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Abstract. In this paper we prove a mean value property for polycaloric functions in
one space dimensional case. The proof given here is a slight modification of that of
the recent paper by F.Da Lio and L.Rodino [3] and seems more straightforward.

1 Introduction There are many papers that deal with a mean value property for poly-
harmonic functions (see [1, 2, 4, 6, 7] etc.). Especially, in 2011, G. Lysik ([7]) gave a simple
and elegant proof of the following mean value property for polyharmonic functions and its
inverse. Let m ∈ N and let U be a domain in RN . If u ∈ C2m(U) and ∆mu = 0, then for
any ball BR(x) ⊂ U it holds

1
|BR(x)|

∫
BR(x)

u(y)dy =
m∑

k=0

∆ku(x)
4k(N

2 + 1)kk!
R2k(1.1)

where (a)k = a(a + 1) · · · (a + k − 1) for k ∈ N.

The main subject of this paper concerns the heat version of the result (1.1). First, we
fix some terminologies. Let U ⊂ RN be an open set and UT = U × (0, T ] denote a parabolic
cylinder. We say that a function u defined on UT is caloric if u is a solution of the linear
heat equation (∂t −∆x)u(x, t) = 0, (x, t) ∈ UT , where ∆x =

∑N
i=1

∂2

∂x2
i
. Also, in this paper,

u is called polycaloric if u is a solution of the equation (∂t − ∆x)mu(x, t) = 0, (x, t) ∈ UT

for some m ∈ N. For fixed x ∈ RN , t ∈ R, and r > 0, let

E(x, t; r) =
{

(y, s) ∈ RN × R
∣∣∣ s ≤ t, Φ(x − y, t − s) ≥ 1

rN

}
denote a heat ball with a top point (x, t), where

Φ(x, t) =


1

(4πt)N/2
exp

(
−|x|2

4t

)
(x ∈ RN , t > 0)

0 (x ∈ RN , t < 0)

is the fundamental solution of the heat equation. Note that a heat ball is symmetric with
respect to yi-axis (i = 1, · · · , N) and

E(0, 0; 1) =
{

(y, s) ∈ RN × R | − 1
4π

≤ s < 0, |y| ≤
√

2Ns log (−4πs)
}

.

It is well known that caloric functions possess the mean value property. Namely, if u is
caloric on UT , then for each heat ball E(x, t; r) ⊂ UT it holds

(1.2) u(x, t) =
1

4rN

∫∫
E(x,t ;r)

u(y, s)
|x − y|2

(t − s)2
dyds
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(see [5]: p.p 53-54 Theorem 3, or [10]). There is also an inverse mean value property of
caloric functions under certain conditions ([9]).

Heat version of the result (1.1) is also known. Namely, in 2006, F. Da Lio and L. Rodino
[3] proved the following asymptotic expansion formula for the heat integral mean (1.2) as a
power series with respect to the radius of the heat ball:

Let u ∈ C∞(RN+1) and (x, t) ∈ RN+1, then it holds

1
4rN

∫∫
E(x,t;r)

u(y, s)
|x − y|2

(t − s)2
dyds(1.3)

= u(x, t) +
M∑

k=1

r2kHku(x, t) + O
(
r2M+2

)
as r → 0,

where Hk is given by

(1.4) Hku = βk,N

(
∂t −

N

2k + N
∆x

)k−1

(∂t − ∆x)u

and

βk,N = (−1)k N

k!
1

(2k + N)

(
N

2k + N

)N
2 +1 (

1
4π

)k

.

One of the key ideas in [3] is to introduce the differential operator Hk which is the
k-th power of different heat operators whose diffusion coefficients depend on the iteration
number k, though the exact meaning of Hk is less clear.

In this paper, we prove the formula (1.3) in [3] by another method, when the space
dimension N = 1. We do not need to introduce the weighted power Hk and, in the author’s
opinion, the method seems more straightforward.

Theorem 1. Let N = 1, u ∈ C∞(UT ), r > 0 and M ∈ N. Then we have

1
4r

∫∫
E(x,t;r)

u(y, s)
|x − y|2

(t − s)2
dyds

= u(x, t) +
M∑

k=1

r2k

k!

k−1∑
l=0

(∂t − ∂2
x)k−l(∂t)lu(x, t) × Cl,k + O(r2M+2) as r → 0,

where Cl,k =
(−1)k

(4π)k(2k + 1)k+ 3
2

(
k − 1

l

)
(2k)l.

Theorem 1 is the formula (1.3) in one space dimensional case.

