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Abstract. In this paper we apply the concept of intuitionistic fuzzy sets to n-racks,

n ≥ 2. Several related results are established. In particular, we discuss some properties

of normality and maximality of intuitionistic fuzzy n-racks using their (α, β)-cut sets.

 

1 Introduction In [3], the author introduced the category of n-racks as a generalization

of racks [6], and studied n-subracks in [4]. Intuitionistic fuzzy sets were introduced by

Krassimiri T. Atanassov [1] as a generalization of the concept of fuzzy sets introduced

by Zadeh [9] in the 60s. They have been applied to several algebraic concepts such as

equivalence relations [2], congruences [7] and groups [8]. In this work, we develop this

concept on n-racks. In particular we extend some results established in [5] on fuzzy n-racks

to intuitionistic fuzzy n-racks.

Let us recall a few definitions. A n-rack1[3] (R, [−, . . . ,−]R) is a set R endowed with an

n-ary operation [−, . . . ,−]R : R×R× . . .×R −→ R such that

•
[
x1, . . . , xn−1, [y1, . . . , yn−1]R

]
R

=
[
[x1, . . . , xn−1, y1]R, . . . , [x1, . . . , xn−1, yn]R

]
R

(This is the left distributive property of n-racks)

• For a1, . . . , an−1, b ∈ R, there is a unique x ∈ R with [a1, . . . , an−1, x]R = b.

If in addition there is a distinguish element 1 ∈ R, such that [1, . . . , 1, y]R = y and

[x1 . . . , xn−1, 1]R = 1 for all x1, . . . , xn−1 ∈ R, then (R, [−, . . . ,−]R, 1) is said to be a

pointed n-rack.

• A n-rack R is involutive if it further satisfies[
x1, . . . , xn−1, [x1, . . . , xn−1, y]

]
= y for all x1, . . . , xn−1, y ∈ R.

• A n-rack R is trivial if it further satisfies [x1, x2, . . . , xn−1, y]R = y for all xi, y ∈ R.

• A n-rack is a n-quandle if it further satisfies [x1, x2, . . . , xn−1, y]R = y if xi = y for

some i ∈ {1, 2, . . . , n− 1}.

• A non empty subset S of a n-rack (resp. pointed n-rack) R is called n-semisubrack

of R if S is closed under the n-rack operation. S is called n-subrack of R if it has a

n-rack structure (resp. pointed n-rack structure).

1In this paper, we mean by a n-rack, a left n-rack.

 

Scientiae Mathematicae Japonicae Online e-2015,109-115                                                                         109

Keywords and phrases: Intuitionistic fuzzy n-racks, n-racks.

1991Mathematics Subject Classification: Primary 03E72, 20N15, 20N25



2 intuitionistic fuzzy n-subracks Recall from [1] that for a set R, an intuitionistic

fuzzy set S in R is an object S =
{
〈x, µS(x), νS(x)〉 : x ∈ R

}
, where µS : R → [0, 1]

and νS : R → [0, 1] are two functions satisfying 0 ≤ µS(x) + νS(x) ≤ 1 for all x ∈ R.

Also µS(x) and νS(x) define respectively the degree of membership and the degree of non-

membership of x ∈ R. We say that S is constant if µS or νS is constant. Note that when

µS(x) + νS(x) = 1 for all x ∈ R, S is a fuzzy set. Also for two intuitionistic fuzzy sets

S1 =
{
〈x, µS1(x), νS1(x)〉 : x ∈ R

}
and S2 =

{
〈x, µS2(x), νS2(x)〉 : x ∈ R

}
, one says that

S1 ⊆ S2 if and only if µS1
(x) ≤ µS2

(x) and νS1
(x) ≥ νS2

(x) for all x ∈ R. Throughout the

paper, we consider only intuitionistic fuzzy sets that are not fuzzy sets.

Definition 2.1. Let R be a n-rack. An intuitionistic fuzzy set S =
{
〈x, µS(x), νS(x)〉 : x ∈

R
}

in R is said to be an intuitionistic fuzzy n-semisubrack of R if for any x1, . . . , xn ∈ R,

i) µS([x1, . . . , xn]) ≥ min{µS(x1), . . . , µS(xn)}

ii) νS([x1, . . . , xn]) ≤ max{νS(x1), . . . , νS(xn)}

iii) µS(1) ≥ µS(x) and νS(1) ≤ νS(x) for all x ∈ R if the rack is pointed by 1.

