SOME RESULTS ON BN ${ }_{1}$-ALGEBRAS

Andrzej Walendziak

Abstract

BN $_{1}$-algebras have been introduced by C. B. Kim and H. S. Kim. Here we give an equivalent definition of BN_{1}-algebras and show that every BN_{1}-algebra is a loop. Moreover we prove that an algebra is BN_{1}-algebra if and only if it is a commutative BG-algebra. We also prove that the class of associative BN_{1}-algebras coincides with the class of Coxeter algebras. Finally we indicate the interrelationships between BN_{1}-algebras and several algebras.

1 Introduction In 1966, K. Iséki introduced in [3] the concept of BCI-algebras as algebras connected with some logics. Next, in 1983, Q. P. Hu and X. Li ([1]) defined BCH-algebras which are a generalization of BCI-algebras. Several years later, Y. B. Jun, E. H. Roh and H. S. Kim ([4]) introduced a wide class of abstract algebras called BH-algebras. Recently, C. B. Kim and H. S. Kim introduced in [7] the notion of a BN_{1}-algebra. They defined a $B N_{1}$-algebra as an algebra $(A ; *, 0)$ of type $(2,0)$ (i.e., a nonempty set A with a binary operation $*$ and a constant 0) satisfying the following axioms:

$$
\begin{array}{ll}
\text { (B1) } & x * x=0, \\
\text { (B2) } & x * 0=x, \\
\text { (BN) } & (x * y) * z=(0 * z) *(y * x), \\
\text { (BN } \left._{1}\right) & x=(x * y) * y .
\end{array}
$$

Every Boolean group (that is, Abelian group all of whose elements have order 2) is a BN_{1} algebra. The class of all BN_{1}-algebras is a proper subclass of the class of BN -algebras defined in [7]. A. Walendziak introduced in [12] BF-algebras which are a generalization of BN-algebras and B-algebras ([10]). C. B. Kim and H. S. Kim defined in [6] BM-algebras and proved that every BM-algebra is a B-algebra. They also introduced BG-algebras ([5]) as a generalization of B-algebras.

We will denote by $\mathbf{B C I}$ (resp., $\mathbf{B C H} / \mathbf{B H} / \mathbf{B} / \mathbf{B M} / \mathbf{B G} / \mathbf{B F} / \mathbf{B N} / \mathbf{B N}_{1}$) the class of all BCI-algebras (resp., $\mathrm{BCH} / \mathrm{BH} / \mathrm{B} / \mathrm{BM} / \mathrm{BG} / \mathrm{BF} / \mathrm{BN} / \mathrm{BN}_{1}$-algebras). The interrelationships between some classes of algebras mentioned before are visualized in Figure 1. (An arrow indicates proper inclusion, that is, if \mathbf{X} and \mathbf{Y} are classes of algebras, then $\mathbf{X} \rightarrow \mathbf{Y}$ means $\mathbf{X} \subset \mathbf{Y}$.)

In this paper we study BN_{1}-algebras. We give another axiomatization of BN_{1}-algebras and prove that every BN_{1}-algebra is a loop. Moreover we show that the concept of a BN_{1} algebra is equivalent to the concept of a commutative BG-algebra. We also show that the class of associative BN_{1}-algebras coincides with the class of Coxeter algebras. Finally we consider the relationships between BN_{1}-algebras and several algebras.

[^0]

Figure 1
2 Preliminaries Throughout this paper \mathcal{A} will denote an algebra $(A ; *, 0)$ of type (2,0).
An algebra \mathcal{A} is said to be a BH-algebra ([4]) if it satisfies (B1), (B2) and the following axiom:
(BH) $\quad x * y=y * x=0 \Longrightarrow x=y$.
A BH-algebra \mathcal{A} with the condition
$(\mathrm{BCH}) \quad(x * y) * z=(x * z) * y$
(for all $x, y, z \in A$) is called a $B C H$-algebra. In [1], it is proved that \mathcal{A} is a BCH -algebra if and only if it satisfies (B1), (BH), and (BCH).

A BH-algebra \mathcal{A} satisfying the identity
$(\mathrm{BCI}) \quad((x * y) *(x * z)) *(z * y)=0$
is called a BCI-algebra. Recall that according to the H. S. Li's axiom system ([9]), an algebra \mathcal{A} is a BCI-algebra if and only if it satisfies (B2), (BH), and (BCI).

