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REPRODUCING PROPERTY FOR INTERPOLATIONAL PATH
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Abstract. We show that the solution of the 2-variable Karcher equation for the
derivative solidarity coincides with the original interporational path of operator means,
where the derivative solidarity for an interpolational path of operator means A mtB is
defined as A smB = ∂A mtB

∂t

˛

˛

t=0
.

Let m be an operator mean in the sense of Kubo-Ando [7] which is defined by a positive
operator monotone function fm on the half interval (0,∞) with fm(1) = 1;

Am B = A
1
2 fm

(
A− 1

2 BA− 1
2

)
A

1
2

for positive invertible operators A and B on a Hilbert space. Thus the operator mean can be
constructed by a numerical function fm(x) = 1m x which is called the representing function
of m. For a symmetric operator mean m , i.e., A m B = B m A, the initial conditions

Am0B = A, A m 1
2
B = Am B, A m1B = B

and the following inductive relation

(2) Am 2k+1
2n+1

B = (Am k
2n

B)m (Am k+1
2n

B) = (Am k+1
2n

B)m (Am k
2n

B)

for nonnegative numbers n and k with 2k+1 < 2n+1 determine the continuous path AmtB
from A to B of operator means. In particular,

(3) Am 1
2n

B = Am(Am 1
2n−1

B) = A(Am(Am 1
2n−2

B)) = · · · =

n times︷ ︸︸ ︷
A(A(· · · (A m B

n times︷ ︸︸ ︷
) · · · )) .

Then, if the limit
A smB = lim

n→∞
2n(Am 1

2n
B − A)

exists, it defines the solidarity whose representing function Fs(x) = 1 sx is a strictly increas-
ing operator monotone function. The solidarity s in ([4]) is defined as a binary operation
A sB for positive (invertible) operators A and B by

A sB = A
1
2 F

(
A− 1

2 BA− 1
2

)
A

1
2

for some operator monotone function F on (0,∞). It has also typical properties of operator
means except the monotonicity on the left-term. In particular, note that the transformer
equality

T (A sB)T ∗ = (TAT ∗) s (TBT ∗)
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holds for invertible operators T .
If this path mt is differentiable for t, then

A smB = lim
t→0

A mtB − A

t
=

∂A mtB

∂t

∣∣∣
t=0

.

So it is called the derivative solidarity for m. Its representing function Fs satisfies Fs(1) = 0
and F ′

s(1) = 1 ([6]).
If a path satisfies

(AmrB)mt(AmsB) = Am(1−t)r+ts B

for all weights r, s, t ∈ [0, 1], then we call it an interporational path and also call the original
mean an interpolational one as in [5, 6]. In the preceding paper [3], we showed that mt is
interpolational if and only if it satisfies the mixing property :

(am b)m (cm d) = (a m c) m (bm d)

for all positive numbers a, b, c and d. This shows that the logarithmic operator mean

ALB = A
1
2 `

(
A− 1

2 BA− 1
2

)
A

1
2

for the function `(x) = (x−1)/ log x is not interpolational. We also showed in [6] that every
interpolational path is convex by the maximality of the arithmetic mean in the symmetric
operator means m = m1/2;

A m t+s
2

B = (AmtB)m (AmsB) ≤ AmtB + AmsB

2
.

Moreover it is differentiable and hence has always the derivative solidarity. This construction
is similar to Uhlmann’s one [9] that defines the relative entropy from interpolations.

For r ∈ [−1, 1], the following parametrized operator means #(r)
t , which are also called

the quasi-arithmetic ones (cf. [2]),

A#(r)
t B = A

1
2

(
(1 − t)I + t

(
A− 1

2 BA− 1
2

)r) 1
r

A
1
2

are interpolational. The path #t = #(0)
t = limε↓0 #(ε)

t ;

A#tB = A
1
2

(
A− 1

2 BA− 1
2

)t

A
1
2

is that of the geometric operator mean and it is also the geodesic of the Finsler manifold of
the positive invertible operators by Corach-Porta-Recht [1].

In [5, 6], we considered a map m 7→ sm from the interporational means m to the
solidarities, say Uhlmann’s transform by the above reason, but we could not discuss the
inverse map then. In this paper, we will show that the solution X of the (2-variable)
Karcher equation

(4) (1 − t) (X smA) + t (X smB) = 0

is the original path A mtB as M.Pálfia suggested as we see later. This Karcher equation is
equivalent to

(4′) (1 − t)F
(
X− 1

2 AX− 1
2

)
+ tF

(
X− 1

2 BX− 1
2

)
= 0

for the representing function Fs(x) = 1 smx.
To see this, we make some preparations. By the interpolationality of mt, its representing

function ft has the following property:



Reproducing property for interpolational path

Lemma 1. fs(ft(x)) = fst(x).

Proof. By the interpolationality, we have

fs(ft(x)) = 1ms(1mt x) = (1m0 x)ms(1mt x) = 1m0(1−s)+ts x = fst(x).

Since m is symmetric and mt is homogeneous, we have:

Lemma 2. B m1−tA = AmtB and xf1−t

(
1
x

)
= ft(x).

Proof. The former follows from the construction (2). So we have

xf1−t

(
1
x

)
= x

(
1m1−t

(
1
x

))
= x m1−t 1 = 1mt x = ft(x).

Consider the derivative function Ft(x) = ∂ft(x)
∂t (where Fs = F0). In [6], we showed

F0(ft(x)) = tFt(x). Moreover we have:

Lemma 3. Fs(ft(x)) = tFts(x) and F1−t

(
1
x

)
= − 1

xFt(x).