Definition 2.2. [8] Let S be an intuitionistic fuzzy set of a set R. The (α, β)− cut of S is

a crisp subset Cα,β(S) of S given by

Cα,β(S) =
{
x ∈ R / µS(x) ≥ α, νS(x) ≤ β

}
where α, β ∈ [0, 1] with α+ β ≤ 1.

The following is a characterization of intuitionistic fuzzy n-semisubracks by means of

(α, β)− cut sets.

Proposition 2.3. Let R be a n-rack. The intuitionistic fuzzy set S =
{
〈x, µS(x), νS(x)〉 :

x ∈ R
}

is an intuitionistic fuzzy n-semisubrack of R if and only if for every α, β ∈ [0, 1]

with α+ β ≤ 1, the (α, β)− cut of S is a n-semisubrack of R when it is non empty.

Proof. ⇒) Let α, β ∈ [0, 1]. Assume that Cα,β(S) 6= 0 and let {ai}i=1,...,n−1 ⊆ Cα,β(S).

Then as S is an intuitionistic fuzzy n-semisubrack, we have

µS([a1, . . . , an]) ≥ min{µS(a1), . . . , µS(an−1), µS(an)} ≥ α

and

νS([a1, . . . , an]) ≤ max{νS(a1), . . . , νS(an−1), νS(an)} ≤ β,

i.e. [a1, . . . , an−1, an] ∈ Cα,β(S). So Cα,β(S) is closed under the n-rack operation and thus

it is a n-semisubrack of R.

⇐) We proceed by contradiction. Assume S is not an intuitionistic fuzzy n-semisubrack of

R. So there are x1, . . . , xn ∈ R with either µS([x1, . . . , xn]) < min{µS(x1), . . . , µS(xn)} or

νS([x1, . . . , xn]) > max{νS(x1), . . . , νS(xn)}. Without loss of generality, consider the first

case. Then setting

α0 =
min{µS(x1), . . . , µS(xn)}+ µS([x1, . . . , xn])

2

yields to the compound inequality

0 ≤ µS([x1, . . . , xn]) < α0 ≤ min{µS(x1), . . . , µS(xn)} ≤ µS(xi)
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for all i = 1, . . . , n. Choose β0 ∈ [0, 1] such that α0 + β0 ≤ 1 and νS(xi) ≥ β0 for all

i = 1, . . . , n. Hence xi ∈ Cα0,β0(S) for all i = 1, . . . , n and [x1, . . . , xn] /∈ Cα0,β0(S). This

contradicts the fact that Cα0,β0
(S) is a n-semisubrack of R. The proof for the second case

is similar.

Definition 2.4. Let R be a n-rack. An intuitionistic fuzzy set S =
{
〈x, µS(x), νS(x)〉 : x ∈

R
}

in R is said to be an intuitionistic fuzzy n-subrack of R if for any x1, . . . , xn−1, y ∈ R,

i) µS(y) ≥ min{µS([x1, . . . , xn−1, y]), µS(x1), . . . , µS(xn−1)}

ii) νS(y) ≤ max{νS([x1, . . . , xn−1, y]), νS(x1), . . . , νS(xn−1)}

iii) µS(1) ≥ µS(x) and νS(1) ≤ νS(x) for all x ∈ R if the rack is pointed by 1.

Example 2.5. Consider the (t, s)−n-rack M of example 2.3 in [3] with n = 4, s = 1 , t = 0

and M = N. Then M is a 4-rack with rack operation [x1, x2, x3, x4] = x1 + x2 + x3. Define

on M the intuitionistic fuzzy set S =
{
〈x, µS(x), νS(x)〉 : x ∈ R

}
by

µS(x) =

{
1
4 , if x is odd

0, if x is even
and νS(x) =

{
0, if x is odd
1
4 , if x is even

.

A case by case checking shows that S is an intuitionistic fuzzy 4-semisubrack. However, S

is not an intuitionistic fuzzy 4-subrack because for x1 = 1, x2 = 3, x3 = 5 and x4 = 2, we

have µS([x1, x2, x3, x4]) = µS(9) = 1
4 and so

µS(x4) = 0 < 1
4 = min{µS([x1, x2, x3, x4]), µS(x1), µS(x2), µS(x3)}.

Example 2.6. Consider the quandle (containing the dihedral rack D = {a, b, c} as a sub-

quandle) (R = {1, a, b, c}, ◦) whose Cayley table is given by:

◦ 1 a b c

1 1 a b c

a 1 a c b

b 1 c b a

c 1 b a c

It is easy to show that the intuitionistic fuzzy set S =
{
〈x, µS(x), νS(x)〉 : x ∈ R

}
on R

defined by

µS(x) =

{
1
2 , if x = 1, a
1
8 , if x = b, c

and νS(x) =

{
1
2 , if x = 1, a
3
4 , if x = b, c

is an intuitionistic fuzzy subrack of R.