Remark 2.1. We know that every BCI-algebra is a BCH-algebra and every BCH-algebra is a BH -algebra.

Let an algebra \mathcal{A} satisfy identities (B1) and (B2). We say that \mathcal{A} is a B-algebra (resp., $B F / B G / B N$-algebra) if \mathcal{A} satisfies axiom (B) (resp., $(\mathrm{BF}) /(\mathrm{BG}) /(\mathrm{BN})$), where:
(B) $(x * y) * z=x *[z *(0 * y)]$,
(BF) $0 *(x * y)=y * x$,
(BG) $\quad x=(x * y) *(0 * y)$,
(BN) $(x * y) * z=(0 * z) *(y * x)$,
An algebra \mathcal{A} is called a BM-algebra ([6]) if it satisfies (B2) and the following axiom:
$(\mathrm{BM}) \quad(x * y) *(x * z)=z * y$.
Remark 2.2. From Theorem 2.6 of [6] it follows that every BM-algebra is a B-algebra. By Theorem 2.2 and Proposition 2.8 of [5], every B-algebra is a BG-algebra and every BGalgebra is a BH -algebra. It is easy to see that (BM) implies (BCI). Therefore the class of BM-algebras is a subclass of the class of BCI-algebras.

An algebra \mathcal{A} is said to be 0 -commutative (resp., commutative) if $x *(0 * y)=y *(0 * x)$ (resp., $x * y=y * x$) for any $x, y \in A$.

Remark 2.3. In [6], it is proved that \mathcal{A} is a BM-algebra if and only if it is a 0 -commutative B-algebra. C. B. Kim and H. S. Kim ([7]) showed that an algebra is a BN-algebra if and only if it is a 0 -commutative BF-algebra (therefore, every BN -algebra is a BF-algebra). By Corollary 2.12 of [7], every BM-algebra is a BN-algebra.

Proposition 2.4. ([7]) If $(A ; *, 0)$ is a $B N$-algebra, then
(a) $0 *(0 * x)=x$,
(b) $y * x=(0 * x) *(0 * y)$
for all $x, y \in A$.
H. S. Kim, Y. H. Kim and J. Neggers introduced the concepts of Coxeter algebras and pre-Coxeter algebras. A Coxeter algebra ([8]) is an algebra \mathcal{A} satisfying identities (B1), (B2) and
(As) $\quad x *(y * z)=(x * y) * z$.
It is known that a Coxeter algebra is a special type of abelian groups (see [8]). In [7], it is proved that \mathcal{A} is a Coxeter algebra if and only if it is a BN-algebra satisfying the following axiom:
(D) $\quad(x * y) * z=x *(z * y)$.

Proposition 2.5. ([6]) Every Coxeter algebra is a BM-algebra.
Proposition 2.6. ([6]) If \mathcal{A} is a $B M$-algebra satisfying the condition
(B2') $0 * x=x$,
then it is a Coxeter algebra.
A commutative BH-algebra is called a pre-Coxeter algebra (shortly, PC-algebra). The class of all Coxeter algebras (resp., pre-Coxeter algebras) we denote by CA (resp., PC). Every Coxeter algebra is a PC-algebra and there is a PC-algebra which is not a Coxeter algebra (see [8]). Consequently, CA is a proper subclass of PC. Every BM-algebra satisfying the condition (B2') is a PC-algebra (see Theorem 3.7 of [6]). In general, a PC-algebra need not be a BM-algebra (see Example 3.8 of [6]).

From Proposition 2.5 and Remark 2.3 we obtain

$$
\begin{equation*}
\mathbf{C A} \subset \mathbf{B M} \subset \mathbf{B N} \subset \mathbf{B F} \tag{1}
\end{equation*}
$$

Let \mathcal{A} be a PC-algebra. Observe that \mathcal{A} is a BN-algebra. Indeed, $(x * y) * z=z *(y * x)=$ $(0 * z) *(y * x)$ for all $x, y, z \in A$. Therefore, \mathcal{A} satisfies (BN) and consequently, \mathcal{A} is a BN-algebra. Thus

$$
\begin{equation*}
\mathbf{P C} \subset \mathbf{B N} \tag{2}
\end{equation*}
$$

3. On $\mathbf{B N}_{1}$-algebras By definition, $\mathcal{A}=(A ; *, 0)$ is a BN_{1}-algebra if and only if it is a BN-algebra satisfying (BN_{1}).

