
SOME RESULTS ON BN1-ALGEBRAS

Andrzej Walendziak

Abstract. BN1-algebras have been introduced by C. B. Kim and H. S. Kim. Here
we give an equivalent de�nition of BN1-algebras and show that every BN1-algebra
is a loop. Moreover we prove that an algebra is BN1-algebra if and only if it is a
commutative BG-algebra. We also prove that the class of associative BN1-algebras
coincides with the class of Coxeter algebras. Finally we indicate the interrelationships
between BN1-algebras and several algebras.

1 Introduction In 1966, K. Iséki introduced in [3] the concept of BCI-algebras as algebras
connected with some logics. Next, in 1983, Q. P. Hu and X. Li ([1]) de�ned BCH-algebras
which are a generalization of BCI-algebras. Several years later, Y. B. Jun, E. H. Roh and
H. S. Kim ([4]) introduced a wide class of abstract algebras called BH-algebras. Recently,
C. B. Kim and H. S. Kim introduced in [7] the notion of a BN1-algebra. They de�ned
a BN 1-algebra as an algebra (A; �; 0) of type (2; 0) (i.e., a nonempty set A with a binary
operation � and a constant 0) satisfying the following axioms:

(B1) x � x = 0,
(B2) x � 0 = x,
(BN) (x � y) � z = (0 � z) � (y � x),
(BN1) x = (x � y) � y.

Every Boolean group (that is, Abelian group all of whose elements have order 2) is a BN1-
algebra. The class of all BN1-algebras is a proper subclass of the class of BN-algebras
de�ned in [7]. A. Walendziak introduced in [12] BF-algebras which are a generalization of
BN-algebras and B-algebras ([10]). C. B. Kim and H. S. Kim de�ned in [6] BM-algebras
and proved that every BM-algebra is a B-algebra. They also introduced BG-algebras ([5])
as a generalization of B-algebras.

We will denote by BCI (resp., BCH/BH/B/BM/BG/BF/BN/BN1) the class of all
BCI-algebras (resp., BCH/BH/B/BM/BG/BF/BN/BN1-algebras). The interrelationships
between some classes of algebras mentioned before are visualized in Figure 1. (An arrow
indicates proper inclusion, that is, if X and Y are classes of algebras, then X! Y means
X � Y.)
In this paper we study BN1-algebras. We give another axiomatization of BN1-algebras

and prove that every BN1-algebra is a loop. Moreover we show that the concept of a BN1-
algebra is equivalent to the concept of a commutative BG-algebra. We also show that the
class of associative BN1-algebras coincides with the class of Coxeter algebras. Finally we
consider the relationships between BN1-algebras and several algebras.
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2 Preliminaries Throughout this paper A will denote an algebra (A; �; 0) of type (2; 0).
An algebra A is said to be a BH-algebra ([4]) if it satis�es (B1), (B2) and the following

axiom:

(BH) x � y = y � x = 0 =) x = y.

A BH-algebra A with the condition

(BCH) (x � y) � z = (x � z) � y
(for all x; y; z 2 A) is called a BCH-algebra. In [1], it is proved that A is a BCH-algebra if
and only if it satis�es (B1), (BH), and (BCH).

A BH-algebra A satisfying the identity

(BCI) ((x � y) � (x � z)) � (z � y) = 0
is called a BCI-algebra. Recall that according to the H. S. Li�s axiom system ([9]), an
algebra A is a BCI-algebra if and only if it satis�es (B2), (BH), and (BCI).

Remark 2.1. We know that every BCI-algebra is a BCH-algebra and every BCH-algebra
is a BH-algebra.

Let an algebra A satisfy identities (B1) and (B2). We say that A is a B-algebra (resp.,
BF/BG/BN-algebra) if A satis�es axiom (B) (resp., (BF)/(BG)/(BN)), where:

(B) (x � y) � z = x � [z � (0 � y)],
(BF) 0 � (x � y) = y � x,
(BG) x = (x � y) � (0 � y),
(BN) (x � y) � z = (0 � z) � (y � x),

An algebra A is called a BM-algebra ([6]) if it satis�es (B2) and the following axiom:

(BM) (x � y) � (x � z) = z � y.

Remark 2.2. From Theorem 2.6 of [6] it follows that every BM-algebra is a B-algebra.
By Theorem 2.2 and Proposition 2.8 of [5], every B-algebra is a BG-algebra and every BG-
algebra is a BH-algebra. It is easy to see that (BM) implies (BCI). Therefore the class of
BM-algebras is a subclass of the class of BCI-algebras.
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An algebra A is said to be 0-commutative (resp., commutative) if x � (0 � y) = y � (0 �x)
(resp., x � y = y � x) for any x; y 2 A.

Remark 2.3. In [6], it is proved that A is a BM-algebra if and only if it is a 0-commutative
B-algebra. C. B. Kim and H. S. Kim ([7]) showed that an algebra is a BN-algebra if and
only if it is a 0-commutative BF-algebra (therefore, every BN-algebra is a BF-algebra). By
Corollary 2.12 of [7], every BM-algebra is a BN-algebra.

