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　　　　Abstract. In this paper we study the Pareto e¢ ciency with respect to a
locally nuclear cone in the product of two locally convex spaces with the re-
stricted assumption that only some related sets are locally complete.

1. Introduction

Kuhn and Tucker in their famous paper [14] considered "proper solutions" for
vector maximum problems and introduced the concept of proper e¢ cient points.
Hurwicz [7] introduced the notion of a proper maximal point with respect to order-
ing cones to characterize maximal points as solutions for optimization problems.
Isac [8, 9, 11] used a method based on a general existence theorem for critical points
of dynamical systems to obtain several general results on the existence of solutions
of the general optimization problem in sequentially complete locally convex spaces.
He introduced the concept of nuclear cone [9] in a locally convex space, intimately
related to Pareto e¢ ciency [8, 9, 10, 11, 12]. Also he de�ned a nuclear cone in a
product of two locally convex spaces [12] to obtain maximal point theorems and a
vectorial Ekeland type theorem.
After it was discovered, the Ekeland�s principle [5] has had many di¤erent ap-

plications and extensions [6, 10, 11, 12, 20]. Qiu [21, 22, 23] and Bosch, García
et al.[2, 3, 4] found some extensions of Ekeland�s variational principle and Pareto
e¢ ciency assuming only local completeness conditions. In this paper by adapting
ideas of Isac [12] we extend Pareto e¢ ciency respect to locally nuclear cones in
the product of two locally convex spaces only assuming that some related sets are
locally complete. Also we stablish a vectorial Ekeland type theorem for locally
complete spaces.

2. Preliminaries

Througout this paper (E; �) will denote a locally convex space E, with topology
� generated by a family of seminorms f�� : � 2 �g with � a set of indexes. A disk
B in E is a closed, bounded and absolutely convex set. We denote by (EB ; �B) the
linear span of B endowed with the topology de�ned by the Minkowski functional
associated with B. If (EB ; �B) is complete then B is called a Banach disk. E0 will
denote the topological dual of (E; �) and (EB ; �B)

0 will denote the topological dual
of EB with respect to the norm �B .
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A sequence (xn)n in E is said to be locally convergent or Mackey convergent to
an element x in E if there exists a disk B in E such that the sequence converges to
x in EB with respect to �B . A sequence is called locally Cauchy or Mackey Cauchy
if it is a �B-Cauchy sequence in EB for a certain disk B in E.
Let C be a non-void subset of E. A point x is a local limit point of C if there is

a sequence in C that is locally convergent to x. A set C is locally closed if every
local limit point of C belongs to C.
A subset A of a space E is said to be locally complete if every local Cauchy

sequence in A converges locally to a point of A. It is clear that every locally
complete subset of a space is locally closed. For the whole space (E; �), it is locally
complete if and only if every disk B in E is in a Banach disk. And a locally closed
subset A of a locally complete space E is locally complete. For more details on local
completeness see [13, 17].
A closed pointed convex cone in a locally convex space is a nonempty subset

K � E such that:
(1) K is a closed convex subset,
(2) K +K � K;
(3) �K � K for all � 2 R+,
(4) K \ (�K) = f0g.
If a closed, pointed convex cone K � E is given we can de�ne an ordering in E

by x �K y if and only if y � x 2 K. For more details on order and cones see [16].
If A � E is a nonempty subset we say that a 2 A is an e¢ cient (maximal) point

of A if A \ (a +K) = fag. We denote by E (A;K) the set of e¢ cient points of A
with respect to K.
We say that � : A ! 2A is a dynamical system (in the generalized sense) if

for every x 2 A, �(x) is a nonempty subset of A, and x� 2 A is a critical point
for � if �(x�) = fx�g. We can see easily that �A(x) = A \ (x + K) for every
x 2 A is a dynamical system. Note that for y 2 �A(x) = A \ (x+K) and
z 2 �A(y) = A \ (y + K), we have z 2 A \ ((x+K) +K) = A \ (x + K). So
�A(y) � �A(x). The reader can verify that an element x� 2 A is an e¢ cient point
of A if and only if x� is a critical point of �A. Following Aubin-Siegel, Muntean,
Petrusel, Rus and Yao a critical point for a dynamical system is also known in the
literature as an end or stationary point (see [1]) or a strict �xed point for a set
valued operator (see [15, 18, 19]).
In [9] G. Isac introduced the concept of nuclear cone. The cone K � (E; �)

is said to be nuclear if for every �� in the family of seminorms wich de�nes the
topology � there exists f� 2 E0 such that ��(x) � f�(x), for every x 2 K. In [2],
is proved the following

