SOME RESULTS ON BN₁-ALGEBRAS

ANDRZEJ WALENDZIAK

Received 24 November, 2014

ABSTRACT. BN_1 -algebras have been introduced by C. B. Kim and H. S. Kim. Here we give an equivalent definition of BN_1 -algebras and show that every BN_1 -algebra is a loop. Moreover we prove that an algebra is BN_1 -algebra if and only if it is a commutative BG-algebra. We also prove that the class of associative BN_1 -algebras coincides with the class of Coxeter algebras. Finally we indicate the interrelationships between BN_1 -algebras and several algebras.

1 Introduction In 1966, K. Iséki introduced in [3] the concept of BCI-algebras as algebras connected with some logics. Next, in 1983, Q. P. Hu and X. Li ([1]) defined BCH-algebras which are a generalization of BCI-algebras. Several years later, Y. B. Jun, E. H. Roh and H. S. Kim ([4]) introduced a wide class of abstract algebras called BH-algebras. Recently, C. B. Kim and H. S. Kim introduced in [7] the notion of a BN₁-algebra. They defined a BN_1 -algebra as an algebra (A; *, 0) of type (2, 0) (i.e., a nonempty set A with a binary operation * and a constant 0) satisfying the following axioms:

 $\begin{array}{ll} (\text{B1}) & x \ast x = 0, \\ (\text{B2}) & x \ast 0 = x, \\ (\text{BN}) & (x \ast y) \ast z = (0 \ast z) \ast (y \ast x), \\ (\text{BN}_1) & x = (x \ast y) \ast y. \end{array}$

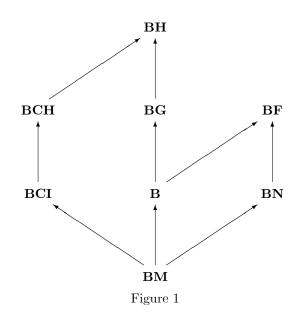
Every Boolean group (that is, Abelian group all of whose elements have order 2) is a BN_1 -algebra. The class of all BN_1 -algebras is a proper subclass of the class of BN-algebras defined in [7]. A. Walendziak introduced in [12] BF-algebras which are a generalization of BN-algebras and B-algebras ([10]). C. B. Kim and H. S. Kim defined in [6] BM-algebras and proved that every BM-algebra is a B-algebra. They also introduced BG-algebras ([5]) as a generalization of B-algebras.

We will denote by **BCI** (resp., **BCH/BH/B/BM/BG/BF/BN/BN**₁) the class of all BCI-algebras (resp., BCH/BH/B/BM/BG/BF/BN/BN₁-algebras). The interrelationships between some classes of algebras mentioned before are visualized in Figure 1. (An arrow indicates proper inclusion, that is, if **X** and **Y** are classes of algebras, then $\mathbf{X} \to \mathbf{Y}$ means $\mathbf{X} \subset \mathbf{Y}$.)

In this paper we study BN_1 -algebras. We give another axiomatization of BN_1 -algebras and prove that every BN_1 -algebra is a loop. Moreover we show that the concept of a BN_1 algebra is equivalent to the concept of a commutative BG-algebra. We also show that the class of associative BN_1 -algebras coincides with the class of Coxeter algebras. Finally we consider the relationships between BN_1 -algebras and several algebras.

²⁰¹⁰ Mathematics Subject Classification. 03G25, 06F35.

Key words and phrases. $\rm BN/BN_1/BF/BG/B-algebra,$ (pre-) Coxeter algebra, associative $\rm BN_1-algebra.$



2 Preliminaries Throughout this paper \mathcal{A} will denote an algebra (A; *, 0) of type (2, 0).

An algebra \mathcal{A} is said to be a *BH*-algebra ([4]) if it satisfies (B1), (B2) and the following axiom:

(BH) $x * y = y * x = 0 \Longrightarrow x = y.$

A BH-algebra \mathcal{A} with the condition

(BCH) (x * y) * z = (x * z) * y

(for all $x, y, z \in A$) is called a *BCH-algebra*. In [1], it is proved that A is a BCH-algebra if and only if it satisfies (B1), (BH), and (BCH).

