REPRODUCING PROPERTY FOR INTERPOLATIONAL PATH OF OPERATOR MEANS

Jun Ichi Fujii

Abstract

We show that the solution of the 2 -variable Karcher equation for the derivative solidarity coincides with the original interporational path of operator means, where the derivative solidarity for an interpolational path of operator means $A \mathrm{~m}_{t} B$ is defined as $A \mathbf{s}_{\mathrm{m}} B=\left.\frac{\partial A \mathrm{~m}_{t} B}{\partial t}\right|_{t=0}$.

Let m be an operator mean in the sense of Kubo-Ando [7] which is defined by a positive operator monotone function f_{m} on the half interval $(0, \infty)$ with $f_{\mathrm{m}}(1)=1$;

$$
A \mathrm{~m} B=A^{\frac{1}{2}} f_{\mathrm{m}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right) A^{\frac{1}{2}}
$$

for positive invertible operators A and B on a Hilbert space. Thus the operator mean can be constructed by a numerical function $f_{\mathrm{m}}(x)=1 \mathrm{~m} x$ which is called the representing function of m . For a symmetric operator mean m , i.e., $A \mathrm{~m} B=B \mathrm{~m} A$, the initial conditions

$$
A \mathrm{~m}_{0} B=A, \quad A \mathrm{~m}_{\frac{1}{2}} B=A \mathrm{~m} B, \quad A \mathrm{~m}_{1} B=B
$$

and the following inductive relation

$$
\begin{equation*}
A \mathrm{~m}_{\frac{2 k+1}{2^{n+1}}} B=\left(A \mathrm{~m}_{\frac{k}{2^{n}}} B\right) \mathrm{m}\left(A \mathrm{~m}_{\frac{k+1}{2^{n}}} B\right)=\left(A \mathrm{~m}_{\frac{k+1}{2^{n}}} B\right) \mathrm{m}\left(A \mathrm{~m}_{\frac{k}{2^{n}}} B\right) \tag{2}
\end{equation*}
$$

for nonnegative numbers n and k with $2 k+1<2^{n+1}$ determine the continuous path $A \mathrm{~m}_{t} B$ from A to B of operator means. In particular,

$$
\begin{equation*}
A \mathrm{~m}_{\frac{1}{2^{n}}} B=A \mathrm{~m}\left(A \mathrm{~m}_{\frac{1}{2^{n-1}}} B\right)=A\left(A \mathrm{~m}\left(A \mathrm{~m}_{\frac{1}{2^{n-2}}} B\right)\right)=\cdots=\overbrace{A(A(\cdots(A}^{n \text { times }} B \overbrace{\cdots))}^{n \text { times }} . \tag{3}
\end{equation*}
$$

Then, if the limit

$$
A \mathbf{s}_{\mathrm{m}} B=\lim _{n \rightarrow \infty} 2^{n}\left(A \mathrm{~m}_{\frac{1}{2^{n}}} B-A\right)
$$

exists, it defines the solidarity whose representing function $F_{\mathbf{s}}(x)=1 \mathbf{s} x$ is a strictly increasing operator monotone function. The solidarity \mathbf{s} in ([4]) is defined as a binary operation A s B for positive (invertible) operators A and B by

$$
A \mathbf{s} B=A^{\frac{1}{2}} F\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right) A^{\frac{1}{2}}
$$

for some operator monotone function F on $(0, \infty)$. It has also typical properties of operator means except the monotonicity on the left-term. In particular, note that the transformer equality

$$
T(A \mathbf{s} B) T^{*}=\left(T A T^{*}\right) \mathbf{s}\left(T B T^{*}\right)
$$

[^0]holds for invertible operators T.
If this path m_{t} is differentiable for t, then
$$
A \mathbf{s}_{\mathrm{m}} B=\lim _{t \rightarrow 0} \frac{A \mathrm{~m}_{t} B-A}{t}=\left.\frac{\partial A \mathrm{~m}_{t} B}{\partial t}\right|_{t=0}
$$

So it is called the derivative solidarity for m. Its representing function $F_{\mathbf{s}}$ satisfies $F_{\mathbf{s}}(1)=0$ and $F_{\mathbf{s}}^{\prime}(1)=1([6])$.