Corollary 1. Let (E; �) be a locally convex space and K � E a closed, pointed
convex cone. Suppose that there exists a non-zero Banach disk D in E and f 2
(ED; �D)

0, such that K \ ED 6= f0g and �D(x) � f(x), for every x 2 K \ ED.
Suppose that for a nonempty locally closed subset B � E we have B \ED 6= ; and
that f is bounded above in B \ ED; then for every x0 2 B \ ED, there exists an
element x� 2 E(B;K) such that x� 2 x0 +K.
Note that in this corollary the property of nuclearity is applied locally to the

cone in the space (ED; �D). Motivated by this condition, we say that a closed,
pointed convex cone K � E is locally nuclear with respect to the disk D � E if
there exists f 2 (ED; �D)

0 such that �D(x) � f(x), for every x 2 K \ ED.
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3. Main Results

In [2], the author and C. Bosch proved the following theorem

Theorem 1. Let (E; �) be a locally convex space, A � E a nonempty subset and
K � E a closed, pointed convex cone. Suppose there exists A0, a nonempty subset
of A, such that:
a) A0 is locally complete,
b) �A(A0) � A0,
c) There exists a Banach disk D � E and f 2 (ED; �D)

0 such that A0 � ED and
i) �D(v) � f(v), for v 2 K(A0) = fv 2 K : v = v1 � v2; v1; v2 2 A0g � ED
ii) sup ff(x) : x 2 A0g <1
Then E(A;K) is nonempty.

We note, from the local completeness of A in the proof of this theorem, that is
su¢ cient to ask B to be a disk, that is, the completeness of (EB ; �B) is unnecessary.
Now, from this theorem and the locally nuclear property for a cone, we obtain

Corollary 2. Let (E; �) be a locally convex space, A � E a nonempty subset and
B � E a disk such that A � EB. Let K � E be a closed, pointed convex cone
locally nuclear respect to B. Suppose there exists x0 2 A such that A \ (x0 +K) is
locally complete and bounded. Then E (A;K) is nonempty.

Theorem 2. Let (E; �) be a locally convex space, K � E a closed, pointed convex
cone and A � E a locally complete subset. Suppose that given x0 2 A there exists
a sequence (xn)n 2 A such that xn+1 2 �A(xn)� fxng, for every n 2 N. Suppose
there exists a disk D � E such that lim

n
RD (�A (xn)) = 0, where RD (�A (xn)) =

sup f�D (x� y) : x; y 2 � (xn)g. Then there exists x� 2 E(A;K) such that x0 �K
x�.

Proof. According to the hypothesis, xn+k 2 �(xn) for every n 2 N, k 2 N. Since
lim
n
RD (�A (xn)) = 0, then there exists n0 2 N such that �A(xn0+k) � ED, for

every k 2 N. Then �D(xn+k � xn) � RD (�A (xn)) for n � n0 and k 2 N. So,
the sequence (xn)n 2 A is locally Cauchy. Since A is locally complete, there exists
x� 2 A such that �D(xn�x�) converges to zero. Clearly, x� 2

T
n2N[f0g

�A(xn). Since

lim
n
RD (�A (xn)) = 0 then RD (� (x�)) = 0 and fx�g = �(x�) =

T
n2N[f0g

�(xn).

And x� 2 �A(x0) implies x� � x0 2 K, so x0 �K x�. �

Let (E; �), (F; � 0) be locally convex spaces and suppose that F is ordered by
a closed, pointed convex cone K � F . Let B � E and D � F be disks. So, the
space EB�FD is a normed space endowed with the topology generated by �B+qD.
Let KD = K \ FD and suppose KD 6= f0g. Find k0 2 KD such that qD(k0) = 1.
Consider the set K�

D = ff 2 (FD; qD)0: f(y) � 0 for every y 2 KDg and  2 K�
D

such that  (k0) = 1. Let 1 > " > 0. In EB � FD consider the set

K(";B;D) =
�
(x; y) 2 EB � FD: y +

p
" (�B(x) + qD(y)) k0 2 �KD

	
:

Proposition 1. The set K(";B;D) is a non-trivial, closed, pointed and nuclear
cone in (EB � FD; �B + qD).
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Proof. Let (x; y); (u; v) 2 K(";B;D).
Since �B(x+ u) + qD(y + v) � �B(x) + �B(u) + qD(y) + qD(v),
then ( y + v) +

p
" (�B(x+ u) + qD(y + v)) k0

= (y + v) +
p
" (�B(x) + �B(u) + qD(y) + qD(v)� 
) k0, for some 
 � 0,

= (y +
p
" (�B(x) + qD(y)) k0)+ (v +

p
" (�B(u) + qD(v)) k0)� 
k0

2 �KD �KD �KD = �KD.
Then (x; y) + (u; v) 2 K(";B;D).
Let � 2 R+ and (x; y) 2 K(";B;D), so �(x; y) 2 K(";B;D), since
�y +

p
" (�B(�x) + qD(�y)) k0 = � ( y +

p
" (�B(x) + qD(y)) k0)

2 �(�KD) = �KD.
Note that, KD \ (�KD) = (K \ (�K)) \ FD = f0g.
Let (xn; yn) 2 K(";B;D) such that (xn; yn)! (x0; y0) with respect to the norm

�B + qD. Then xn ! x0 respect to �B and respect to � and yn ! y0 respect
to qD and respect to � 0. Then yn +

p
" (�B(xn) + qD(yn)) k0 2 �KD converges

to y0 +
p
" (�B(x0) + qD(y0)) k0 respect to �

0. And y0 +
p
" (�B(x0) + qD(y0)) k0

belongs to �KD = �K \ FD since K is � 0-closed in F and then �K \ FD is
qD-closed in FD.
Let x 2 EBn f0g and y 2 KDn f0g. Since �B(x) > 0 and qD(y) > 0 then

y +
p
" (�B(x) + qD(y)) k0 2 KDn f0g, that is (x; y) 2 (EB ; FD) nK(";B;D). Re-

call that qD(k0) = 1, then �k0+
p
"qD(�k0)k0 = �(1 �

p
")k0 2 �KD and

k0 +
p
"qD(k0)k0 = (1 +

p
")k0 2 KD. That means, (0;�k0) 2 K(";B;D) and

(0; k0) =2 K(";B;D). So, K(";B;D) is a non-trivial, pointed and closed cone in
(EB � FD; �B + qD).
Let us see it is nuclear in this space. For �2 : EB�FD ! FD, where �2(x; y) = y

and  2 K�
D such that  (k0) = 1. Let 	 : EB � FD ! R, given by 	(x; y) =  �

�2(x; y) =  (y), So, 	 2 (EB � FD; �B + qD)
0. Then for every (u; v) 2 K(";B;D)

there exists k 2 KD such that v +
p
" (�B(u) + qD(v)) k0 = �k 2 �KD. Thenp

" (�B(u) + qD(v)) k0 = �v � k and applying  we obtain
p
" (�B(u) + qD(v)) =

 (
p
" (�B(u) + qD(v)) k0) = � (v)�  (k) � � (v) = �	(u; v).

Let T : EB � FD ! R, such that T = �	. Then
p
" (�B(u) + qD(v)) � T (u; v),

for every (u; v) 2 K(";B;D). So, T 2 (K(";B;D))� and K(";B;D) is nuclear in
(EB � FD; �B + qD). �

Theorem 3. Let (E; �), (F; � 0) be locally convex spaces and suppose that F is or-
dered by a closed, pointed convex cone K � F . Let A � E�F be a nonempty locally
complete subset and B � E, D � F disks such that A � EB � FD. Let k0 2 KD =
K \ FD be an element such that qD(k0) = 1. For 1 > " > 0 consider K(";B;D).
Suppose there exists z0 2 FD such that fy 2 FD: (x; y) 2 A for some x 2 EBg �
z0 +KD. Then for every (x0; y0) 2 A there exists (x�; y�) 2 A satisfying
i) (x�; y�) 2 A \ [(x0; y0) +K(";B;D)]
ii) A \ [(x�; y�) +K(";B;D)] = f(x�; y�)g