A BH-algebra \mathcal{A} satisfying the identity

(BCI) ((x * y) * (x * z)) * (z * y) = 0

is called a *BCI-algebra*. Recall that according to the H. S. Li's axiom system ([9]), an algebra \mathcal{A} is a BCI-algebra if and only if it satisfies (B2), (BH), and (BCI).

Remark 2.1. We know that every BCI-algebra is a BCH-algebra and every BCH-algebra is a BH-algebra.

Let an algebra \mathcal{A} satisfy identities (B1) and (B2). We say that \mathcal{A} is a *B*-algebra (resp., BF/BG/BN-algebra) if \mathcal{A} satisfies axiom (B) (resp., (BF)/(BG)/(BN)), where:

- (B) (x * y) * z = x * [z * (0 * y)],
- (BF) 0 * (x * y) = y * x,
- (BG) x = (x * y) * (0 * y),
- (BN) (x * y) * z = (0 * z) * (y * x),

An algebra \mathcal{A} is called a *BM*-algebra ([6]) if it satisfies (B2) and the following axiom: (BM) (x * y) * (x * z) = z * y.

Remark 2.2. From Theorem 2.6 of [6] it follows that every BM-algebra is a B-algebra. By Theorem 2.2 and Proposition 2.8 of [5], every B-algebra is a BG-algebra and every BGalgebra is a BH-algebra. It is easy to see that (BM) implies (BCI). Therefore the class of BM-algebras is a subclass of the class of BCI-algebras. An algebra \mathcal{A} is said to be 0-commutative (resp., commutative) if x * (0 * y) = y * (0 * x) (resp., x * y = y * x) for any $x, y \in A$.

Remark 2.3. In [6], it is proved that \mathcal{A} is a BM-algebra if and only if it is a 0-commutative B-algebra. C. B. Kim and H. S. Kim ([7]) showed that an algebra is a BN-algebra if and only if it is a 0-commutative BF-algebra (therefore, every BN-algebra is a BF-algebra). By Corollary 2.12 of [7], every BM-algebra is a BN-algebra.

Proposition 2.4. ([7]) If (A; *, 0) is a BN-algebra, then

(a) 0 * (0 * x) = x, (b) y * x = (0 * x) * (0 * y)for all $x, y \in A$.

H. S. Kim, Y. H. Kim and J. Neggers introduced the concepts of Coxeter algebras and pre-Coxeter algebras. A *Coxeter algebra* ([8]) is an algebra \mathcal{A} satisfying identities (B1), (B2) and

(As) x * (y * z) = (x * y) * z.

It is known that a Coxeter algebra is a special type of abelian groups (see [8]). In [7], it is proved that \mathcal{A} is a Coxeter algebra if and only if it is a BN-algebra satisfying the following axiom:

(D) (x * y) * z = x * (z * y).

Proposition 2.5. ([6]) Every Coxeter algebra is a BM-algebra.

Proposition 2.6. ([6]) If \mathcal{A} is a BM-algebra satisfying the condition

(B2') 0 * x = x, then it is a Coxeter algebra.

A commutative BH-algebra is called a *pre-Coxeter algebra* (shortly, *PC-algebra*). The class of all Coxeter algebras (resp., pre-Coxeter algebras) we denote by **CA** (resp., **PC**). Every Coxeter algebra is a PC-algebra and there is a PC-algebra which is not a Coxeter algebra (see [8]). Consequently, **CA** is a proper subclass of **PC**. Every BM-algebra satisfying the condition (B2') is a PC-algebra (see Theorem 3.7 of [6]). In general, a PC-algebra need not be a BM-algebra (see Example 3.8 of [6]).

