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Abstract. Based on a curved exponential family, there is a regularity condition that
the score function with random variables is the linear independence, which is commonly
used in the information geometry. An equivalence relation to the regularity condition
is that the Fisher information is positive definite under the curved exponential family.
We investigate a key condition for two regularity conditions and we recognize it as the
linear independence for the first derivative of natural parameter with respect to the
parameter.

1 Introduction [3] introduced the ideas of the statistical curvature with respect to the
asymptotic information loss. [1] introduced the statistical differential manifold and devel-
oped α-connection and m-connection in the curved exponential family. A lot of researchers
have investigated the information geometry and there are a lot of fruitful and valuable
results for the asymptotic.

In the framework of the information geometry, the statistical manifold {p(x; θ)} is based
on the family of distributions with a parameter θ ∈ Θ ⊆ Rk. Among the regularity
conditions in this framework, a regularity condition which we consider is that the derivatives
{∂�(θ)/∂θi} are linearly independent where �(θ) is the log-likelihood ([4](page 76), [2](page
29)). It seems that the linear independence on the derivatives is reasonable for constructing a
tangent space in the statistical manifold, but we wonder whether this assumption is rational
with respect to the underlying distribution of the random variable. Remark that we do not
intend to consider singular models that do not satisfy the usual regularity conditions.

Based on a curved exponential family, an equivalence relation to the regularity condition
that the score function with random variables is the linear independence is the regularity
condition that the Fisher information is positive definite ([2](pages 25–29)). We investi-
gate a key condition for above two regularity conditions and we recognize it as the linear
independence for the first derivative of natural parameter with respect to the parameter.

2 The regularity condition [2](pages 25–29) considers a family of probability distribu-
tion on X , i.e., S = {pθ = p(x; θ) | θ ∈ Θ ⊆ Rk} as k-dimensional statistical model on a set
X which is a discrete set or Rm (k ≤ m). Letting p be a probability (density) function on

X , the support of p is defined by supp(p)
def
= {x | p(x) > 0} which is assumed to be constant

with respect to θ, and X is redefined as supp(p), so that the statistical model S is a subset
of

P(X )
def
=

{
p : X → R

∣∣∣∣ p(x) > 0 (∀x ∈ X ), a

∫
X
p(x)dx = 1

}
.

Note that the integral is interpreted as the summation if X is a discrete case. For the
statistical model S = {pθ}, defining the mapping ϕ : S → Rk by ϕ(pθ) = θ implies a

2010 Mathematics Subject Classification. 62B10.
Key words and phrases. Curved exponential family, regularity condition, linear independence, informa-

tion geometry.

Scientiae Mathematicae Japonicae Online e-2015,127-131                     　　　　　　　　　　　          127  



coordinate system for S. Furthermore suppose that there is a C∞ diffeomorphism ψ :
Θ → ψ(Θ)(⊂ Rk), so that, if we use η = ψ(θ) as another parameter, then it holds that
S = {pθ | θ ∈ Θ} = {pψ−1(η) |η ∈ ψ(Θ)}. Thus a parameterization of S is a coordinate
system of S as a C∞ differentiable manifold.

Letting [θi] be a coordinate system in the statistical manifold S implies the vector fields
formed by the natural bases {∂i} ∈ Tθ(S) which is the tangent space. Note that ∂i means
∂

∂θi
and {∂i} are vector fields. The Fisher information matrix at θ in S is defined by the

k × k matrix G(θ) = (gij(θ)) where the (i, j)-th element of G(θ) is, for i, j = 1, . . . , k,

gij(θ)
def
= Eθ

[
∂i� ∂j�

]
=

∫
X
∂i�(x; θ) ∂j�(x; θ) p(x; θ) dx (∈ R),

where � = �(x; θ) = log p(x; θ) is the log-likelihood function and Eθ means the expectation
with respect to the distribution pθ. [2] shows the assumptions as follows:

(page 28, line 3 from below to page 29, line 5) The matrix G(θ) is symmetric
(gij(θ) = gji(θ)), and since for any k-dimensional vector c = (c1, . . . , ck)t ( t denotes
transpose),

(1) ctG(θ)c =

∫ {
k∑

i=1

ci ∂i�(x;θ)

}2

p(x;θ) dx ≥ 0,

it is also positive semidefinite. We assume further that G(θ) is positive definite.