Theorem 2.7. [4] A n-semisubrack S of a pointed n-rack (R, [−, . . . ,−], 1) is a n-subrack

if and only if for all b ∈ R, [a1, a2, . . . , an−1, b] ∈ S and {ai}i=1,...,n−1 ⊆ S implies b ∈ S.

The following is a characterization of intuitionistic fuzzy n-subracks by means of (α, β)−
cut sets.

Proposition 2.8. Let R be a n-rack. The intuitionistic fuzzy set S =
{
〈x, µS(x), νS(x)〉 :

x ∈ R
}

is an intuitionistic fuzzy n-subrack of R if and only if for every α, β ∈ [0, 1] with

α+ β ≤ 1, the (α, β)− cut of S is a n-subrack of R when it is non empty.
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Proof. ⇒) Let α, β ∈ [0, 1]. Assume that Cα,β(S) 6= 0 and let {ai}i=1,...,n−1 ⊆ Cα,β(S) with

[a1, . . . , an−1, b] ∈ Cα,β(S). Then µS([a1, . . . , an−1, b]) ≥ α, µS(ai) ≥ α and νS([a1, . . . , an−1, b]) ≤
β, νS(ai) ≤ β for i = 1, . . . , n − 1. Now as S is an intuitionistic fuzzy n-subrack of R, we

have

µS(b) ≥ min{µS([a1, . . . , an−1, b]), µS(a1), . . . , µS(an−1)} ≥ α

and

νS(b) ≤ max{νS([a1, . . . , an−1, b]), νS(a1), . . . , νS(an−1)} ≤ β,

i.e. b ∈ Cα,β(S). So Cα,β(S) is a n-subrack of R.

⇐) We proceed by contradiction. Assume S is not an intuitionistic fuzzy n-subrack of R.

So there are x01, . . . , x
0
n−1, y0 ∈ R with either

µS(y0) < min{µ([x01, . . . , x
0
n−1, y0]), µ(x01), . . . , µ(x0n−1)}

or

νS(y0) > max{ν([x01, . . . , x
0
n−1, y0]), ν(x01), . . . , ν(x0n−1)}.

Without loss of generality, consider the first case. Setting

α0 =
min{µS([x01, . . . , x

0
n−1, y0]), µS(x01), . . . , µS(x0n−1)}+ µS(y0)

2

yields to the compound inequality

0 ≤ µS(y0) < α0 ≤ min{µS([x01, . . . , x
0
n−1, y0]), µS(x01), . . . , µS(x0n−1)} ≤ µS(x0i ).

Choose β0 ∈ [0, 1] such that α0 + β0 ≤ 1 and νS(x0i ) ≥ β0 for all i = 1, . . . , n − 1. So

[x01, . . . , x
0
n−1, y0] ∈ Cα0,β0

(S), x0i ∈ Cα0,β0
(S) for all i = 1, . . . , n − 1 and y0 /∈ Cα0,β0

(S).

This contradicts by theorem 2.7 the fact that Cα0,β0(S) is a n-subrack of R. The proof for

the second case is similar.

Remark 2.9. If R is an involutive n-subrack, one shows by theorem 2.7 that n-semisubracks

and n-subracks coincide. It follows by proposition 2.8 and proposition 2.3 that intuitionistic

fuzzy n-subracks and intuitionistic fuzzy n-semisubracks coincide in involutive n-racks (thus

in trivial n-racks).

Proposition 2.10. Let S be a n-subrack of R. Then S can be realized as a (α, β)− cut of

some intuitionistic fuzzy n-subrack of R.

Proof. Choose r, s ∈ [0, 1] with s < r. Consider the fuzzy set on R defined by

µS(x) =

{
r, if x ∈ S
s, else.

and νS(x) =

{
s, if x ∈ S
r, else.

We claim that the set S̃ =
{
〈x, µS , νS〉 : x ∈ R

}
is an intuitionistic fuzzy n-subrack of R.