From Proposition 2.5 and Remark 2.3 we obtain

(1)
$$\mathbf{CA} \subset \mathbf{BM} \subset \mathbf{BN} \subset \mathbf{BF}.$$

Let \mathcal{A} be a PC-algebra. Observe that \mathcal{A} is a BN-algebra. Indeed, (x * y) * z = z * (y * x) = (0 * z) * (y * x) for all $x, y, z \in A$. Therefore, \mathcal{A} satisfies (BN) and consequently, \mathcal{A} is a BN-algebra. Thus

 $\mathbf{PC} \subset \mathbf{BN}.$

3. On BN₁-algebras By definition, $\mathcal{A} = (A; *, 0)$ is a BN₁-algebra if and only if it is a BN-algebra satisfying (BN₁).

Example 3.1. Let $A = \{0, 1\}$ and * be defined by the following table:

*	0	1
0	0	1
1	1	0

Then (A; *, 0) is a BN₁-algebra.

Example 3.2. Let $A = \{0, 1, 2, 3\}$ and define the binary operation "*" on A by the following table:

*	0	1	2	3
0	0	1	2	3
1	1	0	3	2
2	2	3	0	1
3	3	2	1	0

Then (A; *, 0) is a BN₁-algebra (In fact, A is the Klein 4-group.)

Example 3.3. Let $A = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ and * be defined by the following table:

*	0	1	2	3	4	5	6	7	8	9
0	0	1	2	3	4	5	6	7	8	9
1	1	0	3	2	6	7	4	5	9	8
2	2	3	0	1	8	6	5	9	4	7
3	3	2	1	0	7	8	9	4	5	6
4	4	6	8	7	0	9	1	3	2	5
5	5	7	6	8	9	0	2	1	3	4
6	6	4	5	9	1	2	0	8	7	3
7	7	5	9	4	3	1	8	0	6	2
8	8	9	4	5	2	3	7	6	0	1
9	9	8	7	6	5	4	3	2	1	0

It is easy to check that (A; *, 0) is a BN₁-algebra.

Proposition 3.4. If (A; *, 0) is a BN_1 -algebra, then

Proof. Let $x, y, z \in A$.

(P1) Applying (BN_1) and (B1) we have x = (x * x) * x = 0 * x, that is, (P1) holds. (P2) By (BN_1) and (P1).

- (12) Dy (DN_1) and (11).
- (P3) From (P1) and Theorem 2.4 (b) we obtain

$$x * y = (0 * y) * (0 * x) = y * x.$$

(P4) Clear.

(P5) By Corollary 3.10 of [7].

(P6) Let x * y = y. Using (BN₁) and (B1) we get x = (x * y) * y = y * y = 0. Therefore (P6) is satisfied.

(P7) The proof is similar to the proof of (P6).

(P8) Let x * y = x * z. Hence x * (x * y) = x * (x * z). By (P4), y = z. Thus (P8) holds.

Proposition 3.5. Every BN_1 -algebra has the unique solution property.

Proof. Let \mathcal{A} be a BN₁-algebra and $a, b \in \mathcal{A}$. It is easy to see that the equations x * b = a and b * x = a have solutions given by x = a * b and x = b * a, respectively. (P8) implies that in each case, such x is unique.

Theorem 3.6. Every BN_1 -algebra is a loop.

Proof. Let \mathcal{A} be a BN₁-algebra. Since x * 0 = 0 * x = x for each $x \in \mathcal{A}$ and \mathcal{A} has the unique solution property, we conclude that \mathcal{A} is a loop.

Remark 3.7. There is a loop which is not a BN₁-algebra. Let $A = \{0, 1, 2, 3, 4\}$ and define the binary operation "*" on A by the following table:

*	0	1	2	3	4
0	0	1	2	3	4
1	1	0	3	4	2
2	2	4	0	1	3
3	3	2	4	0	1
4	4	3	1	2	0

Then (A; *, 0) is a loop but it is not a BN₁-algebra, since $(1 * 2) * 2 = 3 * 2 = 4 \neq 1$.