Example 3.1. Let $A=\{0,1\}$ and $*$ be defined by the following table:

$*$	0	1
0	0	1
1	1	0

Then $(A ; *, 0)$ is a BN_{1}-algebra.

Example 3.2. Let $A=\{0,1,2,3\}$ and define the binary operation "*" on A by the following table:

$*$	0	1	2	3
0	0	1	2	3
1	1	0	3	2
2	2	3	0	1
3	3	2	1	0

Then $(A ; *, 0)$ is a BN_{1}-algebra (In fact, A is the Klein 4-group.)
Example 3.3. Let $A=\{0,1,2,3,4,5,6,7,8,9\}$ and $*$ be defined by the following table:

$*$	0	1	2	3	4	5	6	7	8	9
0	0	1	2	3	4	5	6	7	8	9
1	1	0	3	2	6	7	4	5	9	8
2	2	3	0	1	8	6	5	9	4	7
3	3	2	1	0	7	8	9	4	5	6
4	4	6	8	7	0	9	1	3	2	5
5	5	7	6	8	9	0	2	1	3	4
6	6	4	5	9	1	2	0	8	7	3
7	7	5	9	4	3	1	8	0	6	2
8	8	9	4	5	2	3	7	6	0	1
9	9	8	7	6	5	4	3	2	1	0

It is easy to check that $(A ; *, 0)$ is a BN_{1}-algebra.
Proposition 3.4. If $(A ; *, 0)$ is a $B N_{1}$-algebra, then
(P1) $0 * x=x$,
(P2) $x=(x * y) *(0 * y)$,
(P3) $x * y=y * x$,
(P4) $\quad x=y *(y * x)$.
(P5) $\quad x * y=0 \Longrightarrow x=y$,
(P6) $x * y=y \Longrightarrow x=0$,
(P7) $\quad x * y=x \Longrightarrow y=0$,
(P8) $x * y=x * z \Longrightarrow y=z$,
for all $x, y, z \in A$.
Proof. Let $x, y, z \in A$.
(P1) Applying $\left(\mathrm{BN}_{1}\right)$ and (B1) we have $x=(x * x) * x=0 * x$, that is, (P1) holds.
(P2) By (BN_{1}) and (P1).
(P3) From (P1) and Theorem 2.4 (b) we obtain

$$
x * y=(0 * y) *(0 * x)=y * x
$$

(P4) Clear.
(P5) By Corollary 3.10 of [7].
(P6) Let $x * y=y$. Using $\left(\mathrm{BN}_{1}\right)$ and (B1) we get $x=(x * y) * y=y * y=0$. Therefore (P6) is satisfied.
(P7) The proof is similar to the proof of (P6).
(P8) Let $x * y=x * z$. Hence $x *(x * y)=x *(x * z)$. By (P4), $y=z$. Thus (P8) holds.

Proposition 3.5. Every $B N_{1}$-algebra has the unique solution property.
Proof. Let \mathcal{A} be a BN_{1}-algebra and $a, b \in A$. It is easy to see that the equations $x * b=a$ and $b * x=a$ have solutions given by $x=a * b$ and $x=b * a$, respectively. (P8) implies that in each case, such x is unique.

Theorem 3.6. Every $B N_{1}$-algebra is a loop.
Proof. Let \mathcal{A} be a BN_{1}-algebra. Since $x * 0=0 * x=x$ for each $x \in A$ and \mathcal{A} has the unique solution property, we conclude that \mathcal{A} is a loop.

Remark 3.7. There is a loop which is not a BN_{1}-algebra. Let $A=\{0,1,2,3,4\}$ and define the binary operation "*" on A by the following table:

$*$	0	1	2	3	4
0	0	1	2	3	4
1	1	0	3	4	2
2	2	4	0	1	3
3	3	2	4	0	1
4	4	3	1	2	0

Then $(A ; *, 0)$ is a loop but it is not a BN_{1}-algebra, since $(1 * 2) * 2=3 * 2=4 \neq 1$.
Theorem 3.8. An algebra \mathcal{A} is a $B N_{1}$-algebra if and only if it satisfies the following axioms:
(B1) $\quad x * x=0$,
(C) $\quad x * y=y * x$,
$\left(\mathrm{BN}_{1}\right) \quad(x * y) * y=x$.
Proof. Let \mathcal{A} be a BN_{1}-algebra. By definition and property (P 3), \mathcal{A} satisfies $(\mathrm{B} 1),\left(\mathrm{BN}_{1}\right)$ and (C).