From the equation above, we see that this is equivalent to stating that the elements

of {∂1�, . . . , ∂k�} when viewed as functions on X are linearly independent, which,

in turn, is equivalent to stating that the elements of {∂1pθ, . . . , ∂kpθ} are linearly

independent.

(page 29, lines 13–16, 18) Now suppose that the assumption above hold, and define

the inner product of the natural basis of the coordinate system [θi] by gij(θ) = 〈∂i, ∂j〉.
This uniquely determines a Riemannian metric g(θ) = 〈, 〉. We call this the Fisher

metric, or alternatively, the information metric.

(page 29, line 18) Indeed we may write 〈X,Y 〉θ = Eθ[(X�)(Y �)] for all tangent

vectors X,Y ∈ Tθ(S).
The above assumptions seem to be the key to the regularity conditions in the information

geometry. For convenience sake, we shall define the following conditions:

Condition A The matrix G(θ) =
(〈
∂i, ∂j

〉
θ

)
=
(
Eθ
[
∂i� ∂j�

])
in (1) is positive definite

where ∂i, ∂j are the natural bases in Tθ(S) and � is the log-likelihood function.

Condition B The elements of
{
∂1�, . . . , ∂k�

}
are linearly independent.

In the curved exponential family with a parameter θ ∈ Θ ⊆ Rk, the density of the
random variable X ∈ Rm is p(x; θ) = exp{〈α(θ), x〉 − ψ(α(θ))}p0(x), where p0(x) is a
pivotal probability measure, α(θ) ∈ Rm is a curved natural parameter parametrized by θ,
the Euclidean inner product 〈, 〉 in the exponent is the usual product of two vectors, and
ψ(α(θ)) ∈ R is the cumulant generating function. Note that the natural parameter space
A is defined by A = {α ∈ Rm| ∫ exp{〈α, x〉}p0(x)dx <∞} and {α(θ)} ∈ A.

Now we assume that supp(p) = Rm which is independent of the parameter θ. The usual
derivative of the log-likelihood � = log p(x; θ) with respect to the vector θ is defined by

∂θ �
def
=

∂ �

∂ θ
=
(
∂1�, . . . , ∂k�

)T
=
〈
α̇(θ), X − β(θ)

〉
(∈ Rk),
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where α̇(θ) = ∂α(θ)/∂θT and β(θ) = Eθ[X], that is, the i-th element is

∂i� = 〈∂iα(θ), X − β(θ)〉 (∈ R) (i = 1, . . . , k),

where ∂iα(θ) = ∂
∂θiα(θ). The matrix G(θ) is obtained by

(2) G(θ) = Eθ
[〈
∂θ �, ∂θ �

〉]
= α̇(θ)t Σ(θ) α̇(θ) (∈ Rk×k),

where Σ(θ) is the covariance matrix of X under the probability p(x; θ).
Since the derivative of � is ∂� = 〈α̇(θ), X − β(θ)〉 for k < m, Condition B means the

following relationship:

(3)
k∑
i=1

ci ∂i� =
〈 k∑
i=1

ci ∂iα(θ), X − β(θ)
〉

= 0 =⇒ ∀ ci = 0.

Although the derivatives {∂i�} (i = 1, . . . , k) are supposed to be linearly independent, they
are also random variables based on the distribution pθ and the matrix G(θ) is assumed
to be calculated by both the random variables {∂i�} and their distribution pθ. Note that,
in the exponential family (k = m), since ∂� = X − β, Condition B means the following
relationship:

(4)

m∑
i=1

ci ∂i� =

m∑
i=1

ci (Xi − βi) = 0 =⇒ ∀ ci = 0.

3 An underlying condition for those regularity conditions With respect to the
two conditions in the previous section, we investigate what are an underlying condition if
Condition A is equivalent to Condition B under the curved exponential family.

LEMMA 3.1 In the curved exponential family, assume that the covariance matrix Σ(θ) is
positive definite. Then Condition A is equivalent to the linear independence of {∂iα(θ)},
i.e.,

(5)

k∑
i=1

ci ∂iα(θ) = 0 =⇒ ∀ci = 0.