Theorem 3.8. An algebra \mathcal{A} is a BN_1 -algebra if and only if it satisfies the following axioms:

 $(B1) \qquad x * x = 0,$

(C) x * y = y * x,

$$(BN_1) \quad (x*y)*y = x.$$

Proof. Let \mathcal{A} be a BN₁-algebra. By definition and property (P3), \mathcal{A} satisfies (B1), (BN₁) and (C).

Conversely, suppose that the above identities hold in \mathcal{A} . From (BN₁) and (B1) we have x = (x * x) * x = 0 * x for all $x \in A$, that is, (B2') is satisfied. Using commutativity of * we get (B2). Observe that (BN) also holds in \mathcal{A} . Let $x, y, z \in A$. Applying (C) and (B2') we obtain

$$(x * y) * z = z * (y * x) = (0 * z) * (y * x).$$

Thus \mathcal{A} is a BN-algebra and finally, \mathcal{A} is a BN₁-algebra.

Theorem 3.9. An algebra \mathcal{A} is a BN_1 -algebra if and only if it is a commutative BGalgebra.

Proof. Let \mathcal{A} be a BN₁-algebra. By (P2), \mathcal{A} satisfies (BG). From property (P3) we see that the operation * is commutative.

Conversely, if \mathcal{A} is a commutative BG-algebra, then \mathcal{A} satisfies (B1), (C) and (BN₁). From Theorem 3.8 it follows that \mathcal{A} is a BN₁-algebra.

It is easy to see that every Coxeter algebra is a BN₁-algebra, that is,

$$\mathbf{CA} \subset \mathbf{BN}_1.$$

Proposition 3.10. If \mathcal{A} is a BN_1 -algebra, then it is a PC-algebra.

Proof. From (P5) it follows that \mathcal{A} satisfies the condition (BH). Since the operation * is commutative, we see that \mathcal{A} is a commutative BH-algebra, that is, \mathcal{A} is a PC-algebra. \Box

The converse of Proposition 3.10 does not hold in general. The PC-algebra (A; *, 0) given in Example 4.7 of [8] is not a BN₁-algebra, since $(2 * 1) * 1 = 3 \neq 2$.

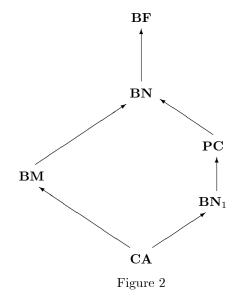
Remark 3.11. Let $A = \{0, 1, 2\}$ and * be defined by the following table:

*	0	1	2
0	0	2	1
1	1	0	2
2	2	1	0

Then (A; *, 0) is a BM-algebra (see [6]) but it is not a PC-algebra. Consequently, **BM** $\not\subseteq$ **PC**. Hence **BM** $\not\subseteq$ **BN**₁.

Remark 3.12. The BN₁-algebra given in Example 3.3 is not a BM-algebra, since $(1 * 3) * (1 * 4) = 2 * 6 = 5 \neq 7 = 4 * 3$. Therefore, **BN**₁ \nsubseteq **BM** and hence **PC** \nsubseteq **BM**.

From (1)-(3), Proposition 3.10, and Remarks 3.11 and 3.12 we obtain the following interrelationships between some of the class of algebras mentioned above.



Lemma 3.13. If an algebra \mathcal{A} satisfies the commutative law (C) and (B2'), then condition (As) implies condition (B).

Proof. Using associativity, commutativity and (B2') we obtain

$$(x*y)*z = x*(y*z) = x*(z*y) = x*(z*(0*y))$$

for all $x, y, z \in A$, that is, (B) holds.

Lemma 3.14. If \mathcal{A} satisfies (B2'), then condition (B) implies condition (D). *Proof.* Let $x, y, z \in \mathcal{A}$. We have

$$(x * y) * z = x * (z * (0 * y)) = x * (z * y),$$

i.e., (D) is true in \mathcal{A} .

Lemma 3.15. Let \mathcal{A} satisfy (C). Then (D) implies (BCH). Proof. Let $x, y, z \in \mathcal{A}$. Applying commutativity of * and (D) we get

$$(x * y) * z = (y * x) * z = y * (z * x) = (x * z) * y.$$

Thus (BCH) is valid in \mathcal{A} .