Remark 2. Theorem 1 was proved in [3]. Indeed, by using the binomial theorem, we get

Hku = βk,N

k−1∑
l=0

(
k − 1

l

) (
2k

2k + N

)l (
N

2k + N

)k−1−l

(∂t − ∆x)k−l (∂t)lu.

Therefore we obtain Theorem 1 for general dimensional case. However we do not need to
introduce the differential operator Hk (1.4) in one space dimensional case. An assumption
of one space dimension is a technical problem due to obtain representations (2.7, 2.8) in
Lemma 4 by factorizing v(2k)(0) (k = 1, 2, · · · ) concretely (see §2). It seems to be difficult
in higher dimension case.

We finally give mean value properties for the polycaloric equation (see Corollary 10
in §3) and the higher order heat equation (see Proposition 12 in §3). The author hopes
that mean value properties are useful for getting qualitative properties of solutions for the
polycaloric equation and the higher order heat equation.
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2 Proof of theorem 1 In this section, we prove Theorem 1. We set (x, t) = (0, 0) to
simplify the description. Let u : RN ×R → R be a smooth function. Set E(r) = E(0, 0, r)
and put

(2.1) φ(r) =
1

rN

∫∫
E(r)

u(x, t)
|x|2

t2
dxdt =

∫∫
E(1)

u(ry, r2s)
|y|2

s2
dyds.

In the following, we will carry out the Maclaurin expansion of φ(r) with respect to r ∈ R.
Set v(r) = u(x, t) = u(ry, r2s) for (y, s) ∈ RN × R. By differentiating φ(r) directly, we
have

(2.2) φ(n)(0) =
∫∫

E(1)

v(n)(0)
|y|2

s2
dyds.

We use standard notations of multi-indices; for y = (y1, · · · , yN ) ∈ RN and a multi-index
α = (α1, · · · , αN ) ∈ NN

0 , we write yα = yα1
1 · · · yαN

N and |α| = α1 + · · · + αN . Next lemma
concerns the evaluation of v(n)(0) and is valid for general dimension N ∈ N.

Lemma 3 ( v(n)(0) ). For k ∈ N0, we obtain

φ(2k−1)(0) = 0,(2.3)

v(2k)(0) =
k∑

j=0

∑
|β|=k−j

(∂2
x)β(∂t)ju(0, 0) × Aβ,k(y, s)(2.4)

where

Aβ,k(y, s) =
(2k)!

(2β)!j!
y2βsj .

Proof. Since v(r) is a C∞ function of r, for all M ≥ 1 we have

(2.5) v(r) =
2M+1∑
n=0

v(n)(0)
n!

rn + O(r2M+2) as r → 0.

On the other hand, since v(r) is a composed function of u(x, t) and x = ry, t = r2s, we have

v(r) =
2M+1∑
m=0

1
m!

(
(ry1)

∂

∂x1
+ · · · + (ryN )

∂

∂xN
+ (r2s)

∂

∂t

)m

u(0, 0) + O(r2M+2)

=
2M+1∑
m=0

1
m!

∑
|α|+j=m

m!
α1! · · ·αN !j!

(ry)α(r2s)j(∂α
x ∂j

t )u(0, 0) + O(r2M+2)

=
2M+1∑
m=0

∑
|α|+j=m

yαsj

α!j!
(∂α

x ∂j
t )u(0, 0) × r|α|+2j + O(r2M+2).(2.6)

By comparing the coefficients of rn in the both expressions of (2.5) and (2.6), we obtain

v(n)(0)
n!

=
∑

|α|+2j=n

yαsj

α!j!
(∂α

x ∂j
t )u(0, 0).
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Thus,

φ(n)(0) =
∫∫

E(1)

v(n)(0)
|y|2

s2
dyds

=
∑

|α|+2j=n

n!
α!j!

(∂α
x ∂j

t )u(0, 0) ×
∫∫

E(1)

yαsj |y|2

s2
dyds .

Since E(1) is symmetric about yi-axis(i = 1, · · · , N),
∫∫

E(1)
yαsj |y|2

s2 dyds vanishes when at
least one αi of α = (α1, · · · , αN ) is odd (i.e. when n is odd because |α| + 2j = n). This
proves (2.3). Next, we consider the case α = 2β for some β ∈ NN

0 and let n = 2k (k ∈ N).
Then we obtain

v(2k)(0) =
∑

2|β|+2j=2k

(∂2
x)β(∂t)ju(0, 0) × (2k)!

(2β)!j!
y2βsj

=
k∑

j=0

∑
|β|=k−j

(∂2
x)β(∂t)ju(0, 0) × (2k)!

(2β)!j!
y2βsj ,

which implies (2.4).