Conversely, suppose that the above identities hold in \mathcal{A}. From $\left(\mathrm{BN}_{1}\right)$ and (B 1) we have $x=(x * x) * x=0 * x$ for all $x \in A$, that is, (B2') is satisfied. Using commutativity of $*$ we get (B2). Observe that (BN) also holds in \mathcal{A}. Let $x, y, z \in A$. Applying (C) and (B2') we obtain

$$
(x * y) * z=z *(y * x)=(0 * z) *(y * x)
$$

Thus \mathcal{A} is a BN -algebra and finally, \mathcal{A} is a BN_{1}-algebra.

Theorem 3.9. An algebra \mathcal{A} is a $B N_{1}$-algebra if and only if it is a commutative $B G$ algebra.
Proof. Let \mathcal{A} be a BN_{1}-algebra. By (P 2), \mathcal{A} satisfies (BG). From property (P 3) we see that the operation $*$ is commutative.

Conversely, if \mathcal{A} is a commutative BG-algebra, then \mathcal{A} satisfies (B1), (C) and $\left(\mathrm{BN}_{1}\right)$. From Theorem 3.8 it follows that \mathcal{A} is a BN_{1}-algebra.

It is easy to see that every Coxeter algebra is a BN_{1}-algebra, that is,

$$
\begin{equation*}
\mathbf{C A} \subset \mathbf{B N}_{1} . \tag{3}
\end{equation*}
$$

Proposition 3.10. If \mathcal{A} is a $B N_{1}$-algebra, then it is a PC-algebra.
Proof. From (P5) it follows that \mathcal{A} satisfies the condition (BH). Since the operation $*$ is commutative, we see that \mathcal{A} is a commutative BH -algebra, that is, \mathcal{A} is a PC -algebra.

The converse of Proposition 3.10 does not hold in general. The PC-algebra $(A ; *, 0)$ given in Example 4.7 of [8] is not a BN_{1}-algebra, since $(2 * 1) * 1=3 \neq 2$.

Remark 3.11. Let $A=\{0,1,2\}$ and $*$ be defined by the following table:

$*$	0	1	2
0	0	2	1
1	1	0	2
2	2	1	0

Then $(A ; *, 0)$ is a BM-algebra (see [6]) but it is not a PC-algebra. Consequently, $\mathbf{B M} \nsubseteq \mathbf{P C}$. Hence $\mathbf{B M} \nsubseteq \mathbf{B N}_{1}$.

Remark 3.12. The BN_{1}-algebra given in Example 3.3 is not a BM-algebra, since $(1 * 3) *$ $(1 * 4)=2 * 6=5 \neq 7=4 * 3$. Therefore, $\mathbf{B N} \mathbf{N}_{1} \nsubseteq \mathbf{B M}$ and hence $\mathbf{P C} \nsubseteq \mathbf{B M}$.

From (1)-(3), Proposition 3.10, and Remarks 3.11 and 3.12 we obtain the following interrelationships between some of the class of algebras mentioned above.

Figure 2
Lemma 3.13. If an algebra \mathcal{A} satisfies the commutative law (C) and (B2'), then condition (As) implies condition (B).
Proof. Using associativity, commutativity and (B2') we obtain

$$
(x * y) * z=x *(y * z)=x *(z * y)=x *(z *(0 * y))
$$

for all $x, y, z \in A$, that is, (B) holds.
Lemma 3.14. If \mathcal{A} satisfies (B2'), then condition (B) implies condition (D).
Proof. Let $x, y, z \in A$. We have

$$
(x * y) * z=x *(z *(0 * y))=x *(z * y)
$$

i.e., (D) is true in \mathcal{A}.