In fact, a case by case checking shows that the inequalities

µS(xn) ≥ min{µS([x1, . . . , xn−1, xn]), µS(x1), . . . , µS(xn−1)} and

νS(xn) ≤ max{νS([x1, . . . , xn−1, xn]), νS(x1), . . . , νS(xn−1)} fail only if xn /∈ S, [x1, . . . , xn] ∈
S and xi ∈ S for all i = 1, . . . , n−1. But this can’t occur by theorem 2.7 as S is a n-subrack

of R. Moreover, it is clear that for any choice of α, β ∈ [0, 1] with α + β ≤ 1, α ≤ r and

β ≥ s, we have Cα,β(S̃) = S.

112



Corollary 2.11. Let S be a n-subrack of R. For each α, β ∈ (0, 1] with α+ β ≤ 1, there is

an intuitionistic fuzzy n-subrack S̃ =
{
〈x, µS(x), νS(x)〉 : x ∈ R

}
of R with Cα,β(S̃) = S.

Proof. The result follows by the proof of Proposition 2.10.

3 Normal and Maximal Intuitionistic Fuzzy n-Subracks Throughout this section,

R denotes a pointed n-rack.

Definition 3.1. A normal intuitionistic fuzzy n-subrack of R is an intuitionistic fuzzy n-

subrack S =
{
〈x, µS(x), νS(x)〉 : x ∈ R

}
of R such that 1 ∈ (µ−1S + ν−1S )(1).

Proposition 3.2. Every intuitionistic fuzzy n-subrack of R can be embedded into a normal

intuitionistic fuzzy n-subrack of R.

Proof. Let S be an intuitionistic fuzzy n-subrack of R. If S is normal, there is nothing to

prove. Otherwise, let p, q ∈ [0, 1] such that µS(1) ≤ p, νS(1) ≥ q and p+ q = 1. Consider on

R the functions ζS and ζ ′S defined by ζS(x) = µS(x)−µS(1)+p and ζ ′S(x) = νS(x)−νS(1)+q.

Clearly, ζS and ζ ′S are well-defined, (ζS + ζ ′S)(1) = 1, ζS(x) ≥ µS(x) and ζ ′S(x) ≤ νS(x) for

all x ∈ R. Also, for x1, x2, . . . , xn ∈ R we have

ζS(xn) = µS(xn)− µS(1) + p

≥ min{µS([x1, . . . , xn]), µS(x1), . . . , µS(xn−1)} − µS(1) + p

≥ min{µS([x1, . . . , xn])− µS(1) + p, µS(x1)− µS(1) + p, . . . , µS(xn−1)− µS(1) + p}
≥ min{ζS([x1, . . . , xn]), ζS(x1), . . . , ζS(xn−1)},

ζ ′S(xn) = νS(xn)− νS(1) + q

≤ max{νS([x1, . . . , xn]), νS(x1), . . . , νS(xn−1)} − νS(1) + q

≤ max{νS([x1, . . . , xn])− νS(1) + q, νS(x1)− νS(1) + q, . . . , νS(xn−1)− νS(1) + q}
≤ max{ζ ′S([x1, . . . , xn]), ζ ′S(x1), . . . , ζ ′S(xn−1)},

and ζS(1) ≥ ζS(x) and ζ ′S(1) ≤ ζ ′S(x) for all x ∈ R since µS(1) ≥ µS(x) and νS(1) ≤ νS(x)

for all x ∈ R.
Hence the set

{
〈x, ζS(x), ζ ′S(x)〉 : x ∈ R

}
is a normal intuitionistic fuzzy n-subrack

containing S.

Definition 3.3. Let S1 and S2 be two intuitionistic fuzzy n-subracks of R. We say2 that

S1 ⊆ae S2 if the set
{
x ∈ R / µS1

(x) ≥ µS2
(x), νS1

(x) ≤ νS2
(x)
}

= {1}.

Remark 3.4. It is not hard to check that this relation is an order. Under this relation,

the intuitionistic fuzzy set
{
〈x, ζS(x), ζ ′S(x)〉 : x ∈ R

}
above in the proof of proposition

3.2 is the smallest normal intuitionistic fuzzy n-subrack of R containing S. Denote it S̄ ={
〈x, µ̄S(x), ν̄S(x)〉 : x ∈ R

}
.

Definition 3.5. When p = 1
2 and q = 1

2 , S̄ is called the normal closure of S.

Definition 3.6. A non constant intuitionistic fuzzy n-subrack of R is said to be maximal

if its normal closure is maximal among normal intuitionistic fuzzy n-subracks of R.

Theorem 3.7. Every maximal intuitionistic fuzzy n-subrack of R is normal.