Proof: Since the covariance matrix is positive definite, we decompose the matrix as
follows: Σ(θ) = Σ(θ)1/2Σ(θ)1/2. Then the matrix G(θ) in (2) is decomposed by

G(θ) =
(
Σ(θ)1/2α̇(θ)

)t (
Σ(θ)1/2α̇(θ)

)
and is considered as the Gram matrix, so that, by its property, Condition A is equivalent
to that the k components {Σ(θ)1/2∂iα(θ)} of m × 1 vectors in Σ(θ)1/2α̇(θ) are linearly
independent, i.e.,

k∑
i=1

ciΣ(θ)1/2∂iα(θ) = Σ(θ)1/2

(
k∑
i=1

ci ∂iα(θ)

)
= 0 =⇒ ∀ci = 0,

so that, since the matrix Σ(θ)1/2 has the inverse, Condition A equals that {∂iα(θ)} are
linearly independent. �
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This lemma means that Condition A depends on only the derivatives of the natural
parameter α(θ), not the log-likelihood function �(θ) with the random variable X directly.

Note that, since α(θ) = α in an exponential family, it holds that ∂iα = ei which is the
i-th unit vector, so that the equivalent condition in Lemma 3.1 is

(6)

m∑
i=1

ci ei = 0 =⇒ ∀ci = 0,

which is trivial because of the property of unit vectors. Next we consider the equivalent
condition for Condition B.

LEMMA 3.2 In the curved exponential family, Condition B is equivalent to the condition
(5), i.e., the linear independence of {∂iα(θ)}.

Proof: Since Condition B is that the derivatives {∂i�} are linearly independent, i.e., (3),
for the equation

(7)

〈
k∑
i=1

ci ∂iα(θ), X − β(θ)

〉
= 0

in Condition B, we consider two cases as follows: Case (i)
∑k

i=1 ci ∂iα(θ) = 0 and Case (ii)∑k
i=1 ci ∂iα(θ) �= 0. For the Case (i), the equation (7) always holds without reference to

the random variable X, so that the Condition (5) implies Condition B.
On the other hand, for the Case (ii), it holds under the condition as follows:

(8) X − β(θ) ∈ N
(

k∑
i=1

ci ∂iα(θ)

)
,

which is a normal space against the vector
∑k

i=1 ci ∂iα(θ)(�= 0). If the random variable X
satisfies the condition (8) for the Case (ii), then the equation (7) holds, but the necessary
condition ∀ci = 0 in Condition B contradicts the Case (ii).

Therefore the equation (7) in Condition B is equivalent to the Case (i), i.e., the sufficient
condition in (5) without reference to the random variable X in {∂i�}, so that we have the
required result. �

Note that, since α(θ) = α in an exponential family, it holds that, in the same fashion
before, the equivalent condition in Lemma 3.2 is (4), which is equivalent to the condition
(6) because of 〈ei,X − β〉 = Xi − βi for i = 1, . . . ,m. The previous two lemmas imply the
following theorem:

THEOREM 3.1 If the first derivative α̇(θ) of the natural parameter is full rank in the
curved exponential family and the covariance matrix Σ(θ) is positive definite, then, without
reference to the random variable X in the derivatives of log-likelihood function, Condition
A with respect to the Fisher information matrix G(θ) is equivalent to Condition B with
respect to the log-likelihood function �(θ). �

Therefore, from Theorem 3.1, what [2](page 29) stated that “We assume further that
G(θ) is positive definite. From the equation above, we see that this is equivalent to stating
that the elements of {∂1�, . . . , ∂k�} when viewed as functions on X are linearly independent.”
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just means that the derivatives {∂iα(θ)} are linearly independent under the positive definite
covariance matrix Σ(θ).

Because a relationship in the curved exponential family

(9) β̇(θ) = Σ(θ) α̇(θ)

holds, we have the following corollary:

COROLLARY 3.1 If the first derivative β̇(θ) of the expectation parameter is full rank in
the curved exponential family and the covariance matrix Σ(θ) is positive definite, then,
without reference to the random variable X in the derivatives of log-likelihood function,
Condition A is equivalent to Condition B.

Proof: Because of the relationship (9), if the first derivative β̇(θ) of the expectation
parameter is full rank in a curved exponential family and the covariance matrix Σ(θ) is
positive definite, then the first derivative α̇(θ) of the natural parameter is full rank, so
that the derivatives {∂iα(θ)} are linearly independent and we have the required result by
Theorem 3.1. �

4 Conclusion Based on the curved exponential family, we investigate the regularity con-
ditions of Condition A and Condition B with respect to the linear independence and we
conclude they are equivalent to the linear independence for the first derivative of the natural
parameter with respect to the parameter under the condition that the covariance matrix is
positive definite.
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