If a path satisfies

$$
\left(A \mathrm{~m}_{r} B\right) \mathrm{m}_{t}\left(A \mathrm{~m}_{s} B\right)=A \mathrm{~m}_{(1-t) r+t s} B
$$

for all weights $r, s, t \in[0,1]$, then we call it an interporational path and also call the original mean an interpolational one as in [5,6]. In the preceding paper [3], we showed that m_{t} is interpolational if and only if it satisfies the mixing property:

$$
(a \mathrm{~m} b) \mathrm{m}(c \mathrm{~m} d)=(a \mathrm{~m} c) \mathrm{m}(b \mathrm{~m} d)
$$

for all positive numbers a, b, c and d. This shows that the logarithmic operator mean

$$
A \mathbf{L} B=A^{\frac{1}{2}} \ell\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right) A^{\frac{1}{2}}
$$

for the function $\ell(x)=(x-1) / \log x$ is not interpolational. We also showed in [6] that every interpolational path is convex by the maximality of the arithmetic mean in the symmetric operator means $\mathrm{m}=\mathrm{m}_{1 / 2}$;

$$
A \mathrm{~m}_{\frac{t+s}{2}} B=\left(A \mathrm{~m}_{t} B\right) \mathrm{m}\left(A \mathrm{~m}_{s} B\right) \leq \frac{A \mathrm{~m}_{t} B+A \mathrm{~m}_{s} B}{2}
$$

Moreover it is differentiable and hence has always the derivative solidarity. This construction is similar to Uhlmann's one [9] that defines the relative entropy from interpolations.

For $r \in[-1,1]$, the following parametrized operator means $\#_{t}^{(r)}$, which are also called the quasi-arithmetic ones (cf. [2]),

$$
A \#_{t}^{(r)} B=A^{\frac{1}{2}}\left((1-t) I+t\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{r}\right)^{\frac{1}{r}} A^{\frac{1}{2}}
$$

are interpolational. The path $\#_{t}=\#_{t}^{(0)}=\lim _{\varepsilon \downarrow 0} \#_{t}^{(\varepsilon)}$;

$$
A \#_{t} B=A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{t} A^{\frac{1}{2}}
$$

is that of the geometric operator mean and it is also the geodesic of the Finsler manifold of the positive invertible operators by Corach-Porta-Recht [1].

In $[5,6]$, we considered a map $\mathrm{m} \mapsto \mathbf{s}_{\mathrm{m}}$ from the interporational means m to the solidarities, say Uhlmann's transform by the above reason, but we could not discuss the inverse map then. In this paper, we will show that the solution X of the (2 -variable) Karcher equation

$$
\begin{equation*}
(1-t)\left(X \mathbf{s}_{\mathrm{m}} A\right)+t\left(X \mathbf{s}_{\mathrm{m}} B\right)=0 \tag{4}
\end{equation*}
$$

is the original path $A \mathrm{~m}_{t} B$ as M.Pálfia suggested as we see later. This Karcher equation is equivalent to

$$
(1-t) F\left(X^{-\frac{1}{2}} A X^{-\frac{1}{2}}\right)+t F\left(X^{-\frac{1}{2}} B X^{-\frac{1}{2}}\right)=0
$$

for the representing function $F_{\mathbf{s}}(x)=1 \mathbf{s}_{\mathrm{m}} x$.
To see this, we make some preparations. By the interpolationality of m_{t}, its representing function f_{t} has the following property:

Lemma 1. $f_{s}\left(f_{t}(x)\right)=f_{s t}(x)$.
Proof. By the interpolationality, we have

$$
f_{s}\left(f_{t}(x)\right)=1 \mathrm{~m}_{s}\left(1 \mathrm{~m}_{t} x\right)=\left(1 \mathrm{~m}_{0} x\right) \mathrm{m}_{s}\left(1 \mathrm{~m}_{t} x\right)=1 \mathrm{~m}_{0(1-s)+t s} x=f_{s t}(x)
$$

Since m is symmetric and m_{t} is homogeneous, we have:
Lemma 2. $B \mathrm{~m}_{1-t} A=A \mathrm{~m}_{t} B$ and $x f_{1-t}\left(\frac{1}{x}\right)=f_{t}(x)$.
Proof. The former follows from the construction (2). So we have

$$
x f_{1-t}\left(\frac{1}{x}\right)=x\left(1 \mathrm{~m}_{1-t}\left(\frac{1}{x}\right)\right)=x \mathrm{~m}_{1-t} 1=1 \mathrm{~m}_{t} x=f_{t}(x)
$$

Consider the derivative function $F_{t}(x)=\frac{\partial f_{t}(x)}{\partial t}$ (where $F_{\mathbf{s}}=F_{0}$). In [6], we showed $F_{0}\left(f_{t}(x)\right)=t F_{t}(x)$. Moreover we have:

Lemma 3. $F_{s}\left(f_{t}(x)\right)=t F_{t s}(x)$ and $F_{1-t}\left(\frac{1}{x}\right)=-\frac{1}{x} F_{t}(x)$.
Proof. By the definition of F_{s} and Lemma 1, we obtain

$$
F_{s}\left(f_{t}(x)\right)=\lim _{r \rightarrow s} \frac{f_{r}\left(f_{t}(x)\right)-f_{s}\left(f_{t}(x)\right)}{r-s}=t \lim _{r \rightarrow s} \frac{\left.f_{t r}(x)-f_{t s}(x)\right)}{t r-t s}=t F_{t s}(x)
$$

Also the formula

$$
-\frac{1}{x} F_{t}(x)=\lim _{s \rightarrow t} \frac{f_{s}(x) / x-f_{t}(x) / x}{-(s-t)}=\lim _{s \rightarrow t} \frac{f_{1-s}(1 / x)-f_{1-t}(1 / x)}{(1-s)-(1-t)}=F_{1-t}\left(\frac{1}{x}\right)
$$

follows from the property $f_{1-t}(1 / x)=\frac{f_{t}(x)}{x}$ in Lemma 2.
Let \mathbf{s}_{t} be the solidarity defined by the derivative F_{t}. Then the above Lemma shows the formulae for tangent vectors and the transpose relation:

Theorem 4. For the above solidarity \mathbf{s}_{t} for an interpolational path m_{t},

$$
A \mathbf{s}_{s}\left(A \mathrm{~m}_{t} B\right)=t A \mathbf{s}_{t s} B \quad \text { and } \quad-A \mathbf{s}_{t} B=B \mathbf{s}_{1-t} A
$$

for parameters $s, t \in[0,1]$.
Proof. Lemma 2 shows the first formula by

$$
\begin{aligned}
A \mathbf{s}_{s}\left(A \mathrm{~m}_{t} B\right) & =A^{\frac{1}{2}} F_{s}\left(f_{t}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)\right) A^{\frac{1}{2}} \\
& =t A^{\frac{1}{2}} F_{s t}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right) A^{\frac{1}{2}}=t A \mathbf{s}_{t s} B
\end{aligned}
$$

Also, since the transformer equality and Lemma 2 imply

$$
X \mathbf{s}_{t} I=X\left(I \mathbf{s}_{t} X^{-1}\right)=X F_{t}\left(X^{-1}\right)=-F_{1-t}(X)
$$

we have

$$
-A \mathbf{s}_{t} B=B^{\frac{1}{2}}\left[\left(B^{-\frac{1}{2}} A B^{-\frac{1}{2}}\right) \mathbf{s}_{t} I\right] B^{\frac{1}{2}}=-B^{\frac{1}{2}} F_{1-t}\left(B^{-\frac{1}{2}} A B^{-\frac{1}{2}}\right) B^{\frac{1}{2}}=B \mathbf{s}_{1-t} A
$$

Now we show the reproducing property:
Theorem 5. Let F be the representing function for a derivative solidarity \mathbf{s}_{m} for an interpolational mean m , the solution of the Karcher equation (4) is the interpolational path $A \mathrm{~m}_{t} B$.

Proof. The homogeneity for operator means shows that we have only to show that the solution y of the numerical equation

$$
(1-t) F\left(\frac{1}{y}\right)+t F\left(\frac{x}{y}\right)=0
$$

is given by $y=f_{t}(x)=1 \mathrm{~m}_{t} x$. In fact, by the above lemma, we have

$$
\begin{aligned}
(1-t) F_{0}\left(\frac{1}{f_{t}(x)}\right) & +t F_{0}\left(\frac{x}{f_{t}(x)}\right) \\
& =-\frac{1-t}{f_{t}(x)} F_{1}\left(f_{t}(x)\right)-\frac{t}{f_{1-t}(1 / x)} F_{1}\left(f_{1-t}(1 / x)\right) \\
& =-\frac{(1-t) t}{f_{t}(x)} F_{t}(x)-\frac{t(1-t)}{f_{1-t}(1 / x)} F_{1-t}(1 / x) \\
& =-\frac{t(1-t)}{f_{t}(x)} F_{t}(x)+\frac{t(1-t)}{(1 / x) f_{t}(x)} \frac{1}{x} F_{t}(x)=0
\end{aligned}
$$

Thus we obtain $y=f_{t}(x)$.
In a RIMS Workshop held at November 6-8, 2013 in Kyoto, M.Pálfia [8] posed an interesting problem when the solution of the Karcher equation (4) is a path of operator means for an operator monotone function F with $F(1)=0$ and $F^{\prime}(1)=1$. So we observe the above theorem from this constructive viewpoint: In ($4^{\prime \prime}$), it follows from the monotonicity of F that

$$
\frac{x}{y}=F^{-1}\left(-\frac{1-t}{t} F\left(\frac{1}{y}\right)\right) .
$$

So, putting

$$
g_{t}(y)=y F^{-1}\left(-\frac{1-t}{t} F\left(\frac{1}{y}\right)\right),
$$

we have $x=g_{t}(y)$. Thus if we find an interpolational path f_{t} with $y=f_{t}\left(g_{t}(y)\right)=f_{t}(x)$, the solution X coincides with $A \mathrm{~m}_{t} B$ for the corresponding path $1 \mathrm{~m}_{t} x=f_{t}(x)$. But we notice that g_{t} is not monotone:
Remark. Let m_{t} be an interpolational path defined by a function

$$
f_{t}(x)=(1-t+t \sqrt{x})^{2}
$$

Then it must be a solution of $\left(4^{\prime}\right)$. The derivative solidarity is determined by $F(x)=$ $2(\sqrt{x}-1)$. Since

$$
F^{-1}(z)=\left(\frac{z}{2}+1\right)^{2}
$$

the above function is

$$
g_{t}(y)=y\left(1-\frac{1-t}{t}\left(\sqrt{\frac{1}{y}}-1\right)\right)^{2}=\frac{(\sqrt{y}-(1-t))^{2}}{t^{2}}
$$

which is convex with the minimum 0 at $y=(1-t)^{2}$. It is not monotone on $(0, \infty)$, but in the region $y>(1-t)^{2}$, the function $g_{t}(y)$ is monotone and its inverse function is $(1-t+t \sqrt{x})^{2}$, which is operator monotone.

Finally we give an example of operator monotone function F satisfying $F(1)=0$ and $F^{\prime}(1)=1$ that does not induce an operator mean:

Example. Let $F(x)=2(\sqrt{2(x+1)}-2)$. Then we have $F(1)=0, F^{\prime}(1)=0$ and

$$
F^{-1}(z)=\frac{(z+4)^{2}}{8}-1
$$

It follows that

$$
g_{t}(y)=\frac{\left(2 \sqrt{y}-\frac{1-t}{t}(\sqrt{2(1+y)}-2 \sqrt{y})\right)^{2}}{2}-y
$$

and hence

$$
t^{2} g_{t}(y)=(3-2 t) y+(1-t)^{2}-2(1-t) \sqrt{2(1+y) y}
$$

Thus we have

$$
g_{\frac{1}{2}}(y)=8 y+1-4 \sqrt{2(1+y) y}
$$

This function is convex and $g_{\frac{1}{2}}(y)=0$ for $y=\frac{2 \pm \sqrt{2}}{8}$. But, even in the region $y>\frac{2+\sqrt{2}}{8}$ where g_{t} is monotone and positive, the inverse function

$$
f_{\frac{1}{2}}(x)=\frac{2(x+1)+\sqrt{2 x^{2}+12 x+2}}{8}
$$

is not operator monotone. In fact, a concave function $h(x)=\sqrt{x^{2}+6 x+1}$ is not operator monotone (and hence not operator concave) since $\operatorname{Arg} z<\operatorname{Arg} h(z)$ for some z in the upper half complex plane: Consider $z=r e^{i t}$ for $t=\frac{3 \pi}{4}$. Then

$$
h(z)^{2}=1+6 r\left(-\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}\right)-i r^{2}
$$

$\operatorname{Re} z^{2}=0$ and $\operatorname{Re} h(z)^{2}=1-3 \sqrt{2} r$. It follows that $\operatorname{Arg} f(z)>\frac{3 \pi}{4}$ for $r<\frac{1}{3 \sqrt{2}}$, which shows h is not operator monotone.

Acknowledgement. This study is partially supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Scientific Research (C), 23540200, 2011.

References

[1] G.Corach, H.Porta and L.Recht, Geodesics and operator means in the space of positive operators, Internat. J. Math., 4 (1993), 193-202.
[2] J.I.Fujii, Structure of Hiai-Petz parametrized geometry for positive definite matrices, Linear Algebra Appl. 432 (2010), 318-326.
[3] J.I.Fujii Interpolationality for symmetric operator means, Sci. Math. Japon., 75 (2012), 345352.
[4] J.I.Fujii, M.Fujii and Y.Seo, An extension of the Kubo-Ando theory: Solidarities, Math. Japon., 35 (1990), 387-396.
[5] J.I.Fujii and E.Kamei, Uhlmann's interpolational method for operator means, Math. Japon., 34 (1989), 541-547.
[6] J.I.Fujii and E.Kamei, Interpolational paths and their derivatives, Math. Japon., 39 (1994), 557-560.
[7] F.Kubo and T.Ando, Means of positive linear operators, Math. Ann., 248 (1980) 205-224.
[8] M.Pália, Means of positive definite operators as minimizers of convex functions, to appear in Sūrikaisekikenkyūsho Kōkyūroku.
[9] A.Uhlmann, Relative entropy and the Wigner-Yanase-Dyson-Lieb concavity in an interpolation theory, Commun. Math. Phys., 54(1977), 22-32.

Communicated by Masatoshi Fujii

Department of Art and Sciences (Information Science), Osaka Kyoiku University, Asahigaoka, Kashiwara, Osaka 582-8582, Japan.

E-mail address, fujii@cc.osaka-kyoiku.ac.jp

[^0]: 2000 Mathematics Subject Classification. 47A64, 47A63, 26E60.
 Key words and phrases. operator mean, operator monotone function, path, geodesic, quasi-arithmetic mean.