Proof. Let T 2 [K(";B;D)]� be as the constructed in Proposition 5. Then
K(";B;D) � f(x; y) 2 EB � FD:

p
" (�B(x) + qD(y)) � T (x; y)g

= f(x; y) 2 EB � FD: 	(x; y) +
p
" (�B(x) + qD(y)) � 0g;

for 	(x; y) = �T (x; y) =  (y).
Let (u; v) 2 A, then v 2 z0 + KD, and v � z0 2 KD. Since  2 K�

D, then
 (v � z0) � 0 and 	(u; v) =  (v) �  (z0). Hence 	 is bounded from below on
A. Consider the generalized dynamical system � : A ! 2A, such that �(x; y) =
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A \ [(x; y) +K(";B;D)]. We will de�ne an inductive sequence in A. Starting
from (x0; y0), suppose (xn; yn) 2 A is de�ned and �(xk+1; yk+1) � �(xk; yk), for
k = 0; 1; :::; n � 1. If we have �(xn; yn) = f(xn; yn)g, then we have �nished. So, if
we have �(xn; yn) 6= f(xn; yn)g for every n 2 N, we have to �nd (x�; y�).
For every (x; y) 2 �(xn; yn)n f(xn; yn)g, �B(xn � x) + qD(yn � y) > 0.
Since K(";B;D) � f(x; y) 2 EB � FD: 	(x; y) +

p
" (�B(x) + qD(y)) � 0g

then 	(x; y)�	(xn; yn) +
p
" (�B(x� xn) + qD(y � yn)) � 0,

for (x; y) 2 �(xn; yn)n f(xn; yn)g. So,

(3.1) 	(x; y) � 	(xn; yn)�
p
" (�B(x� xn) + qD(y � yn)) < 	(xn; yn),

for (x; y) 2 �(xn; yn)n f(xn; yn)g. Then
0 < 	(xn; yn)�	(x; y) � 	(xn; yn)� inf

(x;y)2�(xn;yn)
	(x; y):

So, for every n 2 N[f0g there exists (xn+1; yn+1) 2 �(xn; yn) such that

	(xn+1; yn+1) < inf
(x;y)2�(xn;yn)

	(x; y) +
1

2

�
	(xn; yn)� inf

(x;y)2�(xn;yn)
	(x; y)

�
,

And �(xk+1; yk+1) � �(xk; yk), for every k 2 N[f0g. And from the previous
inequality, for (s; t) 2 �(xk+1; yk+1) we have

	(xk+1; yk+1)�	(s; t) � 	(xk+1; yk+1)� inf
(v;w)2�(xk+1;yk+1)

	(v; w)

� 	(xk+1; yk+1)� inf
(v;w)2�(xk;yk)

	(v; w) � 1

2

�
	(xk; yk)� inf

(v;w)2�(xk;yk)
	(v; w)

�
� 1

2

�
	(x0; y0)� inf

(v;w)2�(xk;yk)
	(v; w)

�
by (3.1), since (xk; yk) 2 �(x0; y0). So, for n 2 N and (s; t) 2 �(xn; yn) we have

	(xn; yn)�	(s; t) � 1

2

�
	(x0; y0)� inf

(v;w)2�(xn�1;yn�1)
	(v; w)

�
� 1

22

�
	(x0; y0)� inf

(v;w)2�(xn�2;yn�2)
	(v; w)

�
� � � �

� � � � 1

2n

�
	(x0; y0)� inf

(v;w)2�(x0;y0)
	(v; w)

�
Recall K(";B;D) � f(x; y) 2 EB � FD: 	(x; y) +

p
" (�B(x) + qD(y)) � 0g.

If (s; t) 2 �(xn; yn) = A \ [(xn; yn) +K(";B;D)] then
(s� xn; t� yn) 2 K(";B;D), which implies

	(s� xn; t� yn) +
p
" (�B(s� xn) + qD(t� yn)) � 0:

Then for (s; t) 2 �(xn; yn) and for every n 2 N we have

�B(s� xn) + qD(t� yn) � 1p
"
[	(xn; yn)�	(s; t)]

� 1p
"

1

2n

�
	(x0; y0)� inf

(v;w)2�(x0;y0)
	(v; w)

�
.