Lemma 3.16. Let \mathcal{A} satisfy (C) and (BN₁). Then (BCH) implies (BM). *Proof.* Let $x, y, z \in \mathcal{A}$. Using (BCH), (C) and (BN₁) we have

$$(x * y) * (x * z) = (x * (x * z)) * y = ((z * x) * x)) * y = z * y,$$

i.e., (BM) holds in \mathcal{A} .

Lemma 3.17. Let (B1) hold in A. Then condition (BM) implies condition (BCI). Proof. By (BM) and (B1),

$$((x * y) * (x * z)) * (z * y) = (z * y) * (z * y) = 0$$

for all $x, y, z \in A$. This means that \mathcal{A} satisfies (BCI).

Lemma 3.18. In BN₁-algebras, (BCI) implies (As).

Proof. Let \mathcal{A} be a BN₁-algebra satisfying (BCI) and $x, y, z \in A$. Then ((x * y) * (x * z)) * (z * y) = 0. By (P5), (x * y) * (x * z) = z * y. Therefore \mathcal{A} is a BM-algebra. From (P1) we see that (B2') holds in \mathcal{A} . Applying Proposition 2.6 we get (As).

From Lemmas 3.13 - 3.18 we have the following result.

Theorem 3.19. In a BN_1 -algebra, the conditions (As), (B), (D), (BCH), (BM), and (BCI) are all equivalent.

Corollary 3.20. An algebra $\mathcal{A} = (A; *, 0)$ is a Coxeter algebra if and only if it is a BN_1 -algebra with the associative law for *.

Remark 3.21. From Theorem 3.19 it follows that

 $\mathbf{B} \cap \mathbf{BN}_1 = \mathbf{BCH} \cap \mathbf{BN}_1 = \mathbf{BM} \cap \mathbf{BN}_1 = \mathbf{BCI} \cap \mathbf{BN}_1 = \mathbf{CA}.$

References

- [1] Q, P. Hu, X. Li, On BCH-algebras, Mathematics Seminar Notes, 11 (1983), 313–320.
- [2] Y. Imai, K. Iséki, On axiom system of propositional calculi, Proc. Japan Acad., 42 (1966), 19–22.
- [3] K. Iséki, An algebra related with a propositional calculus, Proc. Japan Acad., 42 (1966), 26–29.
- [4] Y. B. Jun, E. H. Roh, H. S. Kim, On BH-algebras, Sci. Math. Jpn., 1 (1998), 347–354.
- [5] C. B. Kim, H. S. Kim, On BG-algebras, Demonstratio Math., 41 (2008), 497–505.
- [6] C. B. Kim, H. S. Kim, On BM-algebras, Sci. Math. Jpn., 63 (2006), 421–427.
- [7] C. B. Kim, H. S. Kim, On BN-algebras, Kyungpook Math. J., 53 (2013), 175-184.
- [8] H. S. Kim, Y. H. Kim, J. Neggers, Coxeter algebras and pre-Coxeter algebras in Smarandache setting, *Honam Math. J.*, 26 (2004), 471–481.
- [9] H. S. Li, An axiom system of BCI-algebras, Math. Japonica, 30 (1985), 351–352.
- [10] J. Neggers, H. S. Kim, On B-algebras, Mat. Vesnik, 54 (2002), 21–29.
- [11] R. Ye, On BZ-algebras, In: Selected paper on BCI, BCK-algebras and Computer Logics, Shaghai Jiaotong University, 1991, pp. 21–24.
- [12] A. Walendziak, On BF-algebras, Math. Slovaca, 57 (2007), 119–128.

Communicated by Klaus Denecke

ANDRZEJ WALENDZIAK INSTITUTE OF MATHEMATICS AND PHYSICS SIEDLCE UNIVERSITY OF NATURAL SCIENCES AND HUMANITIES 3 MAJA 54, PL-08110 SIEDLCE, POLAND *E-mail address:* walent@interia.pl