Lemma 4 (Factorization). Let N = 1. Then

(2.7) v(2k)(0) =
k∑

l=0

(∂t − ∂2
x)k−l(∂t)lu(0, 0) × Bl,k(y, s)

where

(2.8) Bl,k(y, s) = (−1)k+l
l∑

m=0

(
k − l + m

m

)
× Ak−l+m,k(y, s)

for 0 ≤ l ≤ k.

Proof. By the assumption N = 1 and (2.4), it is enough to prove that

(2.9)
k∑

j=0

(∂2
x)k−j(∂t)ju(0, 0) × Ak−j,k =

k∑
l=0

(∂t − ∂2
x)k−l(∂t)lu(0, 0) × Bl,k.

We prove (2.9) by comparing the coefficients of (∂2
x)k−j(∂t)ju(0, 0) in both sides.

Since

k∑
l=0

(∂t − ∂2
x)k−l(∂t)lu(0, 0)Bl,k

= (∂t − ∂2
x)ku(0, 0)B0,k + (∂t − ∂2

x)k−1(∂t)u(0, 0)B1,k + · · · + (∂t)ku(0, 0)Bk,k,
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the coefficient of (∂2
x)k−j(∂t)ju(0, 0) on the right hand side of (2.9) is given by

(−1)k−j

[(
k

k − j

)
B0,k +

(
k − 1
k − j

)
B1,k +

(
k − 2
k − j

)
B2,k + · · ·

+
(

k − j + 1
k − j

)
Bj−1,k +

(
k − j
k − j

)
Bj,k

]
= (−1)k−j

j∑
l=0

(
k − l
k − j

)
Bl,k.

Inserting the definition of Bl,k in (2.8) into this expression, we assure that the coefficient of
(∂2

x)k−j(∂t)ju(0, 0) on the right hand side of (2.9) is given by

(2.10) (−1)k−j

j∑
l=0

(
k − l
k − j

)
(−1)k+l

l∑
m=0

(
k − l + m

m

)
× Ak−l+m,k.

Since

j∑
l=0

(
k − l
k − j

)
(−1)k+l

l∑
m=0

(
k − l + m

m

)
Ak−l+m,k

=
(

k
k − j

)
(−1)k

(
k
0

)
Ak,k

+
(

k − 1
k − j

)
(−1)k+1

[(
k − 1

0

)
Ak−1,k +

(
k
1

)
Ak,k

]
+

(
k − 2
k − j

)
(−1)k+2

[(
k − 2

0

)
Ak−2,k +

(
k − 1

1

)
Ak−1,k +

(
k
2

)
Ak,k

]
+ · · ·

+
(

k − j
k − j

)
(−1)k+j

[(
k − j

0

)
Ak−j,k + · · · +

(
k − 1
j − 1

)
Ak−1,k +

(
k
j

)
Ak,k

]
,

coefficients of Ak−i,k for all 0 ≤ i ≤ j − 1 in (2.10) is given by

(−1)k−j(−1)k+i

j−i∑
n=0

(−1)n

(
k − i − n

k − j

)(
k − i

n

)

= (−1)i−j

j−i∑
n=0

(−1)n

(
k − i
k − j

)(
j − i

n

)
= 0,

where the last equality comes from
p∑

n=0

(−1)n

(
p
n

)
= (−1 + 1)p = 0.

Then we prove that

(2.11)
j∑

l=0

(
k − l
k − j

)
(−1)k+l

l∑
m=0

(
k − l + m

m

)
Ak−l+m,k =

(
k − j
k − j

)
(−1)k+jAk−j,k.

Therefore, by (2.10) and (2.11), the coefficient of (∂2
x)k−j(∂t)ju(0, 0) on the right hand side

of (2.9) is Ak−j,k. We have thus proved Lemma 4.
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From (2.2) and (2.7), we deduce

φ(2k)(0) =
k∑

l=0

(∂t − ∂2
x)k−l(∂t)lu(0, 0) ×

∫∫
E(1)

Bl,k(y, s)dyds(2.12)

Note that, on the right hand side of (2.12), the heat operator (∂t − ∂2
x) acts on u except for

l = k.

Lemma 5. We put

C̃l,k =
∫∫

E(1)

Bl,k(y, s)
y2

s2
dyds.

Then we get

C̃l,k =
(2k)!(−1)k4

k!(4π)k(2k + 1)k+ 3
2

(
k − 1

l

)
(2k)l(2.13)

for 0 ≤ l ≤ k − 1 and C̃k,k = 0.

Proof. We prove Lemma 5 by simple calculations. First, by the definition of Bl,k in (2.8)

Bl,k = (−1)k+l
l∑

m=0

(
k − l + m

m

)
(2k)!

(2k − 2l + 2m)!(l − m)!
y2k−2l+2msl−m

for 0 ≤ l ≤ k, we have

C̃l,k = (−1)k+l
l∑

m=0

(
k − l + m

m

)
(2k)!

(2k − 2l + 2m)!(l − m)!

∫∫
E(1)

y2k−2l+2m+2sl−m−2dyds.

Direct calculation shows that∫∫
E(1)

y2k−2l+2m+2sl−m−2dyds =
∫ s=0

s=−1/4π

sl−m−2

∫
|y|≤

√
2s log (−4πs)

y2k−2l+2m+2dyds

=
2

(2k − 2l + 2m + 3)

∫ 0

−1/4π

sl−m−2 {2s log (−4πs)}k−l+m+ 3
2 ds

=
(−1)l−m2k−l+m+ 3

2

(k − l + m + 3
2 )(4π)k+ 1

2

∫ ∞

0

tk−l+m+ 3
2 exp

(
−

(
k +

1
2

)
t

)
dt

=
(−1)l−m4k−l+m23Γ(k − l + m + 3

2 )

(4π)k
√

π(2k + 1)k−l+m+ 5
2

where Γ(·) is the Gamma function. Thus, we get

C̃l,k =
(−1)k(2k)!4k−l8

(4π)k
√

π(2k + 1)k−l+ 5
2 (k − l)!

l∑
m=0

(−1)m(k − l + m)!4mΓ(k − l + m + 3
2 )

m!(2k − 2l + 2m)!(l − m)!(2k + 1)m
.

=
(−1)k(2k)!4

k!(4π)k(2k + 1)k−l+ 5
2

(
k
l

) l∑
m=0

(−1)m

(
l
m

)
2k − 2l + 2m + 1

(2k + 1)m
,
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where the last equality comes from the fact Γ(s + 1) = sΓ(s).
Since we have the following equation

(2k + 1)l
l∑

m=0

(−1)m

(
l
m

)
2k − 2l + 2m + 1

(2k + 1)m

= (2k + 1)
l∑

m=0

(
l
m

)
(−1)m(2k + 1)l−m − 2

l−1∑
m=0

(−1)m

(
l
m

)
(l − m)(2k + 1)l−m

= (2k + 1)(2k)l − 2l(2k + 1)
l−1∑
m=0

(−1)m

(
l − 1
m

)
(2k + 1)l−m−1

= 2(k − l)(2k)l−1(2k + 1)

Therefore we obtain C̃k,k = 0 and (2.13).

From all Lemmas, we obtain

φ(2k)(0) =
k−1∑
l=0

(∂t − ∂2
x)k−l(∂t)lu(0, 0) × C̃l,k (k = 1, 2, . . .),

which proves Theorem 1.

3 A mean value property for polycaloric functions In this section, first we recall
the well-known regularity property of (poly-) caloric functions.

Proposition 6 (caloric function is smooth). If u : UT → R is caloric, then u ∈ C∞(UT ).

Proof. See [5]: p.p 59-61 Theorem 8.

Proposition 7 (polycaloric function is smooth). If u : UT → R is polycaloric, then u ∈
C∞(UT ).

Proof. Assume that there exists m ∈ N such that (∂t − ∆x)mu = 0 in UT . Then we find
caloric functions u0, u1, · · · , um−1 : UT → R such that

u(x, t) = u0(x, t) + tu1(x, t) + · · · + tm−1um−1(x, t)(3.1)

holds true, by proposition 1 in [8]. Indeed, for j = 1, 2, · · · ,m, we may choose

um−j(x, t) =
1

(m − j)!

j−1∑
k=0

(−t)k

k!
(∂t − ∆x)m−j+ku(x, t).

Therefore u0, u1, · · · , um−1 are caloric and satisfy the equation (3.1). By proposition 6 and
(3.1), we obtain u ∈ C∞(UT ).

By proposition 6 and proposition 7, we obtain several corollaries which are proved by
F.Da Lio and L.Rodino [3] as follows. We do not need the additional assumption that u is
smooth, after assuming that u is caloric or polycaloric.
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corollary 8 (A mean value property for analytic functions. [3] Proposition 2.2). Let N = 1
and u ∈ C∞(UT ). Assume that (∂t − ∂2

x)u(x, t) is an analytic function in UT . Then φ(r)
given in (2.1) is an analytic function of r ∈ R in a neighborhood of r = 0, and it holds

1
4r

∫∫
E(x,t;r)

u(y, s)
(x − y)2

(t − s)2
dyds

= u(x, t) +
∞∑

k=1

r2k

k!

k−1∑
l=0

(∂t − ∂2
x)k−l(∂t)lu(x, t) × Cl,k

where Cl,k =
(−1)k

(4π)k(2k + 1)k+ 3
2

(
k − 1

l

)
(2k)l.

Remark 9. If u is caloric on UT , then u ∈ C∞(UT ) and (∂t − ∂2
x)u(x, t) is obviously

analytic in UT and for each heat ball E(x, t; r) ⊂ UT the following equation holds:

1
4r

∫∫
E(x,t;r)

u(y, s)
(x − y)2

(t − s)2
dyds = u(x, t).

Corollary 10 can be considered as the generalization of (1.1) to the polycaloric case.

corollary 10 (A mean value property for polycaloric functions). Let N = 1 and (∂t −
∂2

x)u(x, t) be an analytic function in UT . If u is polycaloric on UT (i.e.(∂s − ∂2
y)mu(y, s) =

0, (y, s) ∈ UT , m ∈ N), then for each heat ball E(x, t; r) ⊂ UT the following equality holds:

1
4r

∫∫
E(x,t;r)

u(y, s)
(x − y)2

(t − s)2
dyds

= u(x, t) +
m−1∑
k=1

r2k

k!

k−1∑
l=0

(∂t − ∂2
x)k−l(∂t)lu(x, t) × Cl,k

+
∞∑

k=m

r2k

k!

k−1∑
l=k−m+1

(∂t − ∂2
x)k−l(∂t)lu(x, t) × Cl,k,

where Cl,k =
(−1)k

(4π)k(2k + 1)k+ 3
2

(
k − 1

l

)
(2k)l.

Proof. This is a direct consequence of Theorem 1 and Proposition 7.

corollary 11 ([3] Corollary 2.1). Let N = 1. Suppose that there exist n1 ≥ 0 and n2 ≥ 1
such that

(∂t − ∂2
x)(∂t)n1u = 0 and (∂t − ∂2

x)n2u = 0 in UT .

Then for all r > 0 we have

1
4r

∫∫
E(x,t;r)

u(y, s)
(x − y)2

(t − s)2
dyds(3.2)

= u(x, t) +
M∑

k=1

r2k

k!

k−1∑
l=0

(∂t − ∂2
x)k−l(∂t)lu(x, t) × Cl,k,

with M = n1 + n2 − 1 (when n1 = 0 or n2 = 1 the sum in the right-hand side of (3.2) does
not appear).
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Proof. Note that we get u ∈ C∞(UT ), since u is polycaloric in UT . See the proof of corollary
2.1 in [3].

We finally give a mean value property for the higher order heat equation ∂tu+(−1)m∆mu =
0 (m ∈ N) for general dimension. In the proof, we use proposition 2.2 and a result in the
proof of proposition 2.1 in [3].

Proposition 12 (A mean value property for the higher order heat equation). Let u ∈
C∞(UT ) and (∂t −∆x)u(x, t) be an analytic function in UT . Assume that u is a solution of
the higher order heat equation ∂tu+(−1)m∆mu = 0. Then for each heat ball E(x, t; r) ⊂ UT

the following equality holds:

(3.3)
1

4rN

∫∫
E(x,t;r)

u(y, s)
|x − y|2

(t − s)2
dyds = u(x, t) +

∞∑
k=1

r2kHku(x, t),

where Hk is given by

Hku =


ρk,N

k!

k∑
h=0

(−1)k−h

(
k

h

)
(N + 2h)

(
N

2k + N

)h

∆mk+(1−m)hu, (m : odd)

ρk,N

k!

k∑
h=0

(
k

h

)
(N + 2h)

(
N

2k + N

)h

∆mk+(1−m)hu, (m : even)

where ρk,N =
1

2k + N

(
N

2k + N

)N
2 +1 (

1
4π

)k

.

Proof. Let p ∈ N. Note that u satisfies

∂p
t u =

{
∆pmu, (m : odd)
(−1)p∆pmu, (m : even)

(3.4)

since u is a smooth solution of the higher order heat equation ∂tu + (−1)m∆mu = 0. On
the other hand, (3.3) holds by proposition 2.2 in [3], and according to a result in [3] (p,268,
line 2 and 9), Hk is given by

Hku =
ρk,N

k!

k∑
h=0

(−1)k−h

(
k
h

)
(N + 2h)

(
N

2k + N

)h

∆h(∂t)k−hu.(3.5)

Finally, combining (3.4) and (3.5), we get the proposition 12.
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