the three estimation techniques coincide.
This is because the biases of inconsistent estimates are positive. For example, Andersen (1980, The-
orem 6.1) pointed out that the JML estimates forβ1, β2, · · · , βk have an approximate asymptotic
bias of k−1

k , for infinite k, corresponding to the CML estimates. Following this result, it holds that

β̌j =
k − 1

k
ˆ̂
βj , j = 1, 2, · · · , k

for the JML estimatěβj and the CML estimateˆ̂βj . Note that the biask−1
k is strictly positive. Then,

if it holds that ˆ̂βu ≤ ˆ̂
βv(u ̸= v), it also holds thaťβu ≤ β̌v, and vice versa. Thus, the ordering of the

estimates ofβ is preserved between the JML and CML estimates whenk is infinite. Finally, when
compared to the MML estimates, the JML estimates have positive biases.
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