Lemma 3.15. Let \mathcal{A} satisfy (C). Then (D) implies (BCH).
Proof. Let $x, y, z \in A$. Applying commutativity of $*$ and (D) we get

$$
(x * y) * z=(y * x) * z=y *(z * x)=(x * z) * y
$$

Thus (BCH) is valid in \mathcal{A}.
Lemma 3.16. Let \mathcal{A} satisfy (C) and $\left(\mathrm{BN}_{1}\right)$. Then (BCH) implies (BM).
Proof. Let $x, y, z \in A$. Using $(\mathrm{BCH}),(\mathrm{C})$ and $\left(\mathrm{BN}_{1}\right)$ we have

$$
(x * y) *(x * z)=(x *(x * z)) * y=((z * x) * x)) * y=z * y
$$

i.e., (BM) holds in \mathcal{A}.

Lemma 3.17. Let (B1) hold in \mathcal{A}. Then condition (BM) implies condition (BCI).
Proof. By (BM) and (B1),

$$
((x * y) *(x * z)) *(z * y)=(z * y) *(z * y)=0
$$

for all $x, y, z \in A$. This means that \mathcal{A} satisfies (BCI).
Lemma 3.18. In $B N_{1}$-algebras, (BCI) implies (As).
Proof. Let \mathcal{A} be a BN_{1}-algebra satisfying (BCI) and $x, y, z \in A$. Then $((x * y) *(x * z)) *$ $(z * y)=0$. By (P5), $(x * y) *(x * z)=z * y$. Therefore \mathcal{A} is a BM-algebra. From (P1) we see that (B2') holds in \mathcal{A}. Applying Proposition 2.6 we get (As).

From Lemmas $3.13-3.18$ we have the following result.
Theorem 3.19. In a $B N_{1}$-algebra, the conditions (As), $(\mathrm{B}),(\mathrm{D}),(\mathrm{BCH}),(\mathrm{BM})$, and (BCI) are all equivalent.

Corollary 3.20. An algebra $\mathcal{A}=(A ; *, 0)$ is a Coxeter algebra if and only if it is a $B N_{1}$ algebra with the associative law for $*$.

Remark 3.21. From Theorem 3.19 it follows that

$$
\mathbf{B} \cap \mathbf{B N}_{1}=\mathbf{B C H} \cap \mathbf{B N}_{1}=\mathbf{B M} \cap \mathbf{B N}_{1}=\mathbf{B C I} \cap \mathbf{B N}_{1}=\mathbf{C A}
$$

References

[1] Q, P. Hu, X. Li, On BCH-algebras, Mathematics Seminar Notes, 11 (1983), 313-320.
[2] Y. Imai, K. Iséki, On axiom system of propositional calculi, Proc. Japan Acad., 42 (1966), 19-22.
[3] K. Iséki, An algebra related with a propositional calculus, Proc. Japan Acad., 42 (1966), 26-29.
[4] Y. B. Jun, E. H. Roh, H. S. Kim, On BH-algebras, Sci. Math. Jpn., 1 (1998), 347-354.
[5] C. B. Kim, H. S. Kim, On BG-algebras, Demonstratio Math., 41 (2008), 497-505.
[6] C. B. Kim, H. S. Kim, On BM-algebras, Sci. Math. Jpn., 63 (2006), 421-427.
[7] C. B. Kim, H. S. Kim, On BN-algebras, Kyungpook Math. J., 53 (2013), 175-184.
[8] H. S. Kim, Y. H. Kim, J. Neggers, Coxeter algebras and pre-Coxeter algebras in Smarandache setting, Honam Math. J., 26 (2004), 471-481.
[9] H. S. Li, An axiom system of BCI-algebras, Math. Japonica, 30 (1985), 351-352.
[10] J. Neggers, H. S. Kim, On B-algebras, Mat. Vesnik, 54 (2002), 21-29.
[11] R. Ye, On BZ-algebras, In: Selected paper on BCI, BCK-algebras and Computer Logics, Shaghai Jiaotong University, 1991, pp. 21-24.
[12] A. Walendziak, On BF-algebras, Math. Slovaca, 57 (2007), 119-128.

Andrzej Walendziak
Institute of Mathematics and Physics
Siedlce University of Natural Sciences and Humanities
3 Maja 54, PL-08110 Siedlce, Poland
E-mail address: walent@interia.pl

[^0]: 2010 Mathematics Subject Classification. 03G25, 06F35.
 Key words and phrases. $\mathrm{BN} / \mathrm{BN}_{1} / \mathrm{BF} / \mathrm{BG} / \mathrm{B}-\mathrm{algebra}$, (pre-) Coxeter algebra, associative BN_{1}-algebra.