Since (xk+1; yk+1) 2 �(xn; yn) = A \ [(xn; yn) +K(";B;D)], for every n 2
N[f0g, then �B(xn+1 � xn) + qD(yn+1 � yn) � RB�D (�(xn; yn)) which is small
if n is large enough. So, the sequence (xn; yn) 2 A is a locally Cauchy sequence
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with respect to �B(�)+qD(�) and convergent to some (x�; y�) 2 A, since A is locally
complete. Then by Theorem 4, (x�; y�) 2 E(A;K(";B;D)). �

Let (E; �) and (F; � 0) be locally convex spaces. F ordered by a closed pointed
convex cone K. Recall f : E ! F is bounded from below if there exists z� 2 K such
that f(x) �K z�, for every x 2 E, that is, f(E) � z� +K. Also, an element f(x")
is an approximately e¢ cient point of f(E) with respect to K, k0 2 K and " 2 [0; 1)
if f(E) \ [f(x")� "k0 � (K n f0g)] = ;. The set of approximately e¢ cient points
of f(E) with respect to K, k0 2 K and " 2 [0; 1) is denoted by Eff (f(E);K"k0)
where K"k0 = "k0 + K. Note that Eff (f(E);K"k0) = E (f(E);�K) (minimal),
for " = 0.
As an application of the previous Theorem, under these conditions, we prove the

following vectorial Ekeland type Theorem.

Theorem 4. Let (E; �), (F; � 0) be locally complete locally convex spaces and F
ordered by a closed, pointed convex cone K. Let k0; z� 2 K and f : E ! F be such
that f(x) �K z�, for every x 2 E, and assume Graph(f) = f(x; f(x)) : x 2 Eg is
locally closed in E�F . Let " 2 (0; 1) and f(x0) 2 Eff (f(E);K"k0). Let D � F be
a non-zero disk such that k0; z�; f(x0) 2 FD. Then for every disk non-zero B � E
such that x0 2 EB and f(EB) � z� +KD = z� + (K \ FD), there exists x" 2 EB
satisfying:
1. f(x") 2 f(x0)�

p
"�B(x" � x0)k0 �KD

2. f(x") 2 E
�
fB;D"k0

(EB);�KD

�
; where

fB;D"k0
(x) = f(x) +

p
" [�B(x� x") + qD(f(x)� f(x"))] k0

for every x 2 EB :

Proof. We may assume D is a disk such that qD(k0) = 1. In order to apply the pre-
vious theorem, we verify those hypotheses. For " 2 (0; 1) consider the corresponding
K(";B;D). As the locally complete set A, now consider A = f(x; f(x)) : x 2 EBg �
EB � FD which we will denote by Graph(fB;D), and (x0; f(x0)) 2 Graph(fB;D).
SinceGraph(f) is locally closed in the locally complete space (E�F ) thenGraph(fB;D)
is locally complete. Recall B and D are Banach disks, since E and F are lo-
cally complete. Then according to the previous theorem, there exists (x"; f(x")) 2
Graph(fB;D) such that
i) (x"; f(x")) 2 Graph(fB;D) \ [(x0; f(x0)) +K(";B;D)]
ii) Graph(fB;D) \ [(x"; f(x")) +K(";B;D)] = f(x"; f(x"))g :
From (ii), for x 2 EB n fx"g we have (x; f(x)) � (x"; f(x")) =2 K(";B;D), that

is f(x)� f(x") +
p
" [�B(x� x") + qD(f(x)� f(x"))] k0 =2 �KD.

Then fB;D"k0
(x) =2 fB;D"k0

(x")�KD, for every x 2 EB n fx"g.
Hence fB;D"k0

(EB) \
h
fB;D"k0

(x")� (KD n f0g)
i
= ;, and fB;D"k0

(x") = f(x") is a

minimal e¢ cient point, according to (2).
To see (1), from (i) we have (x"; f(x")) 2 (x0; f(x0)) + K(";B;D). Then

f(x") � f(x0) +
p
" [�B(x0 � x") + qD(f(x0)� f(x"))] k0 2 �KD. Then f(x") +p

" [�B(x0 � x")] k0 2 f(x0)�
p
" [qD(f(x0)� f(x"))] k0�KD � f(x0)�KD�KD.

Hence f(x") 2 f(x0)�
p
"�B(x0 � x")k0 �KD. �
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