Proposition 2.4. ([7]) If (A; �; 0) is a BN-algebra, then
(a) 0 � (0 � x) = x,
(b) y � x = (0 � x) � (0 � y)
for all x; y 2 A.

H. S. Kim, Y. H. Kim and J. Neggers introduced the concepts of Coxeter algebras and
pre-Coxeter algebras. A Coxeter algebra ([8]) is an algebra A satisfying identities (B1),
(B2) and

(As) x � (y � z) = (x � y) � z.

It is known that a Coxeter algebra is a special type of abelian groups (see [8]). In [7], it
is proved that A is a Coxeter algebra if and only if it is a BN-algebra satisfying the following
axiom:

(D) (x � y) � z = x � (z � y).

Proposition 2.5. ([6]) Every Coxeter algebra is a BM-algebra.

Proposition 2.6. ([6]) If A is a BM-algebra satisfying the condition

(B2�) 0 � x = x,
then it is a Coxeter algebra.

A commutative BH-algebra is called a pre-Coxeter algebra (shortly, PC-algebra). The
class of all Coxeter algebras (resp., pre-Coxeter algebras) we denote by CA (resp., PC).
Every Coxeter algebra is a PC-algebra and there is a PC-algebra which is not a Coxeter
algebra (see [8]). Consequently,CA is a proper subclass of PC. Every BM-algebra satisfying
the condition (B2�) is a PC-algebra (see Theorem 3.7 of [6]). In general, a PC-algebra need
not be a BM-algebra (see Example 3.8 of [6]).

From Proposition 2.5 and Remark 2.3 we obtain

(1) CA � BM � BN � BF.

Let A be a PC-algebra. Observe that A is a BN-algebra. Indeed, (x � y) � z = z � (y � x) =
(0 � z) � (y � x) for all x; y; z 2 A. Therefore, A satis�es (BN) and consequently, A is a
BN-algebra. Thus

(2) PC � BN.

3. On BN1-algebras By de�nition, A = (A; �; 0) is a BN1-algebra if and only if it is a
BN-algebra satisfying (BN1).

Example 3.1. Let A = f0; 1g and � be de�ned by the following table:
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� 0 1
0 0 1
1 1 0

Then (A; �; 0) is a BN1-algebra.

Example 3.2. Let A = f0; 1; 2; 3g and de�ne the binary operation ��� on A by the
following table:

� 0 1 2 3
0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

Then (A; �; 0) is a BN1-algebra (In fact, A is the Klein 4-group.)

Example 3.3. Let A = f0; 1; 2; 3; 4; 5; 6; 7; 8; 9g and � be de�ned by the following table:

� 0 1 2 3 4 5 6 7 8 9
0 0 1 2 3 4 5 6 7 8 9
1 1 0 3 2 6 7 4 5 9 8
2 2 3 0 1 8 6 5 9 4 7
3 3 2 1 0 7 8 9 4 5 6
4 4 6 8 7 0 9 1 3 2 5
5 5 7 6 8 9 0 2 1 3 4
6 6 4 5 9 1 2 0 8 7 3
7 7 5 9 4 3 1 8 0 6 2
8 8 9 4 5 2 3 7 6 0 1
9 9 8 7 6 5 4 3 2 1 0

It is easy to check that (A; �; 0) is a BN1-algebra.

Proposition 3.4. If (A; �; 0) is a BN 1-algebra, then

(P1) 0 � x = x,
(P2) x = (x � y) � (0 � y),
(P3) x � y = y � x,
(P4) x = y � (y � x).
(P5) x � y = 0 =) x = y,
(P6) x � y = y =) x = 0,
(P7) x � y = x =) y = 0,
(P8) x � y = x � z =) y = z,

for all x; y; z 2 A.
Proof. Let x; y; z 2 A.
(P1) Applying (BN1) and (B1) we have x = (x � x) � x = 0 � x, that is, (P1) holds.
(P2) By (BN1) and (P1).
(P3) From (P1) and Theorem 2.4 (b) we obtain

x � y = (0 � y) � (0 � x) = y � x.
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(P4) Clear.
(P5) By Corollary 3.10 of [7].
(P6) Let x � y = y. Using (BN1) and (B1) we get x = (x � y) � y = y � y = 0. Therefore

(P6) is satis�ed.
(P7) The proof is similar to the proof of (P6).
(P8) Let x � y = x � z. Hence x � (x � y) = x � (x � z). By (P4), y = z. Thus (P8) holds.

�

Proposition 3.5. Every BN 1-algebra has the unique solution property.

Proof. Let A be a BN1-algebra and a; b 2 A. It is easy to see that the equations x � b = a
and b �x = a have solutions given by x = a � b and x = b �a, respectively. (P8) implies that
in each case, such x is unique. �

Theorem 3.6. Every BN 1-algebra is a loop.

Proof. Let A be a BN1-algebra. Since x � 0 = 0 � x = x for each x 2 A and A has the
unique solution property, we conclude that A is a loop. �

Remark 3.7. There is a loop which is not a BN1-algebra. Let A = f0; 1; 2; 3; 4g and de�ne
the binary operation ���on A by the following table:

� 0 1 2 3 4
0 0 1 2 3 4
1 1 0 3 4 2
2 2 4 0 1 3
3 3 2 4 0 1
4 4 3 1 2 0

Then (A; �; 0) is a loop but it is not a BN1-algebra, since (1 � 2) � 2 = 3 � 2 = 4 6= 1.