Proof. By the definition of Fs and Lemma 1, we obtain

Fs(ft(x)) = lim
r→s

fr(ft(x)) − fs(ft(x))
r − s

= t lim
r→s

ftr(x) − fts(x))
tr − ts

= tFts(x).

Also the formula

− 1
x

Ft(x) = lim
s→t

fs(x)/x − ft(x)/x

−(s − t)
= lim

s→t

f1−s(1/x) − f1−t(1/x)
(1 − s) − (1 − t)

= F1−t

(
1
x

)
follows from the property f1−t(1/x) = ft(x)

x in Lemma 2.

Let st be the solidarity defined by the derivative Ft. Then the above Lemma shows the
formulae for tangent vectors and the transpose relation:

Theorem 4. For the above solidarity st for an interpolational path mt,

A ss(A mtB) = tA sts B and − A stB = B s1−t A

for parameters s, t ∈ [0, 1].

Proof. Lemma 2 shows the first formula by

A ss(AmtB) = A
1
2 Fs

(
ft

(
A− 1

2 BA− 1
2

))
A

1
2

= tA
1
2 Fst

(
A− 1

2 BA− 1
2

)
A

1
2 = tA sts B.

Also, since the transformer equality and Lemma 2 imply

X stI = X(I stX
−1) = XFt(X−1) = −F1−t(X),

we have

−A stB = B
1
2

[(
B− 1

2 AB− 1
2

)
stI

]
B

1
2 = −B

1
2 F1−t

(
B− 1

2 AB− 1
2

)
B

1
2 = B s1−t A.
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Now we show the reproducing property:

Theorem 5. Let F be the representing function for a derivative solidarity sm for an in-
terpolational mean m, the solution of the Karcher equation (4) is the interpolational path
AmtB.

Proof. The homogeneity for operator means shows that we have only to show that the
solution y of the numerical equation

(4′′) (1 − t)F
(

1
y

)
+ tF

(
x

y

)
= 0

is given by y = ft(x) = 1mtx. In fact, by the above lemma, we have

(1 − t)F0

(
1

ft(x)

)
+ tF0

(
x

ft(x)

)
= − 1 − t

ft(x)
F1(ft(x)) − t

f1−t(1/x)
F1(f1−t(1/x))

= − (1 − t)t
ft(x)

Ft(x) − t(1 − t)
f1−t(1/x)

F1−t(1/x)

= − t(1 − t)
ft(x)

Ft(x) +
t(1 − t)

(1/x)ft(x)
1
x

Ft(x) = 0.

Thus we obtain y = ft(x).

In a RIMS Workshop held at November 6–8, 2013 in Kyoto, M.Pálfia [8] posed an
interesting problem when the solution of the Karcher equation (4) is a path of operator
means for an operator monotone function F with F (1) = 0 and F ′(1) = 1. So we observe the
above theorem from this constructive viewpoint: In (4′′), it follows from the monotonicity
of F that

x

y
= F−1

(
−1 − t

t
F

(
1
y

))
.

So, putting

gt(y) = yF−1

(
−1 − t

t
F

(
1
y

))
,

we have x = gt(y). Thus if we find an interpolational path ft with y = ft(gt(y)) = ft(x),
the solution X coincides with AmtB for the corresponding path 1mtx = ft(x). But we
notice that gt is not monotone:
Remark. Let mt be an interpolational path defined by a function

ft(x) =
(
1 − t + t

√
x
)2

.

Then it must be a solution of (4′). The derivative solidarity is determined by F (x) =
2(
√

x − 1). Since

F−1(z) =
(z

2
+ 1

)2

,

the above function is

gt(y) = y

(
1 − 1 − t

t

(√
1
y
− 1

))2

=

(√
y − (1 − t)

)2

t2
,

which is convex with the minimum 0 at y = (1−t)2. It is not monotone on (0,∞), but in the
region y > (1−t)2, the function gt(y) is monotone and its inverse function is (1 − t + t

√
x)2,

which is operator monotone.
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Finally we give an example of operator monotone function F satisfying F (1) = 0 and
F ′(1) = 1 that does not induce an operator mean:

Example. Let F (x) = 2(
√

2(x + 1) − 2). Then we have F (1) = 0, F ′(1) = 0 and

F−1(z) =
(z + 4)2

8
− 1.

It follows that

gt(y) =

(
2
√

y − 1−t
t

(√
2(1 + y) − 2

√
y
))2

2
− y

and hence
t2gt(y) = (3 − 2t)y + (1 − t)2 − 2(1 − t)

√
2(1 + y)y.

Thus we have
g 1

2
(y) = 8y + 1 − 4

√
2(1 + y)y.

This function is convex and g 1
2
(y) = 0 for y = 2±

√
2

8 . But, even in the region y > 2+
√

2
8

where gt is monotone and positive, the inverse function

f 1
2
(x) =

2(x + 1) +
√

2x2 + 12x + 2
8

is not operator monotone. In fact, a concave function h(x) =
√

x2 + 6x + 1 is not operator
monotone (and hence not operator concave) since Arg z < Argh(z) for some z in the upper
half complex plane: Consider z = reit for t = 3π

4 . Then

h(z)2 = 1 + 6r

(
− 1√

2
+

i√
2

)
− ir2,

Rez2 = 0 and Re h(z)2 = 1− 3
√

2r. It follows that Arg f(z) > 3π
4 for r < 1

3
√

2
, which shows

h is not operator monotone.
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