2Read S1 ⊆ae S2 as “S1 ⊆ S2” almost everywhere
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Proof. Let S be a maximal intuitionistic fuzzy n-subrack of R. If µS(1) + νS(1) = 1, then S

is normal and S = S̄. Assume µS(1) + νS(1) 6= 1 and define an intuitionistic fuzzy set S0 on

R by S0 =
{
〈x, ζS0

(x), ζ ′S0
(x)〉 : x ∈ R

}
with ζS0

(x) = µS(x)+µS(1)
2 and ζ ′S0

(x) = νS(x)+νS(1)
2 .

Clearly, S0 is an intuitionistic fuzzy n-subrack of R since for x1, x2, . . . , xn ∈ R we have

ζS0
(xn) =

µS(xn) + µS(1)

2

≥
min

{
µS([x1, . . . , xn]), µS(x1), . . . , µS(xn−1)

}
+ µS(1)

2

≥ min
{µS([x1, . . . , xn]) + µS(1)

2
,
µS(x1) + µS(1)

2
, . . . ,

µS(xn−1) + µS(1)

2

}
≥ min

{
ζS0

([x1, . . . , xn]), ζS0
(x1), . . . , ζS0

(xn−1)
}
,

ζ ′S0
(xn) =

νS(xn) + νS(1)

2

≤
max

{
νS([x1, . . . , xn]), νS(x1), . . . , νS(xn−1)

}
+ νS(1)

2

≤ max
{νS([x1, . . . , xn]) + νS(1)

2
,
νS(x1) + νS(1)

2
, . . . ,

νS(xn−1) + νS(1)

2

}
≤ max

{
ζ ′S0

([x1, . . . , xn]), ζ ′S0
(x1), . . . , ζ ′S0

(xn−1)
}
.

and ζS0
(1) ≥ ζS0

(x) and ζ ′S0
(1) ≤ ζ ′S0

(x) for all x ∈ R since µS(1) ≥ µS(x) and νS(1) ≤
νS(x) for all x ∈ R. Moreover, ζS0

(1) = µS(1), ζ ′S0
(1) = νS(1) and µS(x0) < µS(1) and

νS(x0) > νS(1) for some x0 ∈ R as S is non constant. Let S̄0 =
{
〈x, ζ̄S0

(x), ζ̄ ′S0
(x)〉 : x ∈ R

}
be the normal closure of S0. Then

ζ̄S0
(x0) = ζS0

(x0)− ζS0
(1) +

1

2
= ζS0

(x0)− µS(1) +
1

2
> µS(x0)− µS(1) +

1

2
= µ̄S(x0)

and

ζ̄ ′S0
(x0) = ζ ′S0

(x0)− ζ ′S0
(1) +

1

2
= ζ ′S0

(x0)− νS(1) +
1

2
< νS(x0)− νS(1) +

1

2
= ν̄S(x0).

This contradicts the maximality of S̄ among the normal intuitionistic fuzzy n-subracks of

R. Hence µS(1) + νS(1) = 1 and S is normal.

Theorem 3.8. If S is a maximal intuitionistic fuzzy n-subrack of R, then

Im(µs + νS) = {0, 1}.

Proof. Assume S is a maximal intuitionistic fuzzy n-subrack of R. Then µS(1) + νS(1) = 1

and S = S̄ by theorem 3.7. Now let x ∈ R with 0 < µS(x) + νS(x) < 1. Define an

intuitionistic fuzzy set S0 on R by S0 =
{
〈x, ζS0

(x), ζ ′S0
(x)〉 : x ∈ R

}
with ζS0

(x) =
µS(x)+ 1

2

2

and ζ ′S0
(x) =

νS(x)+ 1
2

2 . Clearly, S0 is an intuitionistic fuzzy n-subrack of R by the proof of

theorem 3.7. Moreover S0 is normal as S is normal. In addition, ζ̄S0
(x) = ζS0

(x) > µS(x) =

µ̄S(x) since 0 < µS(x) < 1
2 for all x ∈ R, and ζ̄ ′S0

(x) = ζ ′S0
(x) < νS(x) = ν̄S(x) since

νS(x) > 1
2 for all x ∈ R. Thus S̄ ⊆ae S̄0 because the set

{
x ∈ R / ζ̄S0

(x) ≥ µ̄S2
(x), ζ̄ ′S0

(x) ≤
ν̄S2

(x)
}
6= {1}. This contradicts the maximality of S̄ among the normal intuitionistic fuzzy

n-subracks of R. Hence µS(1) + νS(1) = 0 or µS(1) + νS(1) = 1.
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