Theorem 3.8. An algebra A is a BN 1-algebra if and only if it satis�es the following
axioms:
(B1) x � x = 0,
(C) x � y = y � x,
(BN1) (x � y) � y = x.
Proof. Let A be a BN1-algebra. By de�nition and property (P3), A satis�es (B1), (BN1)
and (C).
Conversely, suppose that the above identities hold in A. From (BN1) and (B1) we have

x = (x � x) � x = 0 � x for all x 2 A, that is, (B2�) is satis�ed. Using commutativity of � we
get (B2). Observe that (BN) also holds in A. Let x; y; z 2 A. Applying (C) and (B2�) we
obtain

(x � y) � z = z � (y � x) = (0 � z) � (y � x).

Thus A is a BN-algebra and �nally, A is a BN1-algebra. �

Theorem 3.9. An algebra A is a BN 1-algebra if and only if it is a commutative BG-
algebra.

Proof. Let A be a BN1-algebra. By (P2), A satis�es (BG). From property (P3) we see that
the operation � is commutative.
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Conversely, if A is a commutative BG-algebra, then A satis�es (B1), (C) and (BN1).
From Theorem 3.8 it follows that A is a BN1-algebra. �

It is easy to see that every Coxeter algebra is a BN1-algebra, that is,

(3) CA � BN1.

Proposition 3.10. If A is a BN 1-algebra, then it is a PC-algebra.

Proof. From (P5) it follows that A satis�es the condition (BH). Since the operation � is
commutative, we see that A is a commutative BH-algebra, that is, A is a PC-algebra. �

The converse of Proposition 3.10 does not hold in general. The PC-algebra (A; �; 0)
given in Example 4.7 of [8] is not a BN1-algebra, since (2 � 1) � 1 = 3 6= 2.

Remark 3.11. Let A = f0; 1; 2g and � be de�ned by the following table:

� 0 1 2
0 0 2 1
1 1 0 2
2 2 1 0

Then (A; �; 0) is a BM-algebra (see [6]) but it is not a PC-algebra. Consequently,BM * PC.
Hence BM * BN1.

Remark 3.12. The BN1-algebra given in Example 3.3 is not a BM-algebra, since (1 � 3) �
(1 � 4) = 2 � 6 = 5 6= 7 = 4 � 3. Therefore, BN1 * BM and hence PC * BM.

From (1)�(3), Proposition 3.10, and Remarks 3.11 and 3.12 we obtain the following
interrelationships between some of the class of algebras mentioned above.
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Lemma 3.13. If an algebra A satis�es the commutative law (C) and (B2�), then condition
(As) implies condition (B).

Proof. Using associativity, commutativity and (B2�) we obtain

 

54



(x � y) � z = x � (y � z) = x � (z � y) = x � (z � (0 � y))

for all x; y; z 2 A, that is, (B) holds.

Lemma 3.14. If A satis�es (B2�), then condition (B) implies condition (D).

Proof. Let x; y; z 2 A. We have

(x � y) � z = x � (z � (0 � y)) = x � (z � y),

i.e., (D) is true in A. �

Lemma 3.15. Let A satisfy (C). Then (D) implies (BCH).

Proof. Let x; y; z 2 A. Applying commutativity of � and (D) we get

(x � y) � z = (y � x) � z = y � (z � x) = (x � z) � y.

Thus (BCH) is valid in A. �

Lemma 3.16. Let A satisfy (C) and (BN1). Then (BCH) implies (BM).

Proof. Let x; y; z 2 A. Using (BCH), (C) and (BN1) we have

(x � y) � (x � z) = (x � (x � z)) � y = ((z � x) � x)) � y = z � y,

i.e., (BM) holds in A. �

Lemma 3.17. Let (B1) hold in A. Then condition (BM) implies condition (BCI).
Proof. By (BM) and (B1),

((x � y) � (x � z)) � (z � y) = (z � y) � (z � y) = 0

for all x; y; z 2 A. This means that A satis�es (BCI). �

Lemma 3.18. In BN 1-algebras, (BCI) implies (As).

Proof. Let A be a BN1-algebra satisfying (BCI) and x; y; z 2 A. Then ((x � y) � (x � z)) �
(z � y) = 0. By (P5), (x � y) � (x � z) = z � y. Therefore A is a BM-algebra. From (P1) we
see that (B2�) holds in A. Applying Proposition 2.6 we get (As). �

From Lemmas 3.13 �3.18 we have the following result.

Theorem 3.19. In a BN 1-algebra, the conditions (As), (B), (D), (BCH), (BM), and (BCI)
are all equivalent.

Corollary 3.20. An algebra A = (A; �; 0) is a Coxeter algebra if and only if it is a BN 1-
algebra with the associative law for �.

Remark 3.21. From Theorem 3.19 it follows that

B \BN1 = BCH \BN1 = BM \BN1 = BCI \BN1 